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Abstract: We have discussed in this paper spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model 

with Lyra geometry in the presence of bulk viscous fluid. Here we have considered the coefficient of bulk viscosity  as a quadratic 

function of Hubble parameter H (i,e 
2

210 HH   ),Where 0 , 1 , 2 are constant. The physical and kinematical 

properties of the models are discussed. 
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1. Introduction 
 
It has been discussed in this literature that during the 
evolution of the universe bulk viscosity could arise in many 
circumstances and could lead to an effective mechanism of 
galaxy formation. The possibility of bulk viscosity leading 
to inflationary-like solutions in general relativistic FRW 
models is discussed by padmanabhan and chitre. Johri and 
Sudharsan  have pointed out that the bulk viscosity leads to 
inflationary solutions in Brans-Dicke theory. Bulk viscocity 
is supposed to play very important role in the early evolution 
of the universe. There are many circumstances during the 
evolution of the universe in which bulk viscosity could arise. 
The bulk viscosity coefficient determines the magnitude of 
the viscous stress relative o the expansion. Bulk viscosity is 
associated with the GUT phase transition and string creation. 
Thus, we should consider the presence of a material 
distribution other than a perfect fluid to have realistic 
cosmological models  for a review on cosmological models 
with bulk viscosity. On the other hand, cosmological models 
of a fluid with viscosity play a significant role in the study of 
evolution of universe. It is well known that at an early stage 
of the universe when neutrino decoupling occurs, the matter 
behaves like a viscous fluid. The coefficient of viscosity is 
known to decrease as the universe expands. Viscous fluid 
cosmological models in early universe have been widely 
 
The Bianchi cosmologies play an important role in 
theoretical cosmology and have been much studied since the 
1960s. A Bianchi cosmology represents a spatially 
homogeneous universe, since by definition the spacetime 
admits a three parameter group of isometries whose orbits 
are space like hyper-surfaces. These models can be used to 
analyze aspects of the physical Universe which pertain to or 
which may be affected by anisotropy in the rate of 
expansion, for example , the cosmic microwave background 
radiation, nucleo synthesis in the early universe, and the 
question of the isotropization of the universe itself  Spatially 
homogeneous cosmologies also play an important role in 
attempts to understand the structure and properties of the 
space of all cosmological solutions of Einstein field 
equations. 
 

Spatially homogeneous and anisotropic cosmological 
models play a significant role in the description of large 
scale behaviour of universe and such models have been 
widely studied in framework of general relativity in search 
of a realistic picture of the   universe in its early stages. 
Recently Pradhan et al. and Saha et al. have studied 
homogeneous and anisotropic B-I space time in different 
context. In this paper we have investigated a new B-I 
cosmological model with bulk viscous fluid in Lyra 
geometry. The simplest of anisotropic models describe the 
anisotropic effects are Bianchi type-I spatially homogeneous 
models whose spatial sections are flat but the expansion or 
contraction rate is directional dependent. The advantage of 
theses anisotropic models are that they have a significant 
role in the description of evolution of early phase of the 
universe and they help in finding more general cosmological 
models than the isotropic FRW models. For studying the 
possible effects of anisotropy in the early universe on 
present day observations many researchers (Huang 
1990;Chimento et al.1997;Lima 1996;Lima and 
Carvalho1994;Pradhan et al.2004,2006;Saha 2005,2006) 
have investigated Bianchi-type I models from different point 
of view. At the present state of evolution the universe is 
spherically symmetric and the matter distribution in it is on 
the whole isotropic and homogeneous . But in its early 
stages of evolution it could have not had such a smoothed 
out picture close to the big bang singularity, neither the 
assumbtion of spherical symmetry nor of isotropy can be 
strictly valid. For simplification and description of the large 
scale behaviour of the actual universe ,Bianchi-Ispace time 
have been widely studied. In order to study problems like 
the formation of galaxies and the process of homogenization 
and isotropization of the universe, it is necessary to study 
problems relating to anisotropic space time.  
 
