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Abstract: The embedded systems field is growing rapidly,with devices such as cellular phones, PDAs, smart cards, and digital music 
players permeating society. On the horizon are futuristic technologies such as embedded network sensors and wearable computers, 
which promise even greater interaction between humans and machines. As embedded devices are increasingly integrated into personal 
and commercial infrastructures, security becomes a paramount issue. For example, if a patient is wearing a heart-monitoring device 
that sends data wirelessly to a doctor, the embedded system must keep this information confidential and deliver it uncorrupted to the 
doctor. An embedded network sensor monitoring water quality to prevent bioterrorism must have multiple methods to detect tampering 
in both hardware and software, lest an attacker bypass security measures and corrupt the water supply. The design of security for 
embedded systems differs from traditional security design because these systems are resource-constrained in their capacities (and 
consequently in their defenses) and easily accessible to adversaries at the physical layer. Embedded security can’t be solved at a single 
security abstraction layer, but rather is a system problem spanning multiple abstraction levels. We attempt to provide a unified and 
holistic view of embedded system security by first analyzing the typical functional security requirements for embedded systems from an 
end-user perspective. We then identify the implied challenges for embedded system architects, as well as hardware and software 
designers (e.g., tamper-resistant embedded system design, processing requirements for security, impact of security on battery life for 
battery-powered systems, etc.). We also survey solution techniques to address these challenges, drawing from both current practice and 
emerging research, and identify open research problems that will require innovations in embedded system architecture and design 
methodologies. 
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1. Introduction 

Today, security in one form or another is a requirement for 
an increasing number of embedded systems, ranging from 
low end systems such as PDAs, wireless handsets, 
networked sensors, and smart cards to mid- and high-end 
network equipment such as routers, gateways, firewalls, and 
storage and web servers. Technological developments that 
have spurred the development of these electronic systems 
have also ushered in seemingly parallel trends in the 
sophistication of security attacks. It has been observed that 
the cost of insecurity in electronic systems can be very high. 
Counterpane Internet Security, for example, estimated that 
the “I Love You” virus caused nearly one billion dollars in 
lost revenue worldwide [1].With the evolution of the 
Internet, information and communications security has 
gained significant attention. For example, various security 
protocols and standards such as IPSec, SSL, WEP, and 
WTLS, are used for secure communications in embedded 
systems. While security protocols and the cryptographic 
algorithms they contain address security considerations from 
a functional perspective, many embedded systems are 
constrained by the environments they operate in, and by the 
resources they possess. For such systems, there are several 
factors that are moving security considerations from a 
function-centric perspective into a system architecture 
(hardware/software) design issue. For example, 
 The processing capabilities of many embedded systems 

are easily overwhelmed by the computational demands of 

security processing, leading to undesirable tradeoffs 
between security and cost, or security and performance.  

 Embedded system architectures need to be flexible enough 
to support the rapid evolution of security functionalities 
and standards. 

 New functional security objectives, such as denial of 
service and digital content protection, require a higher 
degree of cooperation between security experts and 
embedded system architects / designers. 

2. Embedded System Challenges 

Embedded systems are essentially processor-based devices 
operating under resource-constrained conditions. Embedded 
devices include systems as diverse as automobile 
microcontrollers, cellular phones, smart cards, embedded 
network sensors, and digital cable boxes. These devices are 
often portable, communicate via wireless channels, and are 
battery-powered or otherwise energy-limited. Because these 
systems are often considered small computers, it’s tempting 
to port workstation based security techniques directly onto 
the devices to make them secure. However, embedded 
systems have characteristics that differentiate their security 
Architecture from that of workstations and servers. We 
group these characteristics into two categories: resource 
limitation and physical accessibility. 

Embedded devices pose severe resource constraints on the 
security architecture in terms of memory, computational 
capacity, and energy. For example, the Smart- Dust node is a 
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doctor. An embedded network sensor monitoring water quality to prevent bioterrorism must have multiple methods to detect tampering 
in both hardware and software, lest an attacker bypass security measures and corrupt the water supply. The design of security for 
embedded systems differs from traditional security design because these systems are resource-constrained in their capacities (and 
consequently in their defenses) and easily accessible to adversaries at the physical layer. Embedded security can’t be solved at a single 

security abstraction layer, but rather is a system problem spanning multiple abstraction levels. We attempt to provide a unified and 
holistic view of embedded system security by first analyzing the typical functional security requirements for embedded systems from an 

-user perspective. We then identify the implied challenges for embedded system architects, as well as hardware and software 
designers (e.g., tamper-resistant embedded system design, processing requirements for security, impact of security on battery life for 

etc.). We also survey solution techniques to address these challenges, drawing from both current practice and etc.). We also survey solution techniques to address these challenges, drawing from both current practice and etc
ging research, and identify open research problems that will require innovations in embedded system architecture and design 
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have spurred the development of these electronic systems 
have also ushered in seemingly parallel trends in the 
sophistication of security attacks. It has been observed that 
the cost of insecurity in electronic systems can be very high. 

security processing, leading to undesirable tradeoffs 
between security and cost, or security and performance.  

