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Abstract: The sales forecast is a prerequisite for the inventory decisions in the practical life. The right selection of the forecasting 

model to improve the inventory management can increase the customer service level and determine a better performance for the supply 

chain. The forecast performance should not only be evaluated by its standard error, but also its impact in the organization performance 

measures. The sales forecast should not be considered an individual function, but as an important part of supply chain management. By 

using simulation, managers are able to create a model of their supply chain systems and test various levels of input that can emulate 

real-life inconsistencies. We assume that we can model the supply chain as a network that each stage in the supply chain operates with a 

periodic review base-stock policy, that demand is bounded and that there is guaranteed service time between every stage and its 

customers. This study uses the analytic solver program in excel that does the randomization process on the variable demand. 
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1. Introduction 
 
Manufacturing firms are introducing new products at a 
higher frequency with increasingly shorter life cycles. For 
each new product, a firm must determine its supply chain 
and the associated operating policies to match supply to the 
demand to achieve the most revenue with the least cost. A 
major complication is that the demand process evolves over 
the product life cycle and is never stationary. 
 
The product life cycle of a new product typically consists of 
four phases: (i) a product-launch phase in which the product 
is introduced to the market; (ii) a demand-ramp phase over 
which the demand rate grows rapidly; (iii) a peak-demand 
phase during which the product sells at its maximum rate; 
and (iv) an end-of-life phase during which the product 
demand declines as it is removed from the market. 
 
The demand rate is never stationary because the product 
moves from one life-cycle phase to another. This research 
examines the problem of locating safety stocks in a supply 
chain in a way that accounts for uncertain, uncertainty 
demand processes. Given the inherent complexity of 
modeling uncertainty demand processes, we seek a 
pragmatic approach that requires approximations and 
compromises to get results that might apply in practice. We 
use the modeling framework from Graves and Willems 
(2000) (referenced as G-W) and introduce a uncertainty 
demand model. We show that the G-W safety stock 
placement optimization applies to this case of uncertainty 
demand. 
 
In the remainder of this section, we briefly discuss related 
literature. In §2, we present the key assumptions for 
modeling a supply chain and its uncertainty demand. In §3, 
we extend the G-W model to accommodate uncertainty 
demand. In §4, we examine a simple example to explore the 
near optimality of a constant service time (CST) policy. 
 
Related Literature. Relative to the stationary-demand 
inventory literature, there is much less work for uncertainty 
demand. We characterize this work by how the uncertainty 
demand is specified and whether the work focuses on 
optimization versus performance evaluation. Morton and 

Pentico (1995) and Bollapragada and Morton (1999) focus 
on setting inventory policies for a single stage facing a 
general uncertainty demand process with proportional 
holding and backorder costs. When the order cost is zero, a 
time-varying base-stock policy is optimal; for a nonzero 
order cost, a time-varying policy is optimal. This research 
develops computationally efficient upper and lower bounds 
on these optimal policies. For short life cycle products, the 
challenge of accurately forecasting demand can be as 
important as determining inventory policies. Kurawarwala 
and Matsuo (1996) develop an integrated framework for 
forecasting and inventory management of short lifecycle 
products. Their approach estimates the parameters for a 
seasonal trend growth model and uses this as an input to a 
finite-horizon stochastic inventory model with time-
dependent demands. 
 
Uncertainty demand has also been modeled as a Markov-
modulated Poisson demand process. One example is Chen 
and Song (2001), who show the optimality of echelon base-
stock policies with state dependent order-up-to levels for 
serial networks. A second example is Abhyankar and Graves 
(2001) who determine the optimal position of an inventory 
hedge in a two-stage serial supply chain that faces Markov 
modulated demand with two states. Within the bullwhip 
literature, several papers develop models for uncertainty 
demand.  
 
Papers generally assume that each stage follows an adaptive 
base-stock policy and then analyze the effect that different 
forecasting techniques and assumed demand distributions 
have on the inventory requirements at each stage. For 
instance, Lee et al. (1997) demonstrate that the adjustment of 
order-up-to levels at the retailer amplifies the variance of the 
order signal the retailer provides for the manufacturer. Two 
other examples are Graves (1999) and Chen et al. (2000).  
 
Finally, there is a growing body of work on designing supply 
chains to handle uncertainty demand. Beyer and Ward 
(2000) use simulation to accurately model the inventory 
requirements in a two-echelon supply chain that utilizes two 
modes of distribution and is subject to uncertainty demand. 
Johnson and Anderson (2000) investigate the benefits of 
postponement in supply chains that introduce multiple 
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products with short product life cycles. Ettl et al. (2000) 
minimize the total inventory in a multistage inventory 
system, where the key challenge is to approximate the 
replenishment lead times within the supply chain. To model 
uncertainty demand, they break the horizon into a set of 
stationary phases and adopt a rolling-horizon approach 
where the optimization is performed for each demand phase. 
 
