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Abstract: In this paper, we prove the existence of common random fixed point for two continuous random operators under quasi
contraction condition in a complete p-normed spaceX( with whose dual separates the point of X). Also, the well-posedness problem of
random fixed points is studied. Our results, essentially cover special cases.
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1. Introduction and Preliminaries

Let X be a linear space and || || pbe a real valued function on
X with 0 < p < 1. The ordered pair (X, || ||p) is called a p-

normed space[16] if for all x,y in X and scalars A :
illxll, = 0and [|x[|, = 0iffx=0

ii. | 2, = 1217 [,

iii. [ + |, <llxll, +[x1,
for more details about p-normed spaces, see [5] or [14]
.Throughout this article X will be complete p-normed space
whose dual separates the points of it , 0 #A S X be a
separable closed , (2, X)be the measurable space with X a
sigma algebra of subsets of Q.

Definition(1.1):[11]

A mapping F: ) - Xis called measurable if, for open
subset Bof ,F"1(B) ={y e 2:F(y)NB = @} € .

Definition(1.2):[11]

A mapping h: 2 X X — Xis called a random operator if for
any x € X, h(.,x)is measurable .

Definition (1.3):[19]

A measurable mapping A:2 - A is called random fixed
point of a random operator h: 2 X X — Xif for every y €

2,20) = h(y, A(N)).

Definition (1.4): [8]

A measurable mapping A: 2 = A is called common random
fixed point of a random operator h: 2 X A - X and G: 0 X
A - Aifforally € 2
AW) = h(y, A1) = 6(r,2().
Definition (1.5):[20]
A random operator h:2 X A —> X is called continuous
(weakly continuous) if for each y € 0, h(y,.)is continuous
(weakly continuous).

The stochastic generalization of fixed point theory is random
fixed point theory. Many researchers are interesting in this
subject and it's applications in best approximations, integral
equations and  differential  equations such as

(71,[121,[10],[15],[11,[2],[3]-

Saluj [18] establish some common random fixed point
theorems under contractive type condition in the framework
of cone random metric spaces. Rashwan and Albageri [17]
obtained common random fixed point theorems for six
weakly compatible random operators defined on a nonempty
closed subset of a separable Hilbert space. In 2013,
Arunchaiand Plubtieng [4] proved some random fixed point
theorem for the some of weakly-strongly continuous random
operators and nonexpansive random operators in Banach
spaces. Singh, Rathore, Dubey and Singh [21] obtain a
common random fixed point theorems for four continuous
random operators in separable Hilbert spaces. Vishwakarme
and Chauhan [22] proved common random fixed point
theorems for weakly compatible random operators in
symmetric spaces. Khanday, Jain and Badshah [13] proved
the existence of common random fixed point theorems of two
random multivalued generalized contractions by using
functional expressions. Chanhan [9] obtained common
random fixed point theorems for four continuous random
operators satisfying certain contractive conditions in
separable Hilbert spaces.

Now, we define a new type of random operators

Definition (1.6):
Let A be a nonempty subset of a p-normed space , let (2, X)

be a measurable space and let h,G: QXA — A be tow
random operators . The random operator h is called
1. quasi contraction (qc) random operator if

Il h(y,x) = h(y,y) < kmax{ | x =y Il,,

Il x —h(y,x) Il
Iy —h@, ) ll x—= h(y,y) ll,,
1y = R, %) lpYemeeeenenennns (1.1)

Forallx,y €A,y €Qand 0 <k <1/2.
2. G -quasi contraction (G -qc) random operator if || h(y, x) —
G, y) lp< kmax{ll x —y ll,, | x = h(y,x) ll,
ly =G y) lpllx— G, y) Iy,
Iy —=h@,x) lp}eeeeeennanannns (1.2)
Forallx,y€ A,y €Rand0 <k <1/2.
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2. Common Random Fixed Point theorem

Theorem (2.1):
Let @+ AC X for fixed € 2 , h,G satisfy the condition

(2.2) . Then hand G have a unique common random fixed
point .