 Embedded system architectures need to be flexible enough 
to support the rapid evolution of security functionalities 
and standards. 
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battery-powered device possessing an 8-bit, 4-MHz CPU 
with 8,000 bytes of instruction flash memory, 512 bytes of 
RAM, and 512 bytes of EEPROM. Clearly, such a platform 
severely limits potential security scenarios. In terms of 
memory, sophisticated public key cryptography techniques 
such as RSA or elliptic-curve cryptography might simply be 
infeasible. Considering the device’s 4-MHz computational 
horsepower,certain protocols could cause too much latency 
tobe useful. Furthermore, an energy-intensive security 
scheme can cause the node to perish from battery exhaustion 
before it can perform useful work. Power dissipation and 
other resources are infrequently major concerns when 
dealing with workstation-based security.concerns. On the 
one hand, storing sensitive information on a device rather 
than on multiple servers minimizes the number of locations 
where an attack can occur. On the flip side, small devices 
can be easily lost or stolen, and hence must have extra 
security measures built in to ensure that private data can’t be 
compromised. 

3. Functional Security Measures 

Several functional security primitives have been proposed in 
the context of network security. These include various 
cryptographic algorithms used for encrypting and decrypting 
data, and for checkingthe integrity of data. Most 
cryptographic algorithms fall into one of three classes –
symmetric ciphers, asymmetric ciphers and hashing 
algorithms. (For a basic introduction to cryptography, we 
refer the reader to [3, 4]).  

Symmetric ciphers require the sender to use a secret key to 
encrypt data (the data being encrypted is often referred to as 
plain text) and transmit the encrypted data (usually called 
the cipher text) to the receiver. On receiving the cipher text, 
the receiver then uses the same secret key to decrypt it and 
regenerate the plain text. The cipher text should have the 
property that it is very hard for a third party to deduce the 
plain text, without having access to the secret key. Thus, 
confidentiality or privacy of data is ensured during 
transmission. Examples of symmetric ciphers include DES, 
3DES, AES, and RC4.Most symmetric ciphers are 
constructed from computationally light-weight operations 
such as permutations, substitutions, etc. Thus, they are well 
suited for securing bulk data transfers. 

Hashing algorithms such as MD5 and SHA convert arbitrary 
messages into unique fixed-length values, thereby providing 
unique “thumb prints” for messages. Hash functions are 
often used to construct Message Authentication Codes 
(MACs), such as HMAC-SHA, which additionally 
incorporate a key to prevent adversaries who tamper with 
data from avoiding detection by recomputing hashes. 

Asymmetric algorithms (also called public key 
algorithms),on the other hand, typically use a private (secret) 
key for decryption, and a related public (non-secret) key for 
encryption. Encryption requires only the public key, which 
is not sufficient for decryption. Digital signatures are also 
constructed using public key cryptography and hashes. 
Asymmetric algorithms (e.g., RSA, Diffie-Hellman, etc.)
rely on the use of more computationally intensive 
mathematical functions such as modular exponentiation for 

encryption and decryption. Therefore, they are often used for
security functions complementary to secure bulk data 
transfers such as exchanging symmetric cipher keys 

Security solutions to meet the various security requirements 
outlined in the previous section typically rely on security 
mechanisms that use a combination of the afore mentioned 
cryptographic primitives in a specific manner (i.e., security 
protocols). Various security technologies and mechanisms 
have been designed around these cryptographic algorithms 
in order to provide specific security services. For example, 
Secure communication protocols (popularly called security 
protocols) provide ways of ensuring secure communication 
channels to and from the embedded system. IPSec [5] 
andSSL [6] are popular examples of security protocols, 
widely used for Virtual Private Networks (VPNs) and secure 
web transactions, respectively. 

Digital certificates provide ways of associating identity 
withan entity, while biometric technologies [7] such as 
fingerprint recognition and voice recognition aid in end-user 
authentication.Digital signatures, which function as the 
electronic equivalent of handwritten signatures, can be used 
to authenticate the source of data as well as verify its 
identity. 