2. Supply Chain Model 
 
In this section, we present the multistage model of a supply 
chain and the optimization problem for determining safety 
stocks. Graves and Willem (2008) show the model (D is 
maximum demand in interval time (s,t): 

𝑔𝑗  𝑠, 𝑡 = 𝐷𝑗  𝑠, 𝑡 −  𝜇𝑗  𝜏 𝑑𝜏. ……… . . (1)
𝑡

𝜏=𝑠

 

 
Inventory Model. The single-stage inventory model serves as 
the building block for modeling a multistage supply chain. 
We adapt the standard model of Kimball (1988) (see also 
Simpson 1958) to the case of uncertainty demand. 
 
We define the inbound service time SI, as the time for stage j 
to get supplies from its immediate suppliers. In each period t, 
stage j places an order equal to ϕijdj(t) on each upstream 
stage i for which ϕij>0. The time for all orders to be delivered 
to stage j dictates when stage j can commence production to 
replenish its demand. This inbound service time is 
constrained by the maximum outbound service time from the 
upstream suppliers, i.e, SIij ≥max(i,j)ϵA(Si). 
 
We assume we are given base stocks Bj(t) for each period 
t=1,2,…,H. For the stated assumptions, we can express the 
inventory at stage j at the end of period t as 

𝐼𝑗  𝑡 = 𝐵𝑗  𝑡 − 𝑑𝑗 (𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗 )          (2) 
𝑤𝑕𝑒𝑟𝑒 𝑑𝑗  𝑠, 𝑡 = 0 𝑓𝑜𝑟 𝑠 ≤ 𝑡 ≤ 0 𝑎𝑛𝑑 𝑑𝑗  𝑠, 𝑡 

= 𝑑𝑗  0, 𝑡 𝑓𝑜𝑟 𝑠 < 0 < 𝑡.  
 
We defined the net replenishment time for stage j to be its 
replenishment time, net the stage’s promised outbound 
service time, i.e., SIj+Tj-Sj. This net replenishment time 
determines the safety stock at stage j. We always set the 
outbound service times so that the net replenishment time is 
nonnegative. 
 
The explanation for Equation (2) follows that for the case 
stationary or certainty demand. There are three transactions 
in period t:stage j completes the replenishment of its demand 
from period t-SIj-Tj; stage j fills its demand from period t-Sj; 
and stage j receives an additional replenishment equal to 
∆Bj(t)=Bj(t)-Bj(t-1) so as to have the prescribed base-stock 
level. Hence, we can write an inventory balance equation: 

𝐼𝑗  𝑡 = 𝐼𝑗  𝑡 − 1 + 𝑑𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗  − 𝑑𝑗  𝑡 − 𝑆𝑗  

+ ∆𝐵𝑗  𝑡 ……… (3) 
 

We obtain (2) by applying (3) recursively and using the 
boundary condition Ij(0)=Bj(0). 
 
To derive Equation (2), we implicitly assume that we can 
always make the necessary adjustment ∆Bj(t) to the base-
stock level. This need not be the case when the base-stock 

level decreases and ∆Bj(t)<0; in effect, we need to assume 
that dj(t-SIj-T)+ ∆Bj(t)≥0 so that the replenishment in period 
t is nonnegative. We expect this will typically be the case, 
and we assume this to be true so as not to overly complicate 
the presentation. (We note that when dj(t-SIj-T)+ ∆Bj(t)< 0, 
then Equation (2) provides a lower bound on the actual 
inventory level.) 
 
Determination of Base Stock. For stage j to provide 100% 
service to its customers, we require that Ij(t) ≥ 0; we see from 
Equation (2) that this requirement equates to 

 
Because demand is bounded, we satisfy the above 
requirement with the least inventory by setting the base 

𝐵𝑗 (𝑡) ≥ 𝑑𝑗 (𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗 ) 
stock as 

𝐵𝑗  𝑡 = 𝐷𝑗 (𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗 )……..(4) 
 
Thus, the base-stock level in period t is the maximum 
possible demand over a time interval (t –SIj –Tj_,t –Sj) for 
which stage j filled its demand, but has yet to receive 
replenishments.  
 
Safety Stock Model. We use Equations (2) and (4) to 
find the expected inventory level E[Ij(t)]: 

𝐸[𝐼𝑗  𝑡 ] = 𝐷𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗   𝜇𝑗  𝜏 𝑑𝜏
𝑡

𝜏=𝑠

 

  = 𝑔𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗  .            (5) 
        
The expected inventory represents the safety stock held at 
stage j and depends on the net replenishment time and the 
demand bound. We observe that stage j holds no safety stock 
whenever the net replenishment time is zero, i.e., SIj+Tj-

Sj=0. 

