
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Relative Study in Architecture and Design
Methodologies for Secured Real Time Embedded

Systems
Anupama S

Assistant Professor, Department of Electronics & Communication Engineering, Vidya Vikas Institute of Engineering and Technology,
Mysuru

Abstract: The embedded systems field is growing rapidly,with devices such as cellular phones, PDAs, smart cards, and digital music
players permeating society. On the horizon are futuristic technologies such as embedded network sensors and wearable computers,
which promise even greater interaction between humans and machines. As embedded devices are increasingly integrated into personal
and commercial infrastructures, security becomes a paramount issue. For example, if a patient is wearing a heart-monitoring device
that sends data wirelessly to a doctor, the embedded system must keep this information confidential and deliver it uncorrupted to the
doctor. An embedded network sensor monitoring water quality to prevent bioterrorism must have multiple methods to detect tampering
in both hardware and software, lest an attacker bypass security measures and corrupt the water supply. The design of security for
embedded systems differs from traditional security design because these systems are resource-constrained in their capacities (and
consequently in their defenses) and easily accessible to adversaries at the physical layer. Embedded security can’t be solved at a single
security abstraction layer, but rather is a system problem spanning multiple abstraction levels. We attempt to provide a unified and
holistic view of embedded system security by first analyzing the typical functional security requirements for embedded systems from an
end-user perspective. We then identify the implied challenges for embedded system architects, as well as hardware and software
designers (e.g., tamper-resistant embedded system design, processing requirements for security, impact of security on battery life for
battery-powered systems, etc.). We also survey solution techniques to address these challenges, drawing from both current practice and
emerging research, and identify open research problems that will require innovations in embedded system architecture and design
methodologies.

Keywords: Embedded Systems, PDAs, Sensors, Security, Cryptography, Security Protocols, Security Processing, Design, Design
Methodologies, Architectures, Tamper Resistance, Software Attacks, Viruses, Trusted Computing, Digital Rights Management,
Performance, Battery Life.

1. Introduction

Today, security in one form or another is a requirement for
an increasing number of embedded systems, ranging from
low end systems such as PDAs, wireless handsets,
networked sensors, and smart cards to mid- and high-end
network equipment such as routers, gateways, firewalls, and
storage and web servers. Technological developments that
have spurred the development of these electronic systems
have also ushered in seemingly parallel trends in the
sophistication of security attacks. It has been observed that
the cost of insecurity in electronic systems can be very high.
Counterpane Internet Security, for example, estimated that
the “I Love You” virus caused nearly one billion dollars in
lost revenue worldwide [1].With the evolution of the
Internet, information and communications security has
gained significant attention. For example, various security
protocols and standards such as IPSec, SSL, WEP, and
WTLS, are used for secure communications in embedded
systems. While security protocols and the cryptographic
algorithms they contain address security considerations from
a functional perspective, many embedded systems are
constrained by the environments they operate in, and by the
resources they possess. For such systems, there are several
factors that are moving security considerations from a
function-centric perspective into a system architecture
(hardware/software) design issue. For example,
 The processing capabilities of many embedded systems

are easily overwhelmed by the computational demands of

security processing, leading to undesirable tradeoffs
between security and cost, or security and performance.

 Embedded system architectures need to be flexible enough
to support the rapid evolution of security functionalities
and standards.

 New functional security objectives, such as denial of
service and digital content protection, require a higher
degree of cooperation between security experts and
embedded system architects / designers.

2. Embedded System Challenges

Embedded systems are essentially processor-based devices
operating under resource-constrained conditions. Embedded
devices include systems as diverse as automobile
microcontrollers, cellular phones, smart cards, embedded
network sensors, and digital cable boxes. These devices are
often portable, communicate via wireless channels, and are
battery-powered or otherwise energy-limited. Because these
systems are often considered small computers, it’s tempting
to port workstation based security techniques directly onto
the devices to make them secure. However, embedded
systems have characteristics that differentiate their security
Architecture from that of workstations and servers. We
group these characteristics into two categories: resource
limitation and physical accessibility.

