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Abstract: A university-level educational Virtual Lab that in order to detect the damping an oscillator is experimenting applies the 
technique of Logarithmic Damping Decrement has been created. After input parameters (mass, elastic constant and viscosity of the 
medium) are entered by the user of the simulation module, this displays the corresponding curve of displacement vs time, x(t), on 
computer screen. Next the module allows the user to manually click with the mouse on the peaks (or valleys) of the displayed curve and,
once the user has clicked 10 of these, the module computes the logarithmic decrement and from this, the experimental damping of the 
oscillator. The user may repeat this stage by clicking 10 valleys (or peaks) of the x(t) curve. With the aim on obtaining reference 
theoretical results, right after input data has been entered the module automatically detects the extreme displacements of the x(t) curve 
and it applies the logarithmic decrement algorithm to these data and from this the damping of the system is calculated. At the end of the 
simulation the virtual lab shows the theoretical as well as the experimental results so that the user can compare them. In this way, if the 
user has correctly clicked the extremes (peaks and/or valleys) of x(t), his experimental results –as it is expected- are verified as being 
very close to the expected result calculated by the virtual lab. 
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1. Introduction 

In a damped oscillating system [1], where the viscosity of the 
medium is not known, the Logarithmic Decrement may be 
used to experimentally find the damping the system is 
enduring [2]-[4], then from this damping the viscosity of the 
environment may be calculated. The logarithmic decrement 
is defined as the natural logarithm of the ratio of any two 
successive extreme displacements in a damped oscillation. 
Obviously these two maximum amplitudes  𝑥𝑛+1   𝑎𝑛𝑑    𝑥𝑛

are separated by a certain time t, so that: 

𝑥𝑛+1

𝑥𝑛
= 𝑒−𝜆𝑡,          𝑡 = 𝑡𝑛+1 − 𝑡𝑛

Where  𝜆 is a constant to be experimentally determined. 

The exponent is negative because in a damped system the 
amplitudes of the oscillations shrink. In the case with no 
damping, if the amplitudes of the oscillations would increase,
the exponent would be positive and, if the amplitudes were 
constant, the exponent would be zero. 

Figure 1: The oscillatory motion of the spring and the 
pendulum in the liquid is attenuated by the viscosity of the 

medium, whose viscosity constant is b and its damping force 
is Fd .The elastic force of the oscillating spring is Fe.

The equation above is valid provided the oscillations are 
uniform, this is, as long as the distance between orbit turns in 
State Space keeps constant. In Chaotic oscillators the 

displacements are far from being uniform and the State 
Space is literally chaotic, in the most common sense of the 
word [5], [6]. 

1.1 Damped oscillations 

Damped oscillations (see Fig. 1) are characterized by the fact 
that the amplitudes of oscillation tend to reduce as time goes 
by. Obviously, the higher the damping, the quicker the 
oscillations shrinkage. Depending on the relationship 
between the natural frequency of the oscillator and the 
applied damping, damped oscillations   are classified as 
Critical, Subcritical and Supercritical. In this paper the 
subcritical case is dealt with, this case is also known as that 
of underdamped oscillations. Figure 1 displays the most 
common models of oscillating systems preferred by 
physicists; these are the spring and the pendulum, and in this 
case both are immersed in liquid, which provides the 
viscosity the oscillators are experiencing. 

1.2 The differential equation of the underdamped 
oscillator 

From elementary university physics it is known that the 
differential equation of motion of a system oscillating in 
presence of a damping [1], [2] is 

𝑚
𝑑2𝑥⃑

𝑑𝑡2
= −𝑘𝑥⃑ − 𝑏𝑣⃑          (1)

The first term on the right side of equation (1) is the reacting 
force of the spring (Hooke’s Law) and the second term is the 
viscous damping, indicating that the faster the spring 
oscillates, the higher the resistance (minus sign) due to the 
viscosity b of the medium.  Since the velocity is the first 
temporal derivative of the displacement, the scalar version of 
equation (1) is written as

