
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

An Intelligent System for Relational Databases

Uday Prakash Gunjal
1
, Vaibhav Rathod

2
, Dr. Nitin N. Pise

3

1, 2ME Computer Engineering Student, Maharashtra Institute of Technology, Pune

3Assistant Professor, Computer Engineering Department, Maharashtra Institute of Technology, Pune

Abstract: Today’s present computing world, most new-generation database applications demand intelligent interface to enhance
efficient interactions between database and the users. The most accessible interfaces for databases must be intelligent and able to
understand natural language expressions. In this paper mapping of natural language queries to SQL is suggested. We propose a general
architecture for an intelligent database system and also a real implementation of such a system which can be connected to any database.
One of the main characteristics of this interface is domain-independence, which means that this interface can be used with any
database. Another characteristic of this system is ease of configuration. The intelligent system employs semantic matching technique to
convert natural language query to SQL using dictionary and set of production rules. The dictionary consists of semantics sets for tables
and columns. The shaped query is executed and the results are presented to the user. This interface was first tested using Supplier-Parts
database and secondly with Northwind database of SQL server 7.0.

Keywords: Databases, Structured Query Language (SQL), intelligent interface, Intelligent Database System (IDBS), Flexible Querying,
Intelligent Layer, Domain Independent Interface

1. Introduction

In the present computing world, computer based information
technologies have been extensively used to help many
organizations, private companies, academic and education
institutions to manage their processes and information
systems. Information systems are used to manage data. A
general information management system that is capable of
managing several kinds of data, stored in the database is
known as Database Management System (DBMS) [1].
Databases are comprehensive element in private and public
information systems which are essential in number of
application areas[2]. Databases are gaining prime importance
in a huge variety of application areas employing private and
public information systems. Retrieval of a large amount of
the same type of data is very efficient in relational databases
[3], but still the user has to master the DB schema completely
to formulate the queries.

Structured Query Language (SQL) is an ANSI standard for
accessing and manipulating the information stored in
relational databases. It is comprehensively employed in
industry and is supported by major database management
systems (DBMS). Most of the languages used for
manipulating relational database systems are based on the
norms of SQL.

In the past few years, many advances have been made in the
field of databases and many other fields of critical relevance
to information technology. An intelligent database is an
emerging database technology that has dramatic impact on
the way we think and work [4]. It greatly expands our
capabilities as information users. Intelligent databases are the
databases that that are endowed with data management
system able to manage large quantities of data to which
various forms of reasoning can be applied to infer additional
data and information. This includes knowledge representation
techniques, inference techniques and intelligent user
interfaces.

These techniques play different roles in enhancing database
systems: knowledge representation techniques allow one to
represent better in DB semantics of the application domain,
inference techniques allow one to reason about the data to
extract additional data or information; and intelligent user
interfaces help users to make requests and receive the replies
interfaces by making use , typically , of natural language
(NL) facilities that extend beyond the traditional query
language approach [5] provided. The formatter will need to
create these components, incorporating the applicable
criteria that follow.

2. Natural Language Interface to Database

In recent times, there has been a rising demand for non-
expert users to query relational databases in a more natural
language encompassing linguistic variables and terms,
instead of operating on the values of the attributes. Talking to
a computer in a natural language such as plain English is
always a dream that drives the progress of human-computer
interaction work [6,7].

This has led to the development of Natural Language
Interface to Databases (NLIDB). NLIDBs permits users to
formulate queries in natural language, providing access to
information without requiring knowledge of programming or
database query languages. There are many applications that
can take advantages of NLIDB. In PDA and cell phone
environments, the display screen is not as wide as a computer
or a laptop. Filling a form that has many fields can be
tedious: one may have to navigate through the screen, to
scroll, to look up the scroll box values, etc. Instead, with
NLIDB, the only work that needs to be done is to type the
question similar to the SMS (Short Messaging System).

The NLIDB is actually a branch of more comprehensive
method called Natural Language Processing (NLP). In
general, the main objective of NLP research is to create an
easy user friendly environment to interact with users in the
sense that computer does not require any programming

Paper ID: ART20164143 1546

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

language skills to access the data; only natural language is
required.

The research of Natural Language interface to databases
(NLIDB) has recently received attention from the research
communities. The area of NLIDB research is still very
experimental and systems so far have been limited to small
domains, where only certain types of statements can be used.
When the systems are scaled up to cover larger domains, it
becomes difficult due to vast amount of information that
needs to be incorporated in order to parse statements.
Although the earliest research has started since the late
sixties, NLIDB remains an open search problem.