Embedded devices pose severe resource constraints on the
security architecture in terms of memory, computational
capacity, and energy. For example, the Smart- Dust node is a

Paper ID: ART20164454 676

doctor. An embedded network sensor monitoring water quality to prevent bioterrorism must have multiple methods to detect tampering
in both hardware and software, lest an attacker bypass security measures and corrupt the water supply. The design of security for
embedded systems differs from traditional security design because these systems are resource-constrained in their capacities (and
consequently in their defenses) and easily accessible to adversaries at the physical layer. Embedded security can’t be solved at a single

security abstraction layer, but rather is a system problem spanning multiple abstraction levels. We attempt to provide a unified and
holistic view of embedded system security by first analyzing the typical functional security requirements for embedded systems from an

-user perspective. We then identify the implied challenges for embedded system architects, as well as hardware and software
designers (e.g., tamper-resistant embedded system design, processing requirements for security, impact of security on battery life for

etc.). We also survey solution techniques to address these challenges, drawing from both current practice and etc.). We also survey solution techniques to address these challenges, drawing from both current practice and etc
ging research, and identify open research problems that will require innovations in embedded system architecture and design

Embedded Systems, PDAs, Sensors, Security, Cryptography, Security Protocols, Security Processing, Design, Design
Methodologies, Architectures, Tamper Resistance, Software Attacks, Viruses, Trusted Computing, Digital Rights Management,

Today, security in one form or another is a requirement for
an increasing number of embedded systems, ranging from
low end systems such as PDAs, wireless handsets,
networked sensors, and smart cards to mid- and high-end
network equipment such as routers, gateways, firewalls, and
storage and web servers. Technological developments that
have spurred the development of these electronic systems
have also ushered in seemingly parallel trends in the
sophistication of security attacks. It has been observed that
the cost of insecurity in electronic systems can be very high.

security processing, leading to undesirable tradeoffs
between security and cost, or security and performance.

 Embedded system architectures need to be flexible enough
to support the rapid evolution of security functionalities
and standards.

 New functional security objectives, such as denial of
service and digital content protection, require a higher
degree of cooperation between security experts and
embedded system architects / designers.

2. Embedded System Challenges

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

battery-powered device possessing an 8-bit, 4-MHz CPU
with 8,000 bytes of instruction flash memory, 512 bytes of
RAM, and 512 bytes of EEPROM. Clearly, such a platform
severely limits potential security scenarios. In terms of
memory, sophisticated public key cryptography techniques
such as RSA or elliptic-curve cryptography might simply be
infeasible. Considering the device’s 4-MHz computational
horsepower,certain protocols could cause too much latency
tobe useful. Furthermore, an energy-intensive security
scheme can cause the node to perish from battery exhaustion
before it can perform useful work. Power dissipation and
other resources are infrequently major concerns when
dealing with workstation-based security.concerns. On the
one hand, storing sensitive information on a device rather
than on multiple servers minimizes the number of locations
where an attack can occur. On the flip side, small devices
can be easily lost or stolen, and hence must have extra
security measures built in to ensure that private data can’t be
compromised.

3. Functional Security Measures

Several functional security primitives have been proposed in
the context of network security. These include various
cryptographic algorithms used for encrypting and decrypting
data, and for checkingthe integrity of data. Most
cryptographic algorithms fall into one of three classes –
symmetric ciphers, asymmetric ciphers and hashing
algorithms. (For a basic introduction to cryptography, we
refer the reader to [3, 4]).

Symmetric ciphers require the sender to use a secret key to
encrypt data (the data being encrypted is often referred to as
plain text) and transmit the encrypted data (usually called
the cipher text) to the receiver. On receiving the cipher text,
the receiver then uses the same secret key to decrypt it and
regenerate the plain text. The cipher text should have the
property that it is very hard for a third party to deduce the
plain text, without having access to the secret key. Thus,
confidentiality or privacy of data is ensured during
transmission. Examples of symmetric ciphers include DES,
3DES, AES, and RC4.Most symmetric ciphers are
constructed from computationally light-weight operations
such as permutations, substitutions, etc. Thus, they are well
suited for securing bulk data transfers.

Hashing algorithms such as MD5 and SHA convert arbitrary
messages into unique fixed-length values, thereby providing
unique “thumb prints” for messages. Hash functions are
often used to construct Message Authentication Codes
(MACs), such as HMAC-SHA, which additionally
incorporate a key to prevent adversaries who tamper with
data from avoiding detection by recomputing hashes.

