Algorithm for a Modified Technique on Construction of Odd Magic Squares using Basic Latin Squares

Romen T.¹, Tomba I.², Shibiraj N³

¹Department of Computer Sciences, Manipur University, Imphal
²Department of Mathematics, Manipur University, Imphal
³Research Scholar, Department of Mathematics, Manipur University, Imphal

Abstract: The techniques for construction of odd-order normal magic square using basic Latin square, developed by Tomba (2012, 2013) have been studied further with a view to developing its suitable algorithm and program (MATLAB). Alternative techniques for construction of odd magic square using basic Latin square can also be generated applying single or double step/pass on basic Latin square construction that makes easier and suitable for computer application. The modified/improved technique draws the same result as observed by Tomba and satisfies the property of T, for all pair numbers in the Magic Square.

Keywords: Basic Latin square, normal magic square, Tomba’s constant (T), single and double pass/step for Basic Latin Square construction etc.

AMS classification No: A-05 and A-22

1. Introduction

Magic squares are practically important of the properties of equality in the sum of its rows, columns, diagonals. Latin squares and Greco-Latin squares are used in statistical research particularly in agricultural sciences and design of experiments whereas magic squares are used in puzzle games of cubes, pattern recognition and magic carpet constructions, magic square cipher in Cryptology etc.

A magic square of order n is an arrangement of integers in an (n x n) matrix such that the sums of all the elements in every row, column and along the two main diagonals are equal. A normal magic square contains the integers from 1 to n² and exists for all orders n ≥ 1 except n = 2. Magic squares are classified into three types; odd, doubly-even (divisible by 4) and singly-even (not divisible by 4). The magic sum of a (n x n) magic square is S = \(\frac{1}{2} n (n^2 + 1) \).

The idea of magic squares has been introduced in junior level as part of recreational mathematics without any suitable formula or method to demonstrate the construction of it. There exist different methods or techniques for construction of magic squares based on algebra, graphs, computer oriented techniques etc. but not suitable for introducing in secondary levels. Tomba (May, 2012) developed a simple technique for construction odd-order magic squares using basic Latin squares [10]. Again, Tomba (July, 2012) developed a technique for constructing even order magic squares using basic Latin Square and observed that the method can provide magic squares for any doubly-even n but, generates weak magic squares in many cases for any singly-even n [11]. A similar approach was developed to construct magic squares using basic Latin squares for any singly-even n [12]. The paper introduces the techniques or methods for constructing odd, doubly-even and singly-even magic squares using basic Latin Squares. In singly-even cases, weak magic squares can be generated as far as possible, depending upon the choice of the central block and assignment of the pair-numbers satisfying T in selective positions.

1.1 Latin squares & basic Latin Squares

In a Latin square, Latin letters are seen once in each row and in each column and therefore the sums of rows and columns are equal but diagonal sums are unequal.

A basic \((4 \times 4)\) Latin square can be represented with Latin letters A, B, C and D as:

\[
\begin{array}{cccc}
A & B & C & D \\
B & C & D & A \\
C & D & A & B \\
D & A & B & C
\end{array}
\]

where, \(\sum_{i} a_{ij} = \sum_{j} a_{ij} \) but

\[
\sum_{i} d_{ii} \neq \sum_{j} d_{j(n+1-j)} \text{ with diagonal notation } d_{ii} \text{[2]}
\]

1.2 Normal Magic Squares

A normal magic square contains the integers from 1 to n² and has the following properties

(a) Elements or numbers \((n \geq 1)\) are consecutive and not repeated

(b) Sums of the rows, columns and diagonals are equal to magic sum, \(S = \sum_{i} b_{i} = \sum_{j} c_{j} = \sum_{i,j} d_{ij} = \sum_{j} d_{j(n+1-j)}, i, j = 1, 2, \ldots , n \) [3]
1.3 Other Magic squares

There exists different (n x n) magic square not satisfying these properties. Examples of such magic squares, not satisfying the above properties are: magic squares (special or random, prime numbers etc.)

Examples:

(i) MS (special)

\[
\begin{array}{ccc}
1 & 4 & 7 \\
11 & 2 & 6 \\
8 & 10 & 5 \\
13 & 2 & 6
\end{array}
\]

(ii) MS (prime)

\[
\begin{array}{ccc}
17 & 39 & 71 \\
113 & 59 & 5 \\
47 & 29 & 101
\end{array}
\]

It satisfies:

\[\sum b_{ij} = \sum b_{ij} = \sum d_{n} = \sum d_{j(n+1-j)}\]

but these magic squares are not normal because in (i) The elements are repeated and non-consecutive and in (ii) the numbers (prime) are not repeated but non-consecutive.