Digital Rights Management (DRM) protocols such as 
OpenIPMP [8], MPEG [9], ISMA [10] and MOSES [11], 
provide secure frameworks intended to protect application 
content against unauthorized use. Secure storage and secure 
execution require that the architecture of the system be 
tailored for security considerations. Simple examples 
include the use of bus monitor logic to block illegal accesses 
to protected areas in the memory [12], authentication of 
firmware that executes on the system, application isolation 
to preserve the privacy and integrity of code and data 
associated with a given application or a process [13], 
HW/SW techniques to preserve the privacy and integrity 
ofdata throughout the memory hierarchy [14], execution of 
encrypted code in processors to prevent bus probing [5, 
6]etc. 

4. Designing Secure Embedded System 
Implementations 

Various attacks on electronic and computing systems have 
shown that hackers rarely take on the theoretical strength of 
well-designed functional security measures or cryptographic 
algorithms. Instead, they rely on exploiting security 
vulnerabilities in the SW or HW components of the 
implementation. In this section, we will see that unless 
security is considered throughout the design cycle, 
embedded system implementation weaknesses can easily be 
exploited to bypass or weaken functional security measures. 

Three factors, which we call the Trinity of Trouble
complexity, extensibility and connectivity conspire to make 
managing risks in software a major challenge. 

a) Tamper-resistant hardware 
There are a wide range of attacks that exploit the system 
implementation and/or identifying properties of the 
implementation to break the security of an embedded 
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Functional Security Measures 

Several functional security primitives have been proposed in 
the context of network security. These include various 
cryptographic algorithms used for encrypting and decrypting 
data, and for checkingthe integrity of data. Most 
cryptographic algorithms fall into one of three classes –

symmetric ciphers, asymmetric ciphers and hashing 
algorithms. (For a basic introduction to cryptography, we 

fer the reader to [3, 4]).  

require the sender to use a secret key to 
encrypt data (the data being encrypted is often referred to as 
plain text) and transmit the encrypted data (usually called 
the cipher text) to the receiver. On receiving the cipher text, 
the receiver then uses the same secret key to decrypt it and 
regenerate the plain text. The cipher text should have the 
property that it is very hard for a third party to deduce the 
plain text, without having access to the secret key. Thus, 
confidentiality or privacy of data is ensured during 
transmission. Examples of symmetric ciphers include DES, 
3DES, AES, and RC4.Most symmetric ciphers are 
constructed from computationally light-weight operations 
such as permutations, substitutions, etc. Thus, they are well 
suited for securing bulk data transfers. 

withan entity, while biometric technologies [7] such as 
fingerprint recognition and voice recognition aid in end-user 
authentication.Digital signatures, which function as the 
electronic equivalent of handwritten signatures, can be used 
to authenticate the source of data as well as verify its 
identity. 

Digital Rights Management (DRM) protocols such as 
OpenIPMP [8], MPEG [9], ISMA [10] and MOSES [11], 
provide secure frameworks intended to protect application 
content against unauthorized use. Secure storage and secure 
execution require that the architecture of the system be 
tailored for security considerations
include the use of bus monitor logic to block illegal accesses 
to protected areas in the memory [12], authentication of 
firmware that executes on the system, application isolation 
to preserve the privacy and integrity of code and data 
associated with a given application or a process [13], 
HW/SW techniques to preserve the privacy and integrity 
ofdata throughout the memory hierarchy [14], execution of 
encrypted code in processors to prevent bus probing [5, 
6]etc. 

4. Designing Secure Embedded System 
Implementations 
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system. These are called physical and side-channel attacks 
[14]. Historically, many of these attacks have been used to 
break the security of embedded systems such as smart cards. 
Physical and side-channel attacks are generally classified 
into invasive and non-invasive attacks. Invasive attacks 
involve getting access to the appliance to observe, 
manipulate and interfere with the system internals. Since 
invasive attacks against integrated circuits typically require 
expensive equipment, they are relatively hard to mount and 
repeat. Examples of invasive attacks include micro-probing 
and reverse engineering. Non-invasive attacks, as the name 
indicates, do not require the device to be opened. While 
these attacks may require an initial investment of time or 
creativity, they tend to be cheap and scalable (compared to 
invasive attacks). There are many forms of non-invasive 
attacks such as timing attacks, fault induction techniques, 
power and electromagnetic analysis based attacks, etc. In the 
sections that follow, we will be examining some of these 
attacks in more detail. 