2. The Metric and the Field Equation 
 
We consider homogeneous an axially symmetric Bianchi 
type-I metric described by the element 
 

 22222222 dzdyBBdxAdtds        (1) 
 

Paper ID: 22011703 1585



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 3, March 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Where A and B are function of cosmic time t only. The 
energy momentum tensor are given by  

ijjiij gpvvpT  )(                                      (2) 
 
With 

i
ivpp ;                                                           (3) 

 
Which satisfies the linear equation of state 

p                                                                    (4) 
 
Where p is isotropic pressure,  is the energy density of 

matter,  is the coefficient of bulk viscosity and iv is the 

flow vector of the fluid satisfying 1i

ivv . The 
Einstein’s field equation based on Lyra geometry 
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The Einstein’s field equation (5)for the line element (1) lead 
to the following system of equations 
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The energy conservation equation gives 
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The usual energy conservation equation 0; ji
jT gives 

  02)( 











B

B

A

A
p


                                (10) 

We define average scale factor 
23 ABa        (11) 

From equations (7),(8) and (10) 
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From (12) and (13) 









 3

1
2 3

2exp
a

dtk
akA     (14) 









 3

1
3 3

exp
a

dtk
akB     (15) 

Where 2k and 3k are constant of integration such that 
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From this we get 
H 3      (22) 

 
Equation (6),(7),(8) and (10) can be written in terms of 
H  and q as 

2238   HG    (23) 
22)12(8   HqpG    (24) 

0)(3  Hp     (25) 
 
3. Basic Assumption: 
 

According to Berman 

32 )(
n

n ABlaH


      (26) 
where 0l and 0n are constant. 
From (16) and (26) we get  

1 nlaa      (27) 
 

122 )1(  nanla     (28) 
From Equation (17) we get 

1 nq      (29) 

For 0n (27) gives ncta

1
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For 0n  (27) gives )}(exp{ 2ctla   (31) 
And 

1
1)(ln  ctlH     (32) 

 
Meng and Ma 2012 i,e 

2
210 HH       (33) 

Where  , 1 , 2 are constant 
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From Equation (25) gives 
 

2)1(3 HHw      (34) 
 
Solution of field Equations: 

 

Cosmology for 0n  
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From (33),(34) and (37), 

n

w

ctk
tnwn

q

tnwn

q

tnwn

q
)1(3

1533
2

22
10 )(ln

}2)1(3{}2)1(3{})1(3{















  (38) 

 
And, 


















































n

wn

n

n

nn

n

n

n

ctk

ct
nwn

ct
nwn

ct
nw

ctnkct

G

)1(32

15

6

12
2

6

1
1

6

1
0

2
1

2
2

6

1

6

)(ln

)(ln
)233(

9)(ln
)233(

6)(ln
33
3

)(ln)(ln3

(ln)12

1 



 (39) 

 

n

n

w

n

wn

n

n

nn

n

n

n

ct

k

ctn

ct

k

ctnwnctnwnnw

ctk

ct
nwn

ct
nwn

ct
nw

ctctnk

6

1

2
2

2
1

2

)1(3

1

5
3

1
3

2
2

1
2

10

)1(32

15

6

12
2

6

1
1

6

1
0

6

1
2

1
2

2

6

)(ln3
)(ln

1

)(ln
))(ln233(

9
))(ln233(

9
)33(3

9

)(ln

)(ln
)233(

9
)(ln

)233(
6

)(ln
33
3

)(ln3)(ln

(ln)3

1




























































































               (40) 

Cosmology for 0n  
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From (33) we get 
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4. Conclusion 
 

Generally, the models are expanding, shearing and rotating. 
In all these models, we observe that they do not approach 
isotropy for large values of time T in the presence of 
magnetic field. It is seen that the solutions obtained by Bali 
and Meena and Pradhan and Rai are particular cases of our 
solutions. The coefficient of bulk viscosity is assumed to be 
a power function of mass density. The effect of bulk 
viscosity is to introduce a change in the perfect fluid model. 
We also observe here that the conclusion of Murphy about 
the absence of a big bang type of singularity in the finite past 
in models with bulk viscous fluid is, in general, not true. The 
cosmological constant in all models are decreasing function 
of time and they all approach a small positive value at late 
time. These results are supported by the results from recent 
supernovae Ia time. These results are supported by the 
results from recent supernovae Ia observations recently 
obtained by High - Z Supernova Team and Supernova 
Cosmological Project .We have also discussed the 
cosmology using Berman’s law. 
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