3. Related Work

For the last thirty years, numerous attempts have been made
to build useful natural language interface. It has turned out to
be much more difficult than what was originally expected.
There had large number of research works introducing the
theories and implementations of NLIDBs. There are mainly
four kinds of NLIDBs framework.

A. Template Based approach

The first type of framework is based on pattern matching.
Typical applications of this type of framework is SAVVY[.
In this system, some patterns are written for different types of
queries and these patterns are executed after the queries are
entered. The main advantage of pattern matching approach is
that no elaborate parsing and modules of interpretation are
required and the systems are very easy to implement. Some
pattern matching systems were able to perform impressively
well in certain applications. One of the best natural language
processing system that is based on pattern-matching approach
is ELIZA. However a pattern matching system is too shallow
and therefore would often lead to bad failures.

B. Syntax-based approach

The method used in the system supports a syntax-based
approach where a parsing algorithm is used to generate a
parse tree depending on user‟s queries. This method is
especially used in application-specific database systems. A
database query language must be provided by the system to
enable the mapping from parse tree to the database query.
Moreover, it is difficult to decide the mapping rules from the
parse tree to the query language (e.g. SQL) that the database
uses.

C. Semantic Grammar approach

System uses semantic grammars where syntactic processing
techniques and semantic processing techniques are used
together. The disadvantage of this method is that semantic
approach needs a specific knowledge domain, and it is quite
difficult to adapt the system to another domain. In fact, a new
grammar has to be developed when the system is configured
for a different domain.

D. Intermediate Representation language based

approach

Some intermediate representation languages can be used to
convert the statements in natural language to a known formal
query language. MASQUE/SQL is an example for this
approach. It is a front-end language for relational databases

that can be reached through SQL. User defines the types of
the domain which database refers using a hierarchy in a built-
in domain-editor. Moreover, words expected to appear in
queries with their logical predicates are also declared by the
user. Queries are first transformed into a Prolog-like
language LQL, then into SQL. The advantage of this
technique is that the system generating the logic queries is
independent from the database and therefore, it is very
flexible in domain replacements.

Despite of the achievements attained in this area, present day
NLIDBs do not guarantee correct translation of queries in
natural language to database languages. The most desirable
characteristic of the NLIDBs that the researchers are
proposing is Domain Independence, which means that
interface can be used with different databases and
reconfiguration of the NLIDB from one domain to another is
done automatically.

In these types of interfaces, the percentage of correctly
answered queries ranges from 69.4% to 96%. Regarding the
main domain independent interfaces the following stand out:
EnglishQuery, PRECISE, ELF, Edite, SystemX, and
MASQUE/SQL. The success percentage of these interfaces is
less than that of domain dependent interfaces. Much of the
research work is being done to improve the success
percentage of domain independent interfaces.

4. The Intelligent System Overview

It is known that databases respond only to standard SQL
queries and it is highly impossible for a common person to be
well versed in SQL querying. Moreover they may be
unaware of the database structures namely table formats,
their fields with corresponding types, primary keys and more.
On account of these we design an intelligent layer which
accepts common user‟s imperative sentences as input and
converts them into standard SQL queries to retrieve data
from relational databases based on knowledge base.

The main characteristic of the system are as follows:
 It is domain independent. The Hence, the configuration

process is automatic.
 The interface can be easily and automatically configured.

Interface relies on the Metadata set, Semantic set for tables
and attributes

The primary advantage of the system is that it conceals the
inherent complexity involved in information retrieval based
on unqualified user queries. Paper [7] introduced core
algorithm for converting a natural language user query to
Standard SQL query. That paper provides a brief overview
of the domain independent NLIDB system focusing on the
components necessary to understand the functionality of the
proposed system.

In the presented system, an intelligent layer is designed in
such a way that it can be can be connected to any existing
database system, which is responsible for the intelligent
information processing and performing flexible queries.

The system is designed to accept any relational database
schema. NLIDB system accepts users natural language

Paper ID: ART20164143 1547

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

sentences as input, parses them semantically and builds an
SQL query for the database. The core functionality is based
on the semantics and rules, which can be modified by the
system administrator. Proposed system is composed of two
modules: a pre-processor and a run time processor. Pre-
processor is used to generate Domain Dictionary.
Dictionaries used by the existing NLIDBs are created
manually or semi automatically The pre-processor
automatically generates the domain dictionary by reading
the schema of the database, uses WordNet to create semantic
sets for each table and attribute name. The pre-processor
also creates the rules that can be edited by the system
administrator. Our system addresses the semantic parsing
through the use of rules that are generated by the pre-

processor. The rules are based on the schema of the
database, on WordNet and on the administrator feedback.
The system administrator can edit, add and modify these
rules.