𝑑2𝑥

𝑑𝑡2
+

𝑏

𝑚

𝑑𝑥

𝑑𝑡
+

𝑘

𝑚
𝑥 = 0
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user has correctly clicked the extremes (peaks and/or valleys) of x(t), his experimental results –as it is expected- are verified as being 
very close to the expected result calculated by the virtual lab. 
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then from this damping the viscosity of the 

environment may be calculated. The logarithmic decrement 
is defined as the natural logarithm of the ratio of any two 
successive extreme displacements in a damped oscillation. 
Obviously these two maximum amplitudes  𝑥𝑛+1   𝑎𝑛𝑑    𝑥𝑛

are separated by a certain time t, so that: 

𝜆𝑡,          𝑡 = 𝑡𝑛+1 − 𝑡𝑛
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The exponent is negative because in a damped system the 
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Here, two coefficients are identified:  
𝜔𝑜

2 =  𝑘 𝑚⁄              𝐺 = 𝑏 2𝑚⁄        (2)

Where   𝜔𝑜is the natural frequency of the oscillator, this is 
the frequency of the free oscillator, and G is the damping,
which depends on the viscosity b of the medium. 

Figure 2: Top:  time evolution x(t) of the oscillation for a 
damped oscillator. Bottom: the corresponding State Space,
this is the 3D-plotting of displacement and velocity versus 
time.  It can be seen in both graphs that the amplitudes of 

oscillation decrease as time elapses, until finally they stop. 
Notice that the distance between turns in the state space orbit 
is constant, which means that the oscillations are uniform. In 

chaotic oscillations these turns are messy 

After inserting 𝜔𝑜  𝑎𝑛𝑑  𝐺   the differential equation becomes 
𝑑2𝑥

𝑑𝑡2
+ 2𝐺

𝑑𝑥

𝑑𝑡
+ 𝜔𝑜

2𝑥 = 0                     (3)

In the underdamped case:  𝜔𝑜 >  𝐺 .   

The solution of equation (3) is 

𝑥(𝑡) = 𝐴 𝑒−𝐺𝑡 𝑆𝑖𝑛( 𝜔𝑡 +  𝛼)                         (4)

After replacing eq. (4) in eq. (3) the following relationship 
between frequencies is obtained: 

   𝜔2 = 𝜔𝑜
2 − 𝐺2                                      (5)

where 𝜔 is the theoretical angular frequency of the damped 
oscillator, and T is the period of the damped oscillations.  As 
usual    𝑇 =  2𝜋 𝜔⁄ . From equation (4) the velocity is 

𝑣(𝑡) =
𝑑𝑥

𝑑𝑡
= 𝐴𝑒−𝐺𝑡[𝜔 𝐶𝑜𝑠(𝜔𝑡 + 𝛼) − 𝐺 𝑆𝑖𝑛(𝜔𝑡 + 𝛼)]

 𝑥(𝑡) 𝑎𝑛𝑑 𝑣(𝑡) are used to construct the state space of the 
oscillations. 

2. The Logarithmic Decrement

The logarithmic decrement [2]-[4] is based on the 
assumption that the shrinking in the maximum amplitude in 
an underdamped oscillation for any two successive 
oscillations, is given by 

𝑥𝑛+1

𝑥𝑛
=  𝑒−𝜆 𝑡                                            (6)

where it is assumed that the shrinking of the orbit in state 
space is constant. In this expression the values of 
𝑥𝑛   𝑎𝑛𝑑   𝑥𝑛+1    are the extreme displacements of any two 
successive oscillations, these are the peaks (or the valleys) in 
the x versus t plotting (see Figure 2) or the points where the 
(x, v) curve cuts the x-axis in the 2D version of the state 
space at angles 0 𝑎𝑛𝑑 𝜋  with the x-axis, respectively (see 
figure 3).   