1.4 Weak magic squares (normal)

A (n x n) array (with diagonal notation \(d_{ij}\)) satisfying the properties

(a) Elements \(n \geq 1\) are consecutive and not repeated

(b) Sums of diagonals are equal to \(S\)

\[S = \sum d_{n} = \sum d_{j(n+1-j)} \text{ for } i,j = 1,2,\ldots,n\]

(c) Sums of the rows, columns are equal to \(S\), except for some \(i\) and \(j\)

\[S = \sum b_{ij} = \sum b_{ij} \text{ for } i,j = 1,2,\ldots,n\]

(d) Equality or un-equality properties in rows, columns and diagonals remain unaltered for rotations and reflections.

1.5 Alternate Structures (M S)

Let \([a_{ij}]\) be a magic square satisfying the properties (a) to (c). The alternate structures of a magic square can be expressed (if the rotation is clockwise or ant clockwise as \([a_{ij}(k)]\) for \(k = \pm 1, \pm 2, \ldots \pm m\) where \(|a_{ij}| = a_{ij}(k)\) for all \(i = 0, 4, 8,\ldots\)

1.6 Matrix Representation (basic LS)

Let a (n x n) matrix be

\[
\begin{bmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn}
\end{bmatrix}
\]

The presentation of this matrix in Latin square format can be done in two forms;

Form 1:

\[
\begin{bmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
\alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn}
\end{bmatrix}
\]

Form 2:

\[
\begin{bmatrix}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\
\alpha_{22} & \alpha_{23} & \cdots & \alpha_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nn}
\end{bmatrix}
\]

A simplified method for representing a given matrix in basic Latin square format is expressed in two forms;

Given matrix

\[
\begin{bmatrix}
A & B & C \\
A & B & C \\
A & B & C
\end{bmatrix}
\]

Presentation in basic LS

Form-I

\[
\begin{bmatrix}
A & B & C \\
B & C & A \\
C & A & B
\end{bmatrix}
\]

Form-II

\[
\begin{bmatrix}
A & B & C \\
A & B & C \\
A & B & C
\end{bmatrix}
\]

2. Methodology

For constructing \((n x n)\) magic square \((n\text{ is odd})\) using basic Latin square

In this paper, techniques for construction of magic square using basic Latin square are considered. Theorem on construction of odd order magic squares is available in [10] whereas the theorems on construction of even-order magic squares (doubly even and singly even cases) are available in [11] and [12]. In singly-even cases, it may generate weak magic squares. The technique for construction of odd-magic squares using basic Latin square is described as follows:
2.1 For any odd \(n \), the construction process is expressed as follows:

Step-1: Represent the consecutive numbers 1 to \(n^2 \) in \(n \) rows and \(n \) columns. Find \(P = \frac{(1+n^2)}{2} \) and the magic sum, \(S = \frac{n(n^2+1)}{2} \).

Step-2: Arrange it in basic Latin square format (i) to give the column sums equal.

Step-3: Select the row associated with \(P \), assign this row as main diagonal elements (keeping the pivot element in the middle cell) in ascending or descending order and arrange other (column) elements in an orderly manner to give the desired magic square.

Alternatively

Step-1: Represent the consecutive numbers 1 to \(n^2 \) in \(n \) rows and \(n \) columns. Find \(P = \frac{(1+n^2)}{2} \) and the magic sum, \(S = \frac{n(n^2+1)}{2} \).

Step-2: Arrange it in basic Latin square format (ii) to give the row sums equal.

Step-3: Select the column associated with \(P \), assign this column as main diagonal elements (keeping the pivot element in the middle cell) in ascending or descending order and arrange other (row) elements in an orderly manner to give the desired magic square.

3. Examples (For any odd \(n \))

Example 1: (\(3 \times 3 \)) Magic square

S-1: Let the consecutive numbers (1 to 9) arranged in 3 rows and 3 columns,

Find \(P = \frac{(1+9^2)}{2} = 5 \) and \(S = \frac{9(9^2+1)}{2} = 15 \).

S-2: Arrange the matrix in basic Latin Square format (form-1). The arrangement gives the column totals equal.

S-3: Select the row associated with the pivot element, \(P = 13 \), assigning this row as main diagonal elements (fixing \(P \) in the middle) and arranging the other (column) elements in an orderly manner to get a new matrix representing the desired (\(3 \times 3 \)) magic square.

Example 2: (\(5 \times 5 \)) Magic Square

S-1: Let the consecutive numbers (1 to 25) in 5 rows and 5 columns be represented.