The run time processor uses these rules and tries to match
the input words with predefined data structures, tables and
attribute names from the database schema. The rules
describe the relations between the table and its attributes.
We have assumed that the tables and attributes names in the
schema are meaningful and can be found in the English
Dictionary. If this is not the case, the system administrator
has possibility to specify the synonyms.

5. Design of Intelligent Interface For Databases

In general, a database (D) is termed as set of tables
organized in some common structure. The vital information
that briefly describes the tables in the database is organized
into a metadata set (M). Table I. shows the sample metadata
set of the supplier-part database which is automatically
generated by the system. The metadata set holds entries for
all the „n‟ tables in the relational database with all their
corresponding fields and their unique primary key

Table 1: Metadata Set
Table Primary Key Field Foreign Key

Supplier Sup_no

Sup_no,
Sup_name,

sup_city

Part Part_no

Part_no,
Part_name,
Part_city,
Part_color

Shipment Part_no,Sup_no
Sup_no,
Part_no,
Quantity

(Sup_no, Supplier)
(Part_no, Part)

The metadata set is organized as follows:
M = {Ty, FTy, Pky, Fky, Rky }, 0 < y < (n +1)
Where T→Set of tables in M
FT →Set of all fields in T
PK →Primary key in T
FK →Foreign key in T
RK →Reference attribute and table

The proposed approach employs a set of predefined training
structures. The primary benefit of these training sets is that
they can be expanded or appended when the intelligent

information system discovers some new knowledge. The
significant training sets used are:
 The Expression mapping set (Emap) contains the list of

commonly used conditional clauses and their associated
mathematical symbols. It acts as a look up table to locate
the SQL defined mathematical operators

 The Conjunction training set (CT) consists of the list of
generally used Conjunctive clauses like where, who etc.
These conjunctive clauses determine the exact Query
definition. When the system encounters a relatively new
conjunctive clause, it is appended to the existing training
set.

 The trained stop word set (SW) contains the list of all
common stop words that are likely to occur in a user typed
query.

 The semantic set (S) contains the list of all possible
semantics related to table names and fields in the
database.

 Rules related to database schema-The schema of the
database gets translated into the rules. These rules are
produced by the system, and they are based on the
relationships between the tables. If in a SQL query two
tables Suppliers and Products are referenced , then the
attribute equation Products.CategoryId =
Categories.CategoryId should be used in the where clause.

A. Intelligent Interface components

Figure 1: Components of intelligent interface

This section gives a vivid description of how the user query
is transformed to be used for data retrieval from databases.
In our proposed approach, we define a universal set Qu
which holds all the individual tokens in the user typed query.
Every token represents a unique element in the universal set
Qu. Every user query is likely to contain a display or
subjective part which specifies the intended result, the
Conjunction part which determines the SQL definition
Clause and the Criteria part which describes the condition or
constraint. All these parts of the user query will be
represented as three distinct sets Pd, Pj and Pc . Here the sets
Pd, Pj and Pc contain tokens that represent the subject, the
Conjunctive clause and the Criteria respectively.
Qu → User Query
Pd → Subjective/Display part of Qu
Pj → Conjuctive part of Qu
Pc → Criteria/condition part of Qu

Paper ID: ART20164143 1548

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Evidently, the sets Pd , Pj and Pc form the subsets of the
universal setQu . The subsets of Qu may be structured in
the following formats:

Qu = {Pd} Or Qu = {Pd , Pj , Pc } Or
Qu = {Pc , Pj , Pd}
The two components of intelligent interface as shown in
Figure I are User query decomposer and SQL query
generator, the functions of which are described as follows.

B. User Query Decomposer

This component decomposes the User Query into three parts
Pd , Pj and Pc using the predefined training sets. CT , Emap
and SW. Firstly user query is intersected with CT. This
decomposes the query in above three parts. Then expression
mapping is done for Pc using Emap. Subsequently stop word
removal is done for Pd and Pc using SW training set.
Example 1:
Get me supplier details where supplier‟s
native place is LONDON
Qu → Get me supplier details where supplier‟s
native place is LONDON
Pd → Supplier details
Pj → where
Pc →Supplier native place = LONDON

Example 2:
Get full details of all the suppliers
Qu → Get full details of all the suppliers
Pd → Details suppliers
Pj →null
Pc → null
Pt

d →Table (Pd) and consider Pt
d =Ф(initially)

Pf
d →Table (Pd) and consider Pf

d =Ф(initially)

The next step is to locate the tables and fields mentioned in
the set Pd and Pc . These sets are intersected with the
metadata set M. If it yields a nonempty set, table names are
chosen from the Metadata set M. Else if it yields an empty
set, then the sets are intersected with the set ST and SF, to
retrieve the appropriate table names and field names
associated with the matching semantics.

