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Abstract: This paper presents some Excel-based simulation exercises that are suitable for use in financial modeling courses. Such
exercises are based on a stochastic process of stock price movements, called geometric Brownian motion. Guidance is provided in
assigning appropriate values of the drift parameter in the stochastic process for such exercises. Some further simulation
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1. Introduction

Collection of the option price S (y), 0< y <o is said to
follow the Brownian motion the drift parameter p and
variance o” if for all non-negative values y and t, the random
variable:
S(t+y) = S(y)

are independent for all grades until the time y, and also a
variable normal random with mean pt and variance o’t.
Brownian motion model's weakness to model the movement
of stock prices is theoretically be worth negative, and the
price difference within a certain time period has a similar
normal distribution for any initial value. Therefore, the
model of the stock pricing movement more precisely follows
Geometric Brownian Motion models that can be written,

dSt=St(udt+ dwt) (1)

with S random variables which states stock price, p and ¢
constant, t is time. Equation (1) is known as Geometric
Brownian motion with p is parameter drift and o is the
volatility parameter. Changes in stock prices are known as a
return.

Brewer, et al (2012) explained that,
E(S(t)) = S(0)exp(pt)

Var(S(t)) = 5'[[})2[r-‘.rp['igaf]][(.-‘;1‘3)(:721‘) — 1]
= [B(S(t))]*[exp(c?t) — 1]

2. Daily Stock and Option Price Movements

Although geometric Brownian motion is a stochastic process
in continuous time, its implementation in simulation
exercises requires that it be approximated in a discrete time
setting. We assume for now that a day as a proportion of a
year is short enough for such an approximation to work well.
The issue as to whether there is any need for using a shorter
time interval and, if so, how the Excel-based simulation
exercises as described in the next section can be revised
accordingly.

To simulate the time paths of daily stock and option prices,
from the day of an option investment to the expiry date of an

option, we need an explicit expression of the stock price on
each day in terms of the stock price a day earlier. Such an
expression is a recursive version. Specifically, if we use t
and t + At; instead of 0 and T > 0; to indicate two successive
points in time, it can be written as

- o\ ]
8 np = Siexp (u_ - T:I Od + ges)S AR

Now, let n be the number of days in a year. Here, the
number can be based on calendar days or trading days;
however, the latter is more common in practice. The time
interval At between two adjacent days is the proportion 1/n
of a year. For notational convenience, let S; and S;;; be the
stock prices on two adjacent days, for t = 0,1,2,... until the
expiry date of the option that the stock underlies. Provided
that p and o are stated in annual terms, we can write
equation as

_ gty 1 g |
S = Sexp M= F-l'—FE
e 'il..' e |

For a given initial price Sy and given constant values of p
and o, the above equation will allow S1, S2, S3,... to be
generated. The idea is to use that equation recursively,
starting from day 0; for each day, we generate a new
random draw of € from the standardized normal distribution
for the equation to simulate the stock price of the next day.
These simulated daily stock prices, in turn, will allow the
corresponding call and put option prices, C1, C2, C3,...
and P1, P2, P3,... to be computed successively until the
expiry date of each option.

Given the stochastic nature of price movements as
characterized by geometric Brownian motion, each set of
simulated time paths of stock and option prices will
inevitably differ from any other set as generated repeatedly
in simulation runs. From a statistical perspective, we are
interested in knowing what simulated prices can be
expected and how widely dispersed are such prices. We can
compute the expected stock price and the standard
deviation of stock prices, respectively, on each day until the
expiry of the option that the stock underlies. With t being a
day label, we simply substitute T on the right hand side of
each of the two equations with t=n; for t = 1,2,... until the
expiry date of the option; that is,
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Uncertain Variables
The uncertain varables are in cells D16:0268. This
maodel uses the PsiNommal distribution to compute the
inty in each time period (each day).

",

Suppose that, for some given values of Sy, 1 and o, we have
the results of a set of simulation runs. On each day t; the
sample average of the simulated stock prices and the sample
standard deviation of such prices can easily be computed
with Excel.

3. Simulation

J Statistical Functions
Cells H15:H288 contain the statistical function, PsiMean().
Each function is taking the mean of the predicted daily price
{column F) over all 1000 trial values. For example, H16 shows
the awerage of all 1000 trial values for cell F16.

{ Uncertain Functions
The uncertain functions are in cells F15:F268 and

represent the predicted daily price for the stock.

Date Close Price  Actual Daily Returns  Std. Hormal Variables

14242009 20.33
1/5/2009 20.52 0.009302393 1165070685
1/6/2009 20.76 0.011628038 -0.100179217
14742009 19.51 -0.062100904 0.6601B0863
1/8/2009 20.12 0030787191 -0.420639279
1/9/2009 19.52 -D.030274764 -0.646318191
141242009 19.47  -D.002564762 0.3737B036E
141372009 19.82 0.017B1671 -1.106483555
1/14/2009 19.08  -D.037526851 -1.039568266
1/15/2009 19.24 0.007826E07 -0.926379861
141672009 19.71 0.024134676 0.335090737
1/20/2009 12.48  -0.064437055 -0.299917666
142172009 19.38 0.04755254 0.165416628
142272009 17.11 -0.124578519 0.055221617
142372009 17.20 0.005246296 -0.460551333
142642009 17.63 0.024692613 -0.447528555
142742009 17.66 0.001 700199 0.23501810%
1/28/2009 12.04 0.021285319 1.285419251

Humm Diays 250

Mean Daily Retum 0.00049 0001194

Daily Return 5td. Dev. 0009485 002773

Volatility 0149987

Appreciation Rate 0.05E748

4. Conclusion

In spite of the fact that the choice of the value of the drift
parameter does depend on the subjective view of the
investor involved, the choice should not be entirely arbitrary
and unguided. As explained in this paper, neither should it
simply be set equal to the risk-free interest rate, which tends
to favour the writer when simulating the probability of an
option investment. Using the idea that a rational individual
never willingly chooses to invest for an expected loss, as
well as various other ideas, this paper has provided some
guidance in setting appropriate values of the drift parameter
for simulation runs.
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Predicted Daily Price  Mean Predicted Daily Price

20.33 FNFA
20.55854739 FNFA
20.5429171 FNFA
20.67550912 FNFA
20.59692875 FHFA
2047457323 FHFA
20.55106007 FFA
20.3392591 FFA
20.14255148 FFA
19.96937245 ANFA
20.02664406 ANFA
19.98244675 ANFA
0.0 860083 ANFA
20.0328%112 ANFA
19.94917823 ANFA
19.86827957 FNFA
19.91634883 FNFA
20.16298209 FHFA
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