From elementary oscillation physics, the elapsed time 
between any two successive displacement extremes is a 
period T, hence eq. (6) must be rewritten as 

𝑥𝑛+1

𝑥𝑛
=  𝑒−𝜆 𝑇

Then after applying logarithms to both sides:  

𝜆 =  −
1

𝑇
ln [

𝑥𝑛+1

𝑥𝑛
]                                 (7)

The period T in this equation is the period of the damped 
oscillations  𝑇 = 2𝜋 𝜔.⁄ The value of 𝜆  in eq. (7) is 
obtained experimentally by averaging many cases of eq.(7).  

On the other hand, applying eq.(4) to two successive 
amplitude peaks (separated in time by a period T): 

{
𝑥𝑛 = 𝐴 𝑒− 𝐺 𝑡 𝑆𝑖𝑛( 𝜔𝑡 +  𝛼)                              (8) 

𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛( 𝜔(𝑡 + 𝑇) +  𝛼)      (9)

From eq. (9):  
𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛( 𝜔𝑡 + 𝛼 +  𝜔𝑇)

but 𝜔 = 2𝜋𝑓 =  2𝜋 𝑇⁄ ,        then: 
𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛( 𝜔𝑡 + 𝛼 +  2𝜋)

𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛( 𝜔𝑡 + 𝛼 )             (10)

In this way from (8) and (10): 

𝑥𝑛+1

𝑥𝑛
= 𝑒− 𝐺 𝑇

and taking logarithms to both sides of this equation:  

𝐺 =  −
1

𝑇
ln [

𝑥𝑛+1

𝑥𝑛

]               (11)
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Top:  time evolution x(t) of the oscillation for a 
damped oscillator. Bottom: the corresponding State Space,
this is the 3D-plotting of displacement and velocity versus 
time.  It can be seen in both graphs that the amplitudes of 

oscillation decrease as time elapses, until finally they stop. 
Notice that the distance between turns in the state space orbit 

which means that the oscillations are uniform. In 
chaotic oscillations these turns are messy 

  𝐺   the differential equation becomes 

+ 2𝐺
𝑑𝑥

𝑑𝑡
+ 𝜔𝑜

2𝑥 = 0                     (3)

In the underdamped case:  𝜔𝑜 >  𝐺 .   

The solution of equation (3) is 

From elementary oscillation physics
between any two successive displacement extremes is a 
period T, hence eq. (6) must be rewritten as 

𝑥𝑛+1

𝑥𝑛
=  𝑒−𝜆 𝑇

Then after applying logarithms to both sides:  

𝜆 =  −
1

𝑇
ln [

𝑥

The period T in this equation is the period of the damped 
oscillations  𝑇 = 2𝜋 𝜔.⁄𝑇 = 2𝜋 𝜔.⁄𝑇 = 2𝜋 𝜔. The value of 
obtained experimentally by averaging many cases of eq.(7).  

On the other hand, applying eq.(4) to two successive 
amplitude peaks (separated in time by a period T): 

{
𝑥𝑛 = 𝐴 𝑒− 𝐺 𝑡 𝑆𝑖𝑛( 𝜔𝑡

𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛

From eq. (9):  
𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛

but 𝜔 = 2𝜋𝑓 =  2𝜋 𝑇⁄=  2𝜋 𝑇⁄=  2𝜋 𝑇,        then: 
𝑥𝑛+1 = 𝐴 𝑒− 𝐺( 𝑡+𝑇) 𝑆𝑖𝑛
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Figure 3: Projection of the (x, v, t) points of the 3D State 
Space over the XV-plane, for a damped oscillator. This is a 
2D version of the State Space. In this research the values of 
extreme displacements, this is, the points intersecting the x-

axis in this plotting are used to feed eq. (6).  The peaks of the 
displacement are the intersections of the curve with the x-

axis at 0o and the valleys are those at 180o.