Now Pt

d contains the names of tables to used in SQL query
and Pf

d contains fields names and Pc contains condition part
of the query.

C. SQL Query Generator

This component finds the relation between the tables display
condition and the fields that are to be displayed and appends
the joining condition of tables to Pc . With help of Pt

d , Pf
d

and Pc user query in natural language is converted to
equivalent SQL query.

If Pc ≠ Ф then
SQL Query = SELECT Pf

d FROM Pt
d AS A WHERE Pc

Else
SQL Query = SELECT Pf

d FROM Pt
d

So the Generated SQL Statement for Example 1 is
SELECT * FROM Supplier AS A WHERE
A.Sup_city=‟LONDON‟

6. Experimental Results

In this section, we have presented the experimental results of
the proposed intelligent interface. The presented system has
been implemented in JAVA with MySQL and MS-Access as
databases.

For the experiment, supplier-part database and Northwind
database of SQL server 7.0 were used and a group of five
students was asked to formulate the queries in English for
the two databases. The students were explained about the
schema, relationships between the tables, primary keys etc.
of the database for formulating the queries. Additionally, the
students were given brief explanation about the kind of
queries they could formulate. The resulting corpus consists
of 20 queries for Supplier-Part database and 40 queries for
the Northwind database. Most of the queries selected for the
Northwind database involved two or more tables. The
queries were classified according to difficulty and were
divided into
four types :

(1) Explicit table and column information
(2) Explicit table and implicit column
(3) Implicit table and explicit column and
(4) Implicit table and column information.

The corpus of the queries for the supplier-part database and
the Northwind database was introduced to the interface to
obtain the percentage of queries correctly answered and
queries with incorrect answer or queries unanswered. The
following results were obtained : 75% of the queries
(considering all the four types) of the supplier-part database
and 70% of the queries of Northwind database were
translated were translated correctly.

The main reason that caused these errors was due to
insufficient information for processing. Some examples of
the queries that could not be correctly translated are the
following: Get full details of LONDON suppliers? And Get
the unit price of TOFU. In both the queries the attributes are
not specified. If the first query is rephrased as: Get full
details of suppliers whose native place is LONDON or Get
full details of suppliers whose city is LONDON, the interface
translates it correctly because the attribute city is specified.
Similarly, in the second query attribute of TOFU is not
specified. If the second query is rephrased as : Get the unit
price of product whose name is TOFU then the interface
matches name with the attribute product name and the query
is translated correctly.

7. Conclusion

Flexible intelligent system for database querying is
presented in this paper. The main advantage of the system is
natural language is used for querying the database and
incorporated into the existing database systems. The
presented system accepts flexible user queries and converts
them into a standard SQL query. Expression mapping, stop
words removal and semantic matching techniques have been
utilized by the intelligent layer in the formation of the SQL
query. The efficacy of the presented system has been
demonstrated with the aid of experimental results.

Paper ID: ART20164143 1549

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 3, March 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] N. Sangeeth, R. Rejimoan, “An Intelligent System for
Information Extraction From Relational Database Using
HMM,” International Conference on Soft Computing
Techniques and Implementations(ICSCTI). Dept. of
ECE, Faridabad,India, Oct 2015

[2] N Nihalani, Sanjay Silakari, Mahesh Motwani , “Design
of Intelligent layer for flexible querying in databases,”
International Journal of Computer Science and
Engineering (IJCSE) Vol 1(2) 2009

[3] Zongmin Ma, "Intelligent Databases: Technologies and
Applications", IGI publishing, 320 pages, 2007K.

[4] B. Juan J. González, Rodolfo A. Pazos Rangel, I.
Cristina Cruz C., H. Héctor J. Fraire and L. de Santos
Aguilar, et al.(2006) "Issues in Translating from Natural
Language to SQL in a Domain- Independent Natural
Language Interface to Databases"LNCS 4293, MICAI:
Advances in Artificial Intelligence, pp 922-931

[5] Dietmar Wolfram, "Applications of SQL for Informetric
Data Processing", Proceedings of the 33rd conference of
the Canadian Association for Information Science, 2005

[6] Donald P. Mckay and Timothy W. Finin, "The
Intelligent Database Interface: Integrating AI and
Database systems", In Proceedings of the 1990 National
Conference on Artificial Intelligence, pp. 677-684, 1990

[7] N Nihalani, Sanjay Silakari, Mahesh Motwani “An
Intelligent Interface for relational databases,” IJSSST,
Vol. 11, No. 1, ISSN: 29 1473-804x online, 1473-8031

Paper ID: ART20164143 1550