Proof

Let A:Q0 — A be arbitrary measurable mapping . We
construct a sequence of measurable mappings < 4,, > on Q
to A as follows

Let 44, 4,: Q — A be tow measurable mappings such that
h(y, 2:(r)) = A4 ()andG (v, 4, (1)) = A2 (¥)

By induction , we construct sequence of measurable
mappings A,:Q — A such that h(y, An_1(¥)) = 12n(¥)

and Gy, A0 (1)) = Aang1(¥) oevennnn, (2.1
From (2.1) and (1.2) , we have

I A2 (V) = Ans1(¥) =l h()/: Azn—1(]’)) -
Gy, 22n() Iy
<k max{ I AZn—l(y) - /1271()/) ”p'
Il A2n-1(¥) — A (¥, Aon-1(¥)) I,
I /1211(]/) - G(]/, AZn(y)) "p' I AZn—l(Y) - G(]/, AZn(y)) "pr
I A2n () = h(¥, A2n-1()) I}
= kmax{ | 221 (¥) — 222 (¥) "p' Il Azn—1(¥) — 220 (¥) ”p:
I 220 (¥) = A2ns1(¥) [P Aon1(¥) — Aons1 (¥) [
Il AZn(Y) - AZn(Y) ”p}
= kmax{ Il A3pn_1(¥) — 22, (¥) "p' I A2 (¥) — 2201 (¥) ”p:
Il Apn—1(¥) = 220051 (¥) "p}
Using triangle inequality , we get
I 220 (¥) — A2ns1 () "pS k max{ll A;,,—1(¥) — 22n(¥) "p'
Il 220 (V) — Aons1 () I,
I /12n—1(y) - }-Zn(y) "p +
Il AZn(y) - AZn+1 (]’) "p}
= k[l 227-1(¥) = A2n () Iy + 11 Apn(¥) = A1 (V) ]
hence ,ll 22, (¥) = Aons1(¥) 1, < A1 A (V) — 220 (1) Iy,
Where = (k/1—-k) < 1.
By similar way , we have
I Azn—1(¥) — A2 (¥) l,< A Ao (¥) = Aon-1(¥) l,
therefore ,
I 220 (V) = Aons1 V) Ip< A1l Ap— s (¥) = 220 (V) Il
<A Aon—2(¥) — A2n-1(¥) I,

I A2n (V) = Aone1 () 1< 2 1 A () — () N, -
To prove < A, > is Cauchy sequence , for n,m € N,n >
m
I 2, (¥) = 2 () 1= 1 2, (¥) — 2o (V) llp+
| 21 (V) = Ane () llp+ o M A r () — 2 () I,
SATTHATE 4 LA 1AW = 40)
S@/1=D 120 —A4M) 1,
Let € >0 be given , choose a natural number K large
enough such that
AN A () —A() ll,< eforeverym 2 K .
Hence || A,(¥) — 4, (¥) ll,< € forevery n>m =K

So, {1,(y)} is a Cauchy sequence in , and completeness of
X implise that there exists A(y) € X such that 4,(y) = A(y)
as n — oo,

To show that A is a common random fixed point of hand G,
coinsider the following by using triangle inequality, (2.1) and
(1.2)
IA() —hQG, 2Dy < 1A —Aanea Wl +
122042 (¥) =h(y, 2Dl
= 1IA0) =2A2n+2Mlp + 1Ry, A1) =G ¥, A2ne1 (WDl

< NIAW) —Aznr2Mlp + kmax{ |1A(y) —Azns1 W) lp,

IAG) =R, A 122041 (V) =G (¥, A2ne1 W),
122041 (¥) =h Gy, A Dlps | A2041(¥) — Ay, A DI}

= |12() —Azn42 (V)”p + kmax{ ||A(y) _/12n+1(y)||p:

12 =R, A D p: 12041 (V) —A2ne2) ]l

1220041 (¥) =h v, A D lps | A241 (¥) — A, A DI}
taking the limit as n — oo in the above inequality , getting
that

12() =h(y. AN)|, < klIA) =h(y. 2N)]l,

this  implies  that (1 —k)|IA(y) —h(y,l(y))”p <0

since 0 < k < 1/2, (2.2) must be true only
120) =h(r. 20|, =0 . thus 4G = (v, 2()

Similarly , we show that Aly) =

G AD)) e, (2.4).