b) Physical attacks 
For an embedded system on a circuit board, physical attacks 
can be launched by using probes to eavesdrop on inter-
component communications. However, for a system-on-
chip, sophisticated microprobing techniques become 
necessary [5]. The first step in such attacks is de-packaging. 
De-packaging typically involves removal of the chip 
package by dissolving the resin covering the silicon using 
fuming acid. The next step involves layout reconstruction 
using a systematic combination of microscopy and invasive 
removal of covering layers. During layout reconstruction, 
the internals of the chip can be inferred at various 
granularities. While higher-level architectural structures 
within the chip such as data and address buses, memory and 
processor boundaries, etc., can be extracted with little effort, 
detailed views of lower-level structures such as the 
instruction decoder and ALU in a processor, ROM cells, 
etc., can also be obtained. Finally, techniques such as 
manual microprobing or e-beam microscopy are typically 
used to observe the values on the buses and interfaces of the 
components in a depackaged chip. Physical attacks at the 
chip level are relatively hard to use because of their 
expensive infrastructure requirements (relative to other 
attacks). However, they can be performed once and then 
used as precursors to the design of successful non-invasive 
attacks.  

c) Fault induction 
Hardware security devices depend on more than correct 
software. If the hardware ever fails to make correct 
computations, security can be jeopardized. For example, 
almost any computation error can compromise RSA 
implementations using the Chinese Remainder Theorem 
(CRT). The computation involves two major 
subcomputations, one that computes the result modulo p and 
the other modulo q, where p and q are the factors of the RSA 
public modulus n. If, for example, the mod p computation 
result is incorrect, the final answer will be incorrect modulo 
p, but correct modulo q. Thus, the difference between the 
correct answer and the computed answer will be an exact 
multiple of q, allowing the adversary to find q by computing 
the greatest common denominator (GCD) of this difference 
and n. 

5. Embedded Processing Architectures for 
Security 

At the architecture level, the protocol and algorithms must 
be mapped onto an embedded architecture platform. At this 
stage, we partition the device into secure and insecure 
modules. Secure modules are hardware modules that run 
secure functions, house secure memory, and use various 
hardware and software techniques to protect themselves. 
Insecure modules run insecure functions, house insecure 
memory, and aren’t protected from attack.Because providing 
security has a cost overhead in terms of area, power, and 
computation, we must clearly distinguish between the 
protocol’s secure and insecure parts. Then, we can provide 
security to the secure parts only, reducing the overhead. 
Basically, we try to confine the secure parts to the smallest 
possible portion of the system.At the protocol level, we 
move secure parts from server to device; at the architecture 
level, we move them to a limited area of the device (the 
secure module). We call this security-driven hardware–
software partitioning, or security partitioning.

Security partitioning isolates the device’s sensitive data and 
functions so both software (architecture-level) and physical 
(circuit-level) mechanisms can protect them. Security 
partitioning is the application of a variant of Kerckhoffs’ 
principle, which is to minimize the number of secrets in a 
system. If the device as a whole is physically compromised, 
it remains secure as long as the secure module is intact. The 
technique addresses the software bypass attack as well as 
resource limitation and physical accessibility issues. Later, 
we’ll discuss a technique to secure a system at the circuit 
level, which requires approximately twice the normal area 
and power. Securing only a required subset of the system 
thus addresses area and energy limitations. 

Partitioning the device into secure and insecure modules 
involves four primary steps at the architecture level: 
determine partitioning topology, determine coupling and 
secure-to-insecure bus structure, partition functions and their 
data, and construct a secure instruction set. 

A) Microarchitecture level: Hardware design 
We designed and simulated the architecture’s hardware 
implementation at the microarchitecture level. This involved 
designing the hardware for the insecure and secure modules 
and their interfaces. We used the Leon processor with a 
configurable Amba bus structure for the insecure module 
and designed a memory-mapped interface on the Amba 
peripheral bus to communicate with the secure module.The 
secure module is a custom-designed secure coprocessor. The 
coprocessor consists of a top-level controller, a 
cryptographic engine, and a matching engine (with template 
storage). The coprocessor includes two categories of buses: 
public and private. The public buses are the coprocessor’s 
interface to the outside world (that is, the secure-to-insecure 
bus structure) and are thus insecure. The private buses are 
secure buses internal to the coprocessor, such as those 
between the matching and cryptographic submodules. These 
private buses ensure that sensitive data remain local to the 
coprocessor and aren’t directly accessible to the insecure 
module. The top-level controller monitors for illegal and 
out-of-sequence instructions. Hence, the insecure processor 
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can’t access the coprocessor’s internal data; it can access the 
coprocessor only using instructions on the public buses, 
which the top-level controller monitors for foul play. 