Asymmetric algorithms (also called public key
algorithms),on the other hand, typically use a private (secret)
key for decryption, and a related public (non-secret) key for
encryption. Encryption requires only the public key, which
is not sufficient for decryption. Digital signatures are also
constructed using public key cryptography and hashes.
Asymmetric algorithms (e.g., RSA, Diffie-Hellman, etc.)
rely on the use of more computationally intensive
mathematical functions such as modular exponentiation for

encryption and decryption. Therefore, they are often used for
security functions complementary to secure bulk data
transfers such as exchanging symmetric cipher keys

Security solutions to meet the various security requirements
outlined in the previous section typically rely on security
mechanisms that use a combination of the afore mentioned
cryptographic primitives in a specific manner (i.e., security
protocols). Various security technologies and mechanisms
have been designed around these cryptographic algorithms
in order to provide specific security services. For example,
Secure communication protocols (popularly called security
protocols) provide ways of ensuring secure communication
channels to and from the embedded system. IPSec [5]
andSSL [6] are popular examples of security protocols,
widely used for Virtual Private Networks (VPNs) and secure
web transactions, respectively.

Digital certificates provide ways of associating identity
withan entity, while biometric technologies [7] such as
fingerprint recognition and voice recognition aid in end-user
authentication.Digital signatures, which function as the
electronic equivalent of handwritten signatures, can be used
to authenticate the source of data as well as verify its
identity.

Digital Rights Management (DRM) protocols such as
OpenIPMP [8], MPEG [9], ISMA [10] and MOSES [11],
provide secure frameworks intended to protect application
content against unauthorized use. Secure storage and secure
execution require that the architecture of the system be
tailored for security considerations. Simple examples
include the use of bus monitor logic to block illegal accesses
to protected areas in the memory [12], authentication of
firmware that executes on the system, application isolation
to preserve the privacy and integrity of code and data
associated with a given application or a process [13],
HW/SW techniques to preserve the privacy and integrity
ofdata throughout the memory hierarchy [14], execution of
encrypted code in processors to prevent bus probing [5,
6]etc.

4. Designing Secure Embedded System
Implementations

Various attacks on electronic and computing systems have
shown that hackers rarely take on the theoretical strength of
well-designed functional security measures or cryptographic
algorithms. Instead, they rely on exploiting security
vulnerabilities in the SW or HW components of the
implementation. In this section, we will see that unless
security is considered throughout the design cycle,
embedded system implementation weaknesses can easily be
exploited to bypass or weaken functional security measures.

Three factors, which we call the Trinity of Trouble
complexity, extensibility and connectivity conspire to make
managing risks in software a major challenge.

a) Tamper-resistant hardware
There are a wide range of attacks that exploit the system
implementation and/or identifying properties of the
implementation to break the security of an embedded

Paper ID: ART20164454 677

Functional Security Measures

Several functional security primitives have been proposed in
the context of network security. These include various
cryptographic algorithms used for encrypting and decrypting
data, and for checkingthe integrity of data. Most
cryptographic algorithms fall into one of three classes –

symmetric ciphers, asymmetric ciphers and hashing
algorithms. (For a basic introduction to cryptography, we

fer the reader to [3, 4]).

require the sender to use a secret key to
encrypt data (the data being encrypted is often referred to as
plain text) and transmit the encrypted data (usually called
the cipher text) to the receiver. On receiving the cipher text,
the receiver then uses the same secret key to decrypt it and
regenerate the plain text. The cipher text should have the
property that it is very hard for a third party to deduce the
plain text, without having access to the secret key. Thus,
confidentiality or privacy of data is ensured during
transmission. Examples of symmetric ciphers include DES,
3DES, AES, and RC4.Most symmetric ciphers are
constructed from computationally light-weight operations
such as permutations, substitutions, etc. Thus, they are well
suited for securing bulk data transfers.

withan entity, while biometric technologies [7] such as
fingerprint recognition and voice recognition aid in end-user
authentication.Digital signatures, which function as the
electronic equivalent of handwritten signatures, can be used
to authenticate the source of data as well as verify its
identity.

Digital Rights Management (DRM) protocols such as
OpenIPMP [8], MPEG [9], ISMA [10] and MOSES [11],
provide secure frameworks intended to protect application
content against unauthorized use. Secure storage and secure
execution require that the architecture of the system be
tailored for security considerations
include the use of bus monitor logic to block illegal accesses
to protected areas in the memory [12], authentication of
firmware that executes on the system, application isolation
to preserve the privacy and integrity of code and data
associated with a given application or a process [13],
HW/SW techniques to preserve the privacy and integrity
ofdata throughout the memory hierarchy [14], execution of
encrypted code in processors to prevent bus probing [5,
6]etc.