From equations (11), (7) and (5):    

𝜆 = 𝐺 =  √𝜔𝑜
2 − 𝜔2                               (12)

In Chaos Theory [5], [6] the computational detection of 
peaks and valleys, this is, the extremes of the x(t) curve, used 
in this experiment is tantamount to extracting the Poincaré 
Maps at 0° and at 180° respectively (see figure 4). Chaos 
theory does not work precisely with the logarithmic 
decrement, but the algorithm to extract the Poincaré Map is 
similar to that used in the present work to extract the 
oscillation extremes.  Hence for someone who has developed 
the computer programs to extract the Poincaré Map in a 
chaotic system, the logarithmic decrement is not so 
unfamiliar [7]-[9]. 

3. Some Reported Applications of the 
Logarithmic Decrement 

Magalas [10], [11] reports the creation of a new algorithm to 
compute the logarithmic decrement with high precision. 
Magalas introduces the Optimization in Multiple Intervals 
algorithm (OMI), which is recommended for measurements 
when the damping is rather high. 

Butterworth et al [12] present an application of the 
logarithmic decrement in civil engineering, specifically to 
assess the dynamic response of structures (buildings) to 
vibrations due to earthquakes. 

Montenegro Joo [13] reported the creation of a Virtual Lab,
which after generating the curve of displacement versus time 
x(t) based on user data, makes an automatic analysis of the 
curve to detect its frequency and, from this the damping the 
oscillator is experiencing.  

Figure 4: The Poincaré Plane P, may be seen as a 
tomographic cut along time in the 3D State Space.  This 

plane P, is defined at some angle with the x-axis. The 
Poincaré Map is the set of all the intersections of the (x, v, t) 
curve with the plane P, at a predefined angle. It can be seen 
in this sketch that the peaks and valleys of the x(t) curve are 

those tomographic cuts at  0o and at 180o, respectively. 

The virtual lab reported in the present paper is an improved 
and more advanced version of its predecessor [13] because 
now the module operates additionally on data supplied by the 
user by clicking on computer screen on the extremes of the 
x(t) curve. The module extracts information from these 
clicks to calculate the oscillation frequency and from this, the
damping the oscillator is undergoing.  Obviously this new 
version of the Virtual Lab fosters learning by intense 
interaction of its user with the computer simulation. 

Figure5:    Plotting of displacements versus time x(t) for the 
damped oscillator. This plotting has been generated by the 
Virtual Lab being reported. Peaks and valleys have been 
highlighted (black dots on the curve) after automatically 

extracting the Poincaré Maps at 0o and at 180o,
respectively. 

4. Executing the Experiment 

The virtual lab being reported operates in two stages,
automatic and manual, in the former stage –which the user is 
not aware of- theoretical results based on automatic detection 
of the extremes of x(t) are generated, while the latter stage is 
based on the user’s interaction with the computer and 
generates experimental results. At the end of every 
simulation the user is enabled to compare theoretical with 
experimental results. 

At the very beginning of an experiment, the virtual lab 
receives as input data the mass m of the oscillator, its elastic 
constant k as well as the damping b of the medium.  
Additionally the module reads the maximum amplitude “A” 
of the oscillations as well as the initial phase 𝛼. Also the 
time-steps of the simulation may be entered as part of the 
input data. In order to facilitate the input of user data, these 
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(7) and (5):    

𝜆 = 𝐺 =  √𝜔𝑜
2 − 𝜔2                               (12)
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are entered by means of scrollbars. The automatic process 
performed by the reported virtual lab may be appreciated in 
the flowchart in figure 6. 

The maximum amplitude of oscillation, the initial phase and 
the time-steps are included so that the user of the virtual lab 
is enabled to appreciate the effects of changing   them,
entering these data is not expressly fundamental for 
execution of the virtual experiment, because they have been 
included by default, however, larger values of “A” generate 
larger amplitudes of oscillation, and these are easier to 
visualize when displayed on computer screen. 

Figure 6: Flowchart of the automatic process performed by 
the Virtual Lab 

Once the input data is entered the module automatically 
computes from eqs.(2) the theoretical angular frequency  𝜔𝑜

of the free oscillator and the theoretical damping G of the 
medium. Additionally from eq. (5) the theoretical value of 
the angular frequency of the damped oscillations   𝜔   is 
computed, as well as the period T of the damped oscillations. 