 
The supply chain will also have a work-in-process or 
pipeline inventory. This inventory corresponds to the 
replenishment of customer demand plus the planned 
adjustments to the base-stock levels. If we fix the base-stock 
levels for the start and end of the planning horizon, then we 
can show that the work in process does not depend on the 
choice of service times, but only on the average demand 
rates and the lead times at each stage. Hence, in posing an 
optimization problem, we ignore work-in-process and only 
model safety stock. 
 
Multistage Model. To model the multistage system, we use 
Equation (5) for each stage where inbound service time is a 
function of the outbound service times for the upstream 
stages. We then formulate an optimization problem to find 
the optimal service times for the planning horizon: 

 

𝑃 𝑀𝑖𝑛  

𝐻

𝑡=1

 𝑕𝑗𝐸[(𝐼𝑡)]

𝑁

𝑗=1

=  

𝐻

𝑡=1

 𝑕𝑗𝑔𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗  

𝑁

𝑗=1

 

Subject to 
𝑆𝑗 − 𝑆𝐼𝑗 ≤ 𝑇𝑗  𝑓𝑜𝑟 𝑗 = 1, … , 𝑁 

𝑆𝐼𝑗 − 𝑆𝑗 ≥ 0 ∀  𝑖, 𝑗 ∈ 𝐴 
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𝑆𝑗 = 0∀ 𝑑𝑒𝑚𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠 𝑗 
𝑆𝑗 , 𝑆𝐼𝑗 ≥ 0𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑗 = 1, … , 𝑁 

 
where hj denotes the holding cost per unit per time period for 
inventory at stage j. The objective of problem P is to 
minimize the safety stock holding cost over the planning 
horizon. The constraints assure that the net replenishment 
times are nonnegative, that each stage’s inbound service time 
is no less than the maximum outbound service time quoted to 
the stage, and that the end-item stages satisfy their service 
guarantee.3  
 
We define the planning model to end in period H and do not 
explicitly include any costs beyond this horizon. For 
instance, if H represents the end of the life cycle for a 
product, there would be disposal costs for the supply chain 
inventory left over at the end of the horizon. We could 
include a disposal cost by restating P with time-dependent 
holding costs. 
 
To solve P, we first observe that we can rewrite the objective 
function as 

 

 

𝐻

𝑡=1

 𝑕𝑗𝑔𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗  

𝑁

𝑗=1

= 𝐻 ×  𝑕𝑗𝐺𝑗  𝑆𝑗 , 𝑆𝐼𝑗  

𝑁

𝑗=1

 

Where 𝐺𝑗  𝑆𝑗 , 𝑆𝐼𝑗  = 𝐻−1 ×  𝑔𝑗  𝑡 − 𝑆𝐼𝑗 − 𝑇𝑗 , 𝑡 − 𝑆𝑗  
𝑁
𝑡=1  

is the average safety stock at node j as a function of its 
inbound and outbound service times. Thus, P is equivalent to 

the safety stock optimization problem for stationary demand 
in G-W, but with its objective function expressed in terms of 
the average safety stock Gj(SIj,Sj) over the planning horizon 
H. Furthermore, 
 

Gj(SIj,Sj) is a concave function, given the assumption that the 
net demand bound gj(s,t)  is a concave function. As a 
consequence, we can solve P with the existing algorithms for 
stationary demand. G-W presents a dynamic programming 
algorithm for solving P for supply chains modeled as 
spanning trees; Humair and Willems (2006), Magnanti et al. 
(2006), and Lesnaia (2004) have each developed and tested 
algorithms for general acyclic networks. 
 
3. Simulation 
 
In this simulation, there is a simulation optimization model 
where the demand is uncertain. The key changes are: a) 
replacing the absolute demand numbers in C14:E16 with 
=PsiNormal distributions where needed (non-zero), b) 
changing the ending inventory constraints to chance 
constraints (since the inputs are uncertain), c) adding a 
=PsiMean function in H43 so we can see the average cost 
across the trial and also since this sets H42 as an output cell 
we can click on to see the range of outcomes, d) change our 
objective in the task pane (H42) from a normal objective to 
an expected objective since the result is now a distribution 
vs. a single value. 
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4. Conclusion 
 
In this study, it has been reviewed a model of placement 
safety stock in a supply chain (inventory) with conditional 
distributions. We can change the distribution of costs given 
that Demand is less than, equal to, or greater than Supply and 
then we observe these. 
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