4. Designing Secure Embedded System
Implementations

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

system. These are called physical and side-channel attacks
[14]. Historically, many of these attacks have been used to
break the security of embedded systems such as smart cards.
Physical and side-channel attacks are generally classified
into invasive and non-invasive attacks. Invasive attacks
involve getting access to the appliance to observe,
manipulate and interfere with the system internals. Since
invasive attacks against integrated circuits typically require
expensive equipment, they are relatively hard to mount and
repeat. Examples of invasive attacks include micro-probing
and reverse engineering. Non-invasive attacks, as the name
indicates, do not require the device to be opened. While
these attacks may require an initial investment of time or
creativity, they tend to be cheap and scalable (compared to
invasive attacks). There are many forms of non-invasive
attacks such as timing attacks, fault induction techniques,
power and electromagnetic analysis based attacks, etc. In the
sections that follow, we will be examining some of these
attacks in more detail.

b) Physical attacks
For an embedded system on a circuit board, physical attacks
can be launched by using probes to eavesdrop on inter-
component communications. However, for a system-on-
chip, sophisticated microprobing techniques become
necessary [5]. The first step in such attacks is de-packaging.
De-packaging typically involves removal of the chip
package by dissolving the resin covering the silicon using
fuming acid. The next step involves layout reconstruction
using a systematic combination of microscopy and invasive
removal of covering layers. During layout reconstruction,
the internals of the chip can be inferred at various
granularities. While higher-level architectural structures
within the chip such as data and address buses, memory and
processor boundaries, etc., can be extracted with little effort,
detailed views of lower-level structures such as the
instruction decoder and ALU in a processor, ROM cells,
etc., can also be obtained. Finally, techniques such as
manual microprobing or e-beam microscopy are typically
used to observe the values on the buses and interfaces of the
components in a depackaged chip. Physical attacks at the
chip level are relatively hard to use because of their
expensive infrastructure requirements (relative to other
attacks). However, they can be performed once and then
used as precursors to the design of successful non-invasive
attacks.

c) Fault induction
Hardware security devices depend on more than correct
software. If the hardware ever fails to make correct
computations, security can be jeopardized. For example,
almost any computation error can compromise RSA
implementations using the Chinese Remainder Theorem
(CRT). The computation involves two major
subcomputations, one that computes the result modulo p and
the other modulo q, where p and q are the factors of the RSA
public modulus n. If, for example, the mod p computation
result is incorrect, the final answer will be incorrect modulo
p, but correct modulo q. Thus, the difference between the
correct answer and the computed answer will be an exact
multiple of q, allowing the adversary to find q by computing
the greatest common denominator (GCD) of this difference
and n.

5. Embedded Processing Architectures for
Security

At the architecture level, the protocol and algorithms must
be mapped onto an embedded architecture platform. At this
stage, we partition the device into secure and insecure
modules. Secure modules are hardware modules that run
secure functions, house secure memory, and use various
hardware and software techniques to protect themselves.
Insecure modules run insecure functions, house insecure
memory, and aren’t protected from attack.Because providing
security has a cost overhead in terms of area, power, and
computation, we must clearly distinguish between the
protocol’s secure and insecure parts. Then, we can provide
security to the secure parts only, reducing the overhead.
Basically, we try to confine the secure parts to the smallest
possible portion of the system.At the protocol level, we
move secure parts from server to device; at the architecture
level, we move them to a limited area of the device (the
secure module). We call this security-driven hardware–
software partitioning, or security partitioning.

Security partitioning isolates the device’s sensitive data and
functions so both software (architecture-level) and physical
(circuit-level) mechanisms can protect them. Security
partitioning is the application of a variant of Kerckhoffs’
principle, which is to minimize the number of secrets in a
system. If the device as a whole is physically compromised,
it remains secure as long as the secure module is intact. The
technique addresses the software bypass attack as well as
resource limitation and physical accessibility issues. Later,
we’ll discuss a technique to secure a system at the circuit
level, which requires approximately twice the normal area
and power. Securing only a required subset of the system
thus addresses area and energy limitations.