Next the simulation of eq. (4) is executed during enough 
time for the oscillations to vanish. Notice that this is not 
indispensable at all, it would be enough running the 
experiment during a time equivalent to a few periods so that 
some values of  𝑥𝑛 are available to evaluate eq. (7). 

Once the simulation starts, the curve of displacements versus 
time x(t) as well as the state space are both simultaneously 
depicted on computer screen, as time elapses (see figures 3  
and 5), and the maximum displacements (peaks and valleys) 

are automatically detected by extracting Poincaré maps at  
0𝑜 𝑎𝑛𝑑 𝑎𝑡 180𝑜,  respectively. Then equation (7) is 
evaluated for every two successive maximum amplitudes of 
oscillation andthe average   𝜆   is calculated and used together 
with eq. (12) to obtain the experimental value of the damping 
G of the system and the frequency  𝜔 of the damped 
oscillations. 

The virtual lab automatically detects all the peaks and 
valleys in the curve of displacement vs time, x(t), however 
only a few peaks or valleys are necessary to this experiment; 
this may be appreciated next in the second stage of the 
experiment.  

Figure 7: Screenshot of the logarithmic-decrement Virtual 
Lab. Besides the plotting of displacement vs time x(t), the 

module shows a 2D projection of the State Space and a 
Return Map.  The numbered (from 1 to 10) peaks and valleys 
on the x(t) curve are those mouse-clicked by the user of the 

virtual lab. 

In the manual stage, the module allows the user to identify 
with the naked eye 10 extremes (peaks) of the displacement 
vs. time -x(t)-curve displayed on screen. Right after the user 
clicks them with the mouse, the module computes the 
average logarithmic decrement 𝜆 and from this, the damping 
G the oscillator is subject to as well as the angular frequency 
𝜔 of the damped oscillations. Usually these resulting data 
are close to their theoretical values calculated right at the 
start of the experiment. Next the user may click the valleys 
of the x(t) curve and obtain similar results.  Once the user 
clicks on computer screen 10 peaks (valleys) of x(t) and the 
computer reports the corresponding experimental data, she 
can additionally click 10 valleys (peaks) and, another set of 
experimental data are calculated.  

A final checking verifies that the experimental values of G 
and 𝜔  are very close (if not equal) to their theoretical values. 

4.1 The Map of Return 

The virtual lab displays also the Map of Return for each 
experiment, which is the plotting of extreme displacements 
x(n+1) vsx(n).In this plotting the user may see that in the 
damped oscillations this graph is a rather simple set of 
aligned dots going towards the origin.It is instructive to 
compare this plotting with the return map of a chaotic 
oscillator; it results evident that in the latter case the plotting 
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virtual lab. 

In the manual stage, the module allows the user to identify 
with the naked eye 10 extremes (peaks) of the displacement 
vs. time -x(t)-curve displayed on screen. Right after the user 
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is not so easy to comprehend [14].Many times the return map 
of a chaotic oscillator seems to have the self-similarity 
typical of fractal structures (see figure 9). 

Figure 8: Simulation report generated by the virtual lab 
during an experiment. Right after input data are entered by 
the user, theoretical results are obtained. Then the module 

automatically detects the oscillation extremes and it 
calculates the logarithm decrement and from this, the 

damping of the system. Finally after the user clicks with the 
mouse the extremes of the x(t) curve, the value of the 

damping is calculated. In this way the user can easily and 
quickly compare theoretical and experimental computations.

5. Demonstrative execution of the Virtual Lab 

In figure 8, a typical report generated by the simulator during 
an experiment is displayed. In this case the module has been 
fed with random input data.     It may be seen that once input 
data are entered, theoretical results are computed. Then the 
module automatically detects the oscillation extremes and 
computes the logarithm decrement and from this, the
damping of the system. In the manual part the user clicks 
with the mouse the extremes of the displacement curve and 
the value of the damping is obtained.  