Here, \(P = \frac{(5^2+1)}{2} = 13 \) and \(S = \frac{5(5^2+1)}{2} = 65 \).

S-2: Arrange the matrix in basic Latin Square format: The arrangement gives the column totals equal.

S-3: Select the row associated with the pivot element, \(P = 13 \), assigning this row as main diagonal elements (fixing \(P \) in the middle) and arranging the other (column) elements in an orderly manner to get a new matrix representing the desired (\(5 \times 5 \)) magic square.

Example 3: (\(7 \times 7 \)) Magic Square

S-1: Let the consecutive numbers (1 to 9) arranged in 3 rows and 3 columns.

Find \(P = \frac{(1+9^2)}{2} = 5 \) and \(S = \frac{9(9^2+1)}{2} = 15 \).

S-2: Arrange the matrix in basic Latin Square format (form-2). The arrangement gives the row totals equal.

S-3: Select the column associated with the pivot element (say 1, 5, 9) and assign it as main diagonal elements (keeping 5 in the middle) in ascending/descending order. Rearrange the other (row) elements in an orderly manner to get a new matrix representing the desired (\(3 \times 3 \)) magic square.

Alternately

S-1: Let the consecutive numbers (1 to 9) arranged in 3 rows and 3 columns.
It satisfies \(\sum_{i} a_{ij} = \sum_{j} a_{ij} = \sum_{i} d_{ii} = \sum_{j} d_{j(n+1-j)} \)

where \(P = 25 \) and \(S = 175 \).
The same practice can be used for construction of magic squares of any odd-n (n > 3)

4. Modified Technique

The technique developed by Tomba (2012) can be modified slightly to give the desired magic square by changing Step-3 only as:

Step-3 (modified): Fixed the column (or row) associated with the Pivot element. Perform double pass /steps of Basic Latin square construction (form-II) with the remaining columns (or rows) and shift the fixed column (or row) in the middle gives the desired magic square.

Examples with modified method

Example-1: (3×3) Magic square
Step-1: Same as shown before
Step-2: Same as shown before

\[
\begin{array}{ccc}
1 & 2 & 3 \\
5 & 6 & 4 \\
9 & 7 & 8 \\
\end{array}
\]

Step-3 (modified): Fix the column associated with the pivot element (first column) and perform double pass for basic Latin square, shifting the columns \((n+1)/2\) on the left and assigning the first column as the middle column gives the desired magic square.

\[
\begin{array}{ccc}
1 & 6 & 8 \\
5 & 7 & 3 \\
9 & 2 & 4 \\
\end{array}
\]

Example-2: (5 × 5) Magic Square
Step-1: Same as shown above
Step-2: Same as shown earlier.

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
7 & 8 & 9 & 10 & 6 \\
13 & 14 & 15 & 11 & 12 \\
19 & 20 & 16 & 17 & 18 \\
23 & 21 & 22 & 23 & 24 \\
\end{array}
\]

Step-3 (modified): Fix the column associated with the pivot element (say 1, 5, 9) and perform double Latin square construction (form-II) for the first and second columns then shift the fixed column as middle column. It represents the desired (5×5) magic square satisfying T-26 for all pair numbers:

\[
\begin{array}{cccccc}
1 & 8 & 15 & 17 & 18 & 17 & 18 & 1 & 8 & 15 \\
7 & 14 & 16 & 23 & 24 & 23 & 24 & 7 & 14 & 16 \\
13 & 20 & 22 & 4 & 5 & 4 & 5 & 13 & 20 & 22 \\
19 & 21 & 3 & 10 & 6 & 10 & 6 & 19 & 21 & 3 \\
23 & 2 & 9 & 11 & 12 & 11 & 12 & 23 & 2 & 9 \\
\end{array}
\]

5. Advantages

The advantages of introducing single and double pass/step can be discussed in the following heads:

i) Easy to develop the algorithm
ii) More time saving
iii) Convenient for generalization

6. Algorithm

Program Coding (MATLAB)

% Initialization of input matrix with 1 to n^2
n=any odd number ≥3;
m=1;
for i=1:n
for j=1:n
a(i,j)=m;
m=m+1;
end
end

% Formation of basic Latin Square matrix
b=a;
for i=2:n
for j=i:n
l=i;
for k=1:n
b(i,k)=a(i,l);
l=l+1;
if l>n
l=1;
end
end
end

% shifting elements to left by i-1 position for each row
b=a;
for i=2:n
for j=1:n
a(i,j)=b(i,j);
end
end

Example-1: (3×3) Magic square
Step-1: Same as shown before
Step-2: Same as shown before
Step-3 (modified): Fix the column associated with the pivot element (first column) and perform double pass for basic Latin square, shifting the columns \((n+1)/2\) on the left and assigning the first column as the middle column gives the desired magic square.

\[
\begin{array}{ccc}
1 & 6 & 8 \\
5 & 7 & 3 \\
9 & 2 & 4 \\
\end{array}
\]

Example-2: (5 × 5) Magic Square
Step-1: Same as shown above
Step-2: Same as shown earlier.