Partitioning the device into secure and insecure modules
involves four primary steps at the architecture level:
determine partitioning topology, determine coupling and
secure-to-insecure bus structure, partition functions and their
data, and construct a secure instruction set.

A) Microarchitecture level: Hardware design
We designed and simulated the architecture’s hardware
implementation at the microarchitecture level. This involved
designing the hardware for the insecure and secure modules
and their interfaces. We used the Leon processor with a
configurable Amba bus structure for the insecure module
and designed a memory-mapped interface on the Amba
peripheral bus to communicate with the secure module.The
secure module is a custom-designed secure coprocessor. The
coprocessor consists of a top-level controller, a
cryptographic engine, and a matching engine (with template
storage). The coprocessor includes two categories of buses:
public and private. The public buses are the coprocessor’s
interface to the outside world (that is, the secure-to-insecure
bus structure) and are thus insecure. The private buses are
secure buses internal to the coprocessor, such as those
between the matching and cryptographic submodules. These
private buses ensure that sensitive data remain local to the
coprocessor and aren’t directly accessible to the insecure
module. The top-level controller monitors for illegal and
out-of-sequence instructions. Hence, the insecure processor

Paper ID: ART20164454 678

For an embedded system on a circuit board, physical attacks
can be launched by using probes to eavesdrop on inter-
component communications. However, for a system-on-
chip, sophisticated microprobing techniques become
necessary [5]. The first step in such attacks is de-packaging.

-packaging typically involves removal of the chip
package by dissolving the resin covering the silicon using
fuming acid. The next step involves layout reconstruction
using a systematic combination of microscopy and invasive
removal of covering layers. During layout reconstruction,
the internals of the chip can be inferred at various
granularities. While higher-level architectural structures
within the chip such as data and address buses, memory and

etc., can be extracted with little effort,
detailed views of lower-level structures such as the
instruction decoder and ALU in a processor, ROM cells,

, can also be obtained. Finally, techniques such as
manual microprobing or e-beam microscopy are typically
used to observe the values on the buses and interfaces of the
components in a depackaged chip. Physical attacks at the
chip level are relatively hard to use because of their
expensive infrastructure requirements (relative to other
attacks). However, they can be performed once and then
used as precursors to the design of successful non-invasive

level, we move them to a limited area of the device (the
secure module). We call this security-driven hardware
software partitioning, or security partitioning

Security partitioning isolates the device’s sensitive data and

functions so both software (architecture-level) and physical
(circuit-level) mechanisms can protect them. Security
partitioning is the application of a variant of Kerckhoffs’

principle, which is to minimize the number of secrets in a
system. If the device as a whole is physically compromised,
it remains secure as long as the secure module is intact. The
technique addresses the software bypass attack as well as
resource limitation and physical
we’ll discuss a technique to secure a system at the circuit

level, which requires approximately twice the normal area
and power. Securing only a required subset of the system
thus addresses area and energy limitations.

Partitioning the device into secure and insecure modules
involves four primary steps at the architecture level:
determine partitioning topology, determine coupling and
secure-to-insecure bus structure, partition functions and their
data, and construct a secure instruction set.

A) Microarchitecture level: Hardware design
We designed and simulated the architecture’s hardware

implementation at the microarchitecture level. This involved

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

can’t access the coprocessor’s internal data; it can access the
coprocessor only using instructions on the public buses,
which the top-level controller monitors for foul play.

One challenge at the microarchitecture level is to accurately
cosimulate the secure and insecure modules. In our design,
this implies a hardware/software co-simulation, including a
thorough sequence of valid and invalid instructions to
protect against false-instruction attacks. For such a co-
simulation, we need a design and simulation environment
that can simulate the secure and nonsecure modules
together. This is because the boundary between hardware
and software is often a weak part of secure systems, simply
because they’re designed and developed separately (and
often by different teams).

The micro architecture level implements the design and
security features described at the architecture level, but
suppose an attacker chooses an out-of-band attack at the
physical level. In this case, the architecture and
microarchitecture defenses are meaningless. We therefore
need new defenses at the circuit level.