henceA: 2 — A is a common random fixed point of h and G .
For uniqueness , let a(y) be another common random fixed
point of S and T, thatis forally € 2, a(y) = h(y,a(y)) =

Gy, a(y)) .
Then for all € 2, we have

IAG) —aWlp = Ik, A¥)) =G, a()l,
From (2.3) ,(2.4) and (1.2) , we have

IAG) —aM)l, < k max{||A(y) —aW)ll,
MA@) —hy, A DIy,
la@) =G, a)llp, 12() —G(V,a(y))llpllp,

la(y) —h(y, A¥)ll,}
= kmax{[|A(y) —a¥)ll,, 0}
= kllA) —aWll,
<2y) —amll,
Which is contraction . Hence 4: 2 — A is a unique common
random fixed point of hand .m

Corollary (2.2):
If Aand h as in theorem (2.1)and for each € 2,

h(y,.): A - Ais (gqc) :
Then there is a random fixed point of h .

Corollary (2.3):
If ,A,h,G asin theorem (2.1) and for eachy € 2,

h(y,.),G(y,.): A » Asatisfies one of the following
conditions :
1. Il h(y,x) =G, y) < kmax{ | x =y Il, Il x —
h(y,x) I,

ly =G,y lIp};

2. h(y,x) = Gy, y) < kmax{ | x — h(y,x) I, Il y —
G, y) Iy}
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3.0h(y,x) =Gy, y) < kmax{ | x —y ll,, Il x —

h(y,x) I,

ly =G, x) I, 1/2[llx = G, Wy + Iy — Ry, 0)lp}
4.0 h(y,x) =G, y) I,< kmax{ Il x —y ll,, 1/2[||x —
h@y, O, +y =6, y) 1,1, 1/2[llx = G, ml, +

“y - h()/! x)”p]} .

Forall x,y € X;0 < k < 1/2 .Then h and G have a unique
common random fixed point .

3. Well-Posed Problem

Definition (3.1):
Let (X,|| |l,) be a p-normed space and T: QXX — X a

random mapping . the random fixed point problem of T is
said to be well- posed if :

i.T has a unique random fixed point A : 2 — X ;

ii. for any sequence {A,(y)} of measurable mappings in X
such that 7lli_r)go”T(y, @) - ln(]/)”p =0, we have

1im [12,() = A0l = 0.

Definition (3.2):
Let (X, ]| |l,) be a p-normed space and let T be a set of a

random operators in X . The random fixed point of T is said
to be well-posed if :

1.7 has a unique random fixed point 1 : 2 — X ;

ii. for any sequence {A1,,(y)} of measurable mappings in X
such that #_{TC}OHT(%%(V)) — ln(y)”p =0 ,VTET we

have
lim 12,() = 2@, = 0.

Theorem (3.3):
If A, h ,G as in theorem (2.1) and for each y € 2 ,

h(w,.),G(w,.): A > Asatisfies (1.2) , then the common
random fixed point for the set of random operators {h, G} is
well-posed .

Proof:

By theorem (2.1) , the random operators h and G have a
unique common random fixed point 1: 2 — A . Let {1,(y)}
be a sequence of measurable mappings in A such that

lim [|R(y, ,()) = 2. W|
= lim [[6(r. 2.(1) = |, = 0

By the triangle inequality , (1.2) ,(2.3) and (2.4) , we have
1A = 2l < [|R(r, A1) = (v, L),
+[6(r, 2) = 1Ml
< hmax {IA0) = 20l 122 )
~ (M) 11200
=61 M), 120 = h(y. 2WM)I| )
+[6(r, 2.) = 1.l
< {120 = 6 M), + 160 2. ) = 2

By the triangle inequality , we get
IA) — W, < h [lll(}/) — . Wll,
+ 120 = 6 2mm)| |
+1+ |6, 4.m) - M|,
= hlIA@) = 4Nl + (L +2D)[|6 (v, 2.()) - ln()/)”p
1= WAy = .M,
<@ +2n[6(r.4m) - AW,
thus we have , Tlll_r)go IA(y) = 2, (I, = 0 , it follows that the

common random fixed point for the set of random operators
{h,G} is well-posed .m
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