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
7 & 8 & 9 & 10 & 6 \\
13 & 14 & 15 & 11 & 12 \\
19 & 20 & 16 & 17 & 18 \\
23 & 21 & 22 & 23 & 24 \\
\end{array}
\]

Step-3 (modified): Fix the column associated with the pivot element (say 1, 5, 9) and perform double Latin square construction (form-II) for the first and second columns then shift the fixed column as middle column. It represents the desired (5×5) magic square satisfying T-26 for all pair numbers:

\[
\begin{array}{cccccc}
1 & 8 & 15 & 17 & 18 & 17 & 18 & 1 & 8 & 15 \\
7 & 14 & 16 & 23 & 24 & 23 & 24 & 7 & 14 & 16 \\
13 & 20 & 22 & 4 & 5 & 4 & 5 & 13 & 20 & 22 \\
19 & 21 & 3 & 10 & 6 & 10 & 6 & 19 & 21 & 3 \\
23 & 2 & 9 & 11 & 12 & 11 & 12 & 23 & 2 & 9 \\
\end{array}
\]
7. Magic Squares

Generated with the program for n = 3, 5, 7, 9 and 13 (inputs and outputs):

$$\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array}$$

$$\begin{array}{ccc}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2 \\
\end{array}$$

$$\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 \\
\end{array}$$

$$\begin{array}{cccc}
21 & 22 & 23 & 24 \\
16 & 17 & 18 & 19 \\
20 & 21 & 22 & 23 \\
15 & 16 & 17 & 18 \\
\end{array}$$

(ii) More time can be saved with the double step Latin Square construction in lieu of selecting the row associated with the pivot element, assigning as main diagonal elements. Keeping P in the middle and arranging the other (column/row) elements in an orderly manner. In fact, arranging other elements in an orderly manner is complicated and many times may lead to difficult situations.

(iii) Convenient for further generalization: Consider {5x5} magic square. Different magic squares can be developed by selecting the pair numbers satisfying T=26

Volume 6 Issue 2, February 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
A

Time.

Disc. received the B.Sc. from Bangalore University, and MPhil in Mathematics from Christ University, Bangalore, and degrees in Mathematics from Banaras Hindu University, Varanasi. received Ph. D. degree in Mathematics from Manipur University in 1992. He is presently with Manipur University, Imphal as Professor in Mathematics.

(a) Consider the pair number (15, 11) and (17, 9) → taking column -2 and column-4 as column-1 and column-5 gives

15 8 1 24 17
16 14 7 5 23
22 20 13 6 4
3 21 19 12 10
9 2 25 18 11

(b) Consider the pair number (21, 5) and (14, 12) → taking row -2 and row-4 as row-1 and row-5 gives

16 14 7 5 23
15 8 1 24 17
22 20 13 6 4
9 2 23 18 11
3 21 19 12 10

The process can be continued selecting pair numbers satisfying \(T \) in different positions.

8. Conclusion

The modified technique for construction of magic squares using basic Latin Squares of any order \((n \geq 3, \ n \text{ is odd}) \) seems to be easier, suitable for developing algorithm and easy for extension. There exist different methods or techniques for construction of magic squares based on algebra, graphs etc. and many of these methods are not suitable for introducing in secondary school level.

References

Author Profile

Romen T. received the BSc (core in Computer Science) and MCA degrees from Manipur University, received Ph. D. degree in Information Technology from Assam University in 2015. He is presently with Manipur University, Imphal in Computer Science Department.

Tomba I. received the B.Sc (Hons) from Gauhati University, Guwahati and M.Sc. degrees from Banaras Hindu University, Varanasi. received Ph. D. degree in Mathematics from Manipur University in 1992. He is presently with Manipur University, Imphal as Professor in Mathematics.

Shibiraj N. received the B.Sc. from Bangalore University, Bangalore, M.Sc. degrees in Mathematics from Bangalore University, Bangalore, and MPhil in Mathematics from Christ University, Bangalore. He is presently with Manipur University as a research scholar in Mathematics.

Volume 6 Issue 2, February 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2017793

948