One challenge at the microarchitecture level is to accurately 
cosimulate the secure and insecure modules. In our design, 
this implies a hardware/software co-simulation, including a 
thorough sequence of valid and invalid instructions to 
protect against false-instruction attacks. For such a co-
simulation, we need a design and simulation environment 
that can simulate the secure and nonsecure modules 
together. This is because the boundary between hardware 
and software is often a weak part of secure systems, simply 
because they’re designed and developed separately (and 
often by different teams). 

The micro architecture level implements the design and  
security features described at the architecture level, but 
suppose an attacker chooses an out-of-band attack at the 
physical level. In this case, the architecture and   
microarchitecture defenses are meaningless. We therefore 
need new defenses at the circuit level. 

6. Design Methodology and Tool Requirements 

As security emerges as a mainstream design issue, 
addressing some of the challenges outlined previously will 
require the support of appropriate design tools and 
methodologies. In this section, webriefly describe our vision 
for developments in this area.Compared to an embedded 
system’s functionality and other design metrics (e.g., area, 
performance, power), security is currently specified by 
system architects in a vague and imprecise manner. Security 
experts are often the only people in a design team who have 
a complete understanding of the security requirements. This 
is a problem, since different aspects of the embedded system 
design process can impact security. Hence, design 
methodologies for secure embedded systems will have to 
start with techniques to specify security requirements in a 
way that can be easily communicated to the design team, 
and evaluated throughout the design cycle. Any attempt to 
specify security requirements needs to address the “level” of 
security desired, e.g., what level of tamper resistance should 
be incorporated in the system. Security standards, such as 
the FIPS security requirements for cryptographic modules,
and the Common Criteria for information technology 
security evaluation could provide some initial guidelines in 
this direction, although they tend to be quite cumbersome 
and difficult to understand for the average designer. 

Techniques for formal or semi-formal specifications of 
security requirements can enable the development of tools 
that validate and verify these whether requirements are met, 
at various stages in the design process. For example, formal 
verification techniques have been used to detect bugs in 
security protocol implementations.Time-to-market pressures 
in the semiconductor and embedded system industries lead 
to design processes that are increasingly based on the re-use 
of components from various sources. It will be particularly 
challenging to maintain security requirements in the face of 
these trends. It is very difficult if not impossible to guarantee 
the security of a system when the underlying components 
are untrusted. Furthermore, even the composition of 

individually secure components can expose unexpected 
security bugs due to their interaction.  

During embedded system architecture design, techniques to 
map security requirements to alternative solutions, and to 
explore the attendant tradeoffs in terms of cost, performance, 
and power consumption, would be invaluable in helping 
embedded system architects understanding and making 
better design choices. For example,system architects would 
like to understand the performance and power impact of the 
the processing architecture used to perform security 
processing, and the tamper-resistance schemes used.During 
the hardware and software implementation 
processes,opportunities abound to improve the tamper 
resistance of the embedded system, as well as mitigate the 
performance and power consumption impact of security 
features. For example, hardware synthesis (and software 
compilation) techniques to automatically ensure that 
minimize the dependence of power and execution time on 
sensitive data could help ensure design embedded systems 
that are highly tamper-resistant to side channel attacks by 
construction. Some initial efforts along these directions are 
described in In summary, as security becomes a requirement 
for a wide range of embedded systems, design tools and 
methodologies will play a critical role in empowering 
designers (who are not necessarily security experts) to 
address the design challenges described in this survey. 

7. Conclusion 

Today, secure embedded system design remains a field in its 
infancy terms of pervasive deployment and research. The 
good news is that unlike the problem of providing security in 
cyberspace, securing the application-limited world of 
embedded systems is more likely to succeed in the near 
term. However, the constrained resources of embedded 
devices pose significant new challenges to achieving desired 
levels of security. We believe that a combination of 
advances in architectures and design methodologies would 
enable us to scale the next frontier of embedded system 
design, wherein, embedded systems will be “secure” in 
every sense of the word. To realize this goal, we should look
beyond the basic security functions of an embedded system 
and provide defenses against broad classes of attacks all 
without compromising performance, area, energy 
consumption, cost andusability. 
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good news is that unlike the problem of providing security in 
cyberspace, securing the application-limited world of 
embedded systems is more likely to succeed in the near 
term. However, the constrained resources of embedded 
devices pose significant new challenges to achieving desired 
levels of security. We believe that a combination of 
advances in architectures and design methodologies would 
enable us to scale the next frontier of embedded system 
design, wherein, embedded systems will be 
every sense of the word. To realize this goal, we should 
beyond the basic security functions of an embedded system 
and provide defenses against broad classes of attacks all 
without compromising performance, area, energy 
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