6. Design Methodology and Tool Requirements

As security emerges as a mainstream design issue,
addressing some of the challenges outlined previously will
require the support of appropriate design tools and
methodologies. In this section, webriefly describe our vision
for developments in this area.Compared to an embedded
system’s functionality and other design metrics (e.g., area,
performance, power), security is currently specified by
system architects in a vague and imprecise manner. Security
experts are often the only people in a design team who have
a complete understanding of the security requirements. This
is a problem, since different aspects of the embedded system
design process can impact security. Hence, design
methodologies for secure embedded systems will have to
start with techniques to specify security requirements in a
way that can be easily communicated to the design team,
and evaluated throughout the design cycle. Any attempt to
specify security requirements needs to address the “level” of
security desired, e.g., what level of tamper resistance should
be incorporated in the system. Security standards, such as
the FIPS security requirements for cryptographic modules,
and the Common Criteria for information technology
security evaluation could provide some initial guidelines in
this direction, although they tend to be quite cumbersome
and difficult to understand for the average designer.

Techniques for formal or semi-formal specifications of
security requirements can enable the development of tools
that validate and verify these whether requirements are met,
at various stages in the design process. For example, formal
verification techniques have been used to detect bugs in
security protocol implementations.Time-to-market pressures
in the semiconductor and embedded system industries lead
to design processes that are increasingly based on the re-use
of components from various sources. It will be particularly
challenging to maintain security requirements in the face of
these trends. It is very difficult if not impossible to guarantee
the security of a system when the underlying components
are untrusted. Furthermore, even the composition of

individually secure components can expose unexpected
security bugs due to their interaction.

During embedded system architecture design, techniques to
map security requirements to alternative solutions, and to
explore the attendant tradeoffs in terms of cost, performance,
and power consumption, would be invaluable in helping
embedded system architects understanding and making
better design choices. For example,system architects would
like to understand the performance and power impact of the
the processing architecture used to perform security
processing, and the tamper-resistance schemes used.During
the hardware and software implementation
processes,opportunities abound to improve the tamper
resistance of the embedded system, as well as mitigate the
performance and power consumption impact of security
features. For example, hardware synthesis (and software
compilation) techniques to automatically ensure that
minimize the dependence of power and execution time on
sensitive data could help ensure design embedded systems
that are highly tamper-resistant to side channel attacks by
construction. Some initial efforts along these directions are
described in In summary, as security becomes a requirement
for a wide range of embedded systems, design tools and
methodologies will play a critical role in empowering
designers (who are not necessarily security experts) to
address the design challenges described in this survey.

7. Conclusion

Today, secure embedded system design remains a field in its
infancy terms of pervasive deployment and research. The
good news is that unlike the problem of providing security in
cyberspace, securing the application-limited world of
embedded systems is more likely to succeed in the near
term. However, the constrained resources of embedded
devices pose significant new challenges to achieving desired
levels of security. We believe that a combination of
advances in architectures and design methodologies would
enable us to scale the next frontier of embedded system
design, wherein, embedded systems will be “secure” in
every sense of the word. To realize this goal, we should look
beyond the basic security functions of an embedded system
and provide defenses against broad classes of attacks all
without compromising performance, area, energy
consumption, cost andusability.

References

[1] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. C. Mitchell, andM. Horowitz, “Architectural
support for copy and tamper resistant software,” inProc.
ACM Architectural Support for Programming
Languages and OperatingSystems (ASPLOS), pp. 168–
177, 2016.

[2] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S.
Devadas, “AEGIS:Architecture for Tamper-Evident and
Tamper-Resistant Processing,” in Proc.Intl Conf.
Supercomputing (ICS ’03), pp. 160–171, June 2013.

[3] R. M. Best, Crypto Microprocessor for Executing
Enciphered Programs. U.S.patent 4,278,837, July 1981.

Paper ID: ART20164454 679

physical level. In this case, the architecture and
microarchitecture defenses are meaningless. We therefore
need new defenses at the circuit level.