It can be seen that the experimental value of the damping G 
is in agreement with its theoretically calculated value. 

6. Random input data 

In order to enhance the performance of the virtual lab, this is 
enabled with the option of feeding it with random input data. 
In this way the user has to run the experiment and verify the 
results corresponding to data which are not his own. This 

random option avoids experimenting with any biased or 
subjective input data. 

Random input data implies experimenting in a short time 
with a very large number of input-data combinations, which 
is rewarding to the user of the virtual lab, because she feels 
that the computer really makes it easy.  

Figure 9: Maps of Return, the plotting of oscillation 
extremes xn+1  vs  xn (a) For the damped oscillator reported 

in this paper (b) For a chaotic oscillator, namely the 
nonlinear damped and forced oscillator. In the first case the 

aligned dots go towards the origin, because due to the 
damping the oscillation amplitudes continuously decrease. In 
the second case the plotting is rather complex and seems to 
be self-similar (fractal structure).The map of return in (a) 
includes only a few dots, while that in (b) includes several 

thousand dots. 

7. The Advantage of Virtual experiments

The Logarithmic decrement module described in this paper is 
a good example of interactive learning via virtual 
experiments based on computer simulation. 

In real life an experiment dealing with the logarithmic 
decrement would require a conventional laboratory with 
either a pendulum or a spring immersed in a liquid (see 
Fig.(1)), and enabled with the ability of changing the 
viscosity of the medium, which would require liquids of 
different densities. Obviously all this would be tedious, time 
demanding and limited to just a few viscosities.  Additionally 
a traditional lab would require personnel to clean and to 
prepare the experiment room and to manage the equipment 
before and after the experiment. 

8. Conclusions 

A virtual lab to execute experiments dealing with the 
Logarithmic Decrement of the oscillation amplitudes for an 
underdamped oscillator has been developed. Giving the mass 
of the oscillator as well as its elastic constant and the 
viscosity of the medium, as input data, the developed module 
experimentally finds the damping of the oscillator by means 
of the logarithmic decrement method. 

Paper ID: ART2017747 DOI: 10.21275/ART2017747 1225

Simulation report generated by the virtual lab 
during an experiment. Right after input data are entered by 

theoretical results are obtained. Then the module 
automatically detects the oscillation extremes and it 

calculates the logarithm decrement and from this, the 
damping of the system. Finally after the user clicks with the 

mouse the extremes of the x(t) curve, the value of the 
damping is calculated. In this way the user can easily and 

quickly compare theoretical and experimental computations.

Demonstrative execution of the Virtual Lab 

typical report generated by the simulator during 
an experiment is displayed. In this case the module has been 

Figure 9: Maps of Return, the plotting of oscillation 
extremes xn+1  vs  xn (a) For the damped oscillator reported 

in this paper (b) For a chaotic oscillator
nonlinear damped and forced oscillator. In the first case the 

aligned dots go towards the origin
damping the oscillation amplitudes continuously decrease. In 
the second case the plotting is rather complex and seems to 
be self-similar (fractal structure).The map of return in (a) 
includes only a few dots, while that in (b) includes several 

thousand dots. 

7. The Advantage of Virtual experiments

The Logarithmic decrement module described in this paper is 
a good example of interactive learning via virtual 
experiments based on computer simulation. 

In real life an experiment dealing with the logarithmic 
decrement would require a conventional laboratory with 
either a pendulum or a spring immersed in a liquid (see 
Fig.(1)) and enabled with the ability of changing the 
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The simulation-based Virtual Lab reported in this paper 
sheds light on the fact that in real life situations, the damping 
of the oscillator and the viscosity of the medium in which the 
oscillator is vibrating, may be found by measuring a few 
successive extremes of the oscillation amplitudes and using 
the logarithm decrement, with no need of using computers.  

The reported virtual module has been incorporated into the 
Physics Virtual Lab (PVL) [15], created some time ago by 
this author and which is a collection of university-level 
intuitively-easy-to-use physics simulators, in this way the 
PVL is continuously improved. 
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