Design Methodology and Tool Requirements

As security emerges as a mainstream design issue,
addressing some of the challenges outlined previously will
require the support of appropriate design tools and
methodologies. In this section, webriefly describe our vision
for developments in this area.Compared to an embedded
system’s functionality and other design metrics (e.g., area,
performance, power), security is currently specified by
system architects in a vague and imprecise manner. Security
experts are often the only people in a design team who have

complete understanding of the security requirements. This
is a problem, since different aspects of the embedded system
design process can impact security. Hence, design
methodologies for secure embedded systems will have to
start with techniques to specify security requirements in a
way that can be easily communicated to the design team,
and evaluated throughout the design cycle. Any attempt to
specify security requirements needs to address the “level” of

, what level of tamper resistance should
be incorporated in the system. Security standards, such as
the FIPS security requirements for cryptographic modules,

sensitive data could help ensure design embedded systems
that are highly tamper-resistant to side channel attacks by
construction. Some initial efforts along these directions are
described in In summary, as security becomes a requirement
for a wide range of embedded systems, design tools and
methodologies will play a critical role in empowering
designers (who are not necessarily security experts) to
address the design challenges described in this survey.

7. Conclusion

Today, secure embedded system design remains a field in its
infancy terms of pervasive deployment and research. The
good news is that unlike the problem of providing security in
cyberspace, securing the application-limited world of
embedded systems is more likely to succeed in the near
term. However, the constrained resources of embedded
devices pose significant new challenges to achieving desired
levels of security. We believe that a combination of
advances in architectures and design methodologies would
enable us to scale the next frontier of embedded system
design, wherein, embedded systems will be
every sense of the word. To realize this goal, we should
beyond the basic security functions of an embedded system
and provide defenses against broad classes of attacks all
without compromising performance, area, energy

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[4] M. Kuhn, The TrustNo 1 Cryptoprocessor Concept.
CS555 Report, PurdueUniversity
(http://www.cl.cam.ac.uk/˜mgk25/), Apr. 1997.

[5] G. Hoglund and G. McGraw, Exploiting Software: How
to Break Code(http://www.exploitingsoftware.com).
Addison-Wesley, 2004.

[6] J. Viega and G. McGraw, Building Secure
Software(http://www.buildingsecuresoftware.com).
Addison-Wesley,2001.

[7] G. McGraw, “Software Security,” IEEE Security &
Privacy, vol. 2, pp. 80–83,March–April 2004.

[8] R. Anderson and M. Kuhn, “Tamper resistance - a
cautionary note,” 1996.

[9] R. Anderson and M. Kuhn, “Low cost attacks on tamper
resistant devices,” inIWSP: Intl. Wkshp. on Security
Protocols, Lecture Notes on Computer Science,pp. 125–
136, 1997.

[10] O. Kommerling and M. G. Kuhn, “Design principles for
tamper-resistantsmartcard processors,” in Proc.
USENIX Wkshp. on Smartcard Technology(Smartcard
’99), pp. 9–20, May 1999

[11] Ravi, A. Raghunathan, and S. Chakradhar, “Tamper
Resistance Mechanismsfor Secure Embedded Systems,”
in Proc. Int. Conf. VLSI Design, Jan. 2004.

[12] P. C. Kocher, “Timing attacks on implementations of
Diffie-Hellman, RSA,DSS, and other systems,”
Advances in Cryptology – CRYPTO’96,Springer-
Verlag Lecture Notes in Computer Science, vol. 1109,
pp. 104–113,1996.

[13] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
“Examining Smart-CardSecurity under the Threat of
Power Analysis Attacks,” IEEE Trans. Comput.,vol. 51,
pp. 541–552, May 2002.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential Power
Analysis,” Advances inCryptology – CRYPTO’99,
Springer-Verlag Lecture Notes in Computer
Science,vol. 1666, pp. 388–397, 1999.

Paper ID: ART20164454 680

USENIX Wkshp. on Smartcard Technology(Smartcard
20, May 1999

Ravi, A. Raghunathan, and S. Chakradhar, “Tamper

Resistance Mechanismsfor Secure Embedded Systems,”

in Proc. Int. Conf. VLSI Design, Jan. 2004.
P. C. Kocher, “Timing attacks on implementations of

Hellman, RSA,DSS, and other systems,”

Advances in Cryptology – CRYPTO’96,Springer-
Verlag Lecture Notes in Computer Science, vol. 1109,

T. S. Messerges, E. A. Dabbish, and R. H. Sloan,
-CardSecurity under the Threat of

Power Analysis Attacks,” IEEE Trans. Comput.,vol. 51,

552, May 2002.
P. Kocher, J. Jaffe, and B. Jun, “Differential Power

Analysis,” Advances inCryptology – CRYPTO’99,

Springer-Verlag Lecture Notes in Computer
Science,vol. 1666, pp. 388–397, 1999.

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

