
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Rank and Classification of Bug Reports and Feature
Evaluation Using SVM
Gomathi S1, Swathini K2, Suvetha M3, Deepa M4

1Assistant Professor, Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore

2, 3, 4 UG Scholor, Department of Computer Science and Engineering, Sri Krishna College of Technology, Coimbatore

Abstract: When a new bug report is received, developers usually need to procreate the bug and perform code reviews to find the
origination, this process can be tedious and time consuming. A instrument for ranking all the source files with regards to how likely they
are to contain the cause of the bug would enable developers to narrow down their search and better result. This paper introduce an
adaptive ranking approach that leverages project acquaintance through functional decomposition of source code, API metaphors of
library components, the bug-fixing record, the code change record, and the file dependency graph. Given a bug report, the ranking
evaluation of each source file is computed as a weighted collection of an array of feature film, where the weights are trained
mechanically on previously resolved bug reports using a learning-to-rank technique. We estimate the ranking system on six large scale
open source Java projects, using the earlier-fix version of the project for every bug report. The explore results show the Support Vector
Machine approach that outperforms in defect prediction.

Keywords: SVM, Bug Localization, Ranking, Information Retrieval

1. Introduction

Software is more than just a program code. A program is an
executable code, which suffice some computational reason.
Software is measured to be collection of executable
programming code, related libraries and documentations.
Software, when made for a particular necessity is called
software product. A software bug is a coding mistake that
may cause an unplanned or unexpected action of the
software component. Upon discovering an uneven manners
of the software project, document will be reported by
developer or user, called a bug report. A bug report supply
information that could help in repair a bug, with the overall
aim of improving the software quality. A ample number of
bug reports could be opened during the development life-
cycle of a software product. In a software team, bug reports
are extensively used by both managers and developers in
their daily development process.

A developer who is appointed a bug report usually needs to
reproduce the irregular behavior and perform code reviews
in order to find the cause. However, the variety and uneven
quality of bug reports can make this process nontrivial.
Essential information is often missing from a bug report. If
the bug report is understand as a query and the source code
files in the software repository are viewed as a group of
documents, then the problem of discovering source files that
are relevant for a given bug report can be formed as a
standard task in information retrieval (IR).

2. Literature Review

Locating bugs is essential, hard, and high-priced,
particularly for large-scale environments. To address this,
natural language information retrieval techniques are
increasingly being used to propose potential faulty source
files given bug reports. Our key insight is that structured
information retrieval based on code constructs like class and
method names, enables more surgical bug localization. We

present BLUiR (Bug Localization Using information
Retrieval), which embodies this insight, requires only the
source code and bug reports, and takes benefit of bug
similarity data if available.

Developers often learn to use APIs (Application
Programming Interfaces) by focusing at existent examples of
API usage. Code repositories contains instances of such
usage of APIs. Nevertheless, usual information retrieval
techniques fail to do well in retrieving API usage examples
from code repositories. This paper presents SSI(Structural
Semantic Indexing), which is a technique to associate words
to source code entities based on sameness of API usage. The
formula following this technique is that entities (classes,
methods, etc.) that show parallel uses of APIs are
semantically related because they do similar things.

3. Mapping Bug Reports to Relevant Files

We posture to approach it as a ranking problem, in which the
source files are ranked with respect to their relevance to a
given bug report. Here, relevance is equated with the
likeliness that a particular source file contains the basis of
the bug represented in the bug report. The ranking task is
defined as a weighted combination of features, where the
features depict to a great extent on knowledge specific to the
software engineering domain in order to assess relevant
relation among the bug reports and the source code files.
While a bug report may share textual tokens with its relevant
source files, in generic there is a significant inherent
counterpart between the natural language hired in the bug
report and the programming language used in the code. We
initiate a learning-to-rank approach that emulates the bug
finding process employed by developers. The ranking model
qualify useful relationships between a bug report and source
code files by leveraging domain acquaintance, such as API
specifications, the syntactic structure of code, or issue
tracking data The adaptive ranking approach is commonly
applicable to software projects for which there exists a

Paper ID: ART2017697 1288

open source Java projects, using the earlier-fix version of the project for every bug report. The explore results show the Support Vector of the project for every bug report. The explore results show the Support Vector of
achine approach that outperforms in defect prediction.

SVM, Bug Localization, Ranking, Information Retrieval

 more than just a program code. A program is an
executable code, which suffice some computational reason.

to be collection of executable of executable of
programming code, related libraries and documentations.
Software, when made for a particular necessity is called
software product. A software bug is a coding mistake that

 unplanned or unexpected action or unexpected action or of the of the of
software component. Upon discovering an uneven manners an uneven manners an

 the software project, document will be reported by
 user, called a bug report. A bug report supply

information that could help in repair a bug, with the overall
 improving the software quality. A ample number of

 opened during the development life-
 a software product. In a software team, In a software team, In bug reports

 both managers and developers in
their daily development process.

 appointed a bug report usually needs to
reproduce the irregular behavior and perform code reviews

 find the cause. However, the variety and uneven

present BLUiR (Bug Localization Using information
Retrieval), which embodies this insight, requires only the
source code and bug reports, and takes benefit
similarity data if available. if available. if

Developers often learn to use APIs (Application
Programming Interfaces) by focusing
API usage. Code repositories contains instances
usage of APIs. Nevertheless, usual information retrieval of APIs. Nevertheless, usual information retrieval of
techniques fail to do well in retrieving API usage examples
from code repositories. This paper presents SSI(Structural
Semantic Indexing), which is a technique
to source code entities based on sameness on sameness on
formula following this technique
methods, etc.) that show parallel uses
semantically related because they

3. Mapping Bug Reports to

We posture to approach it as a ranking problem,
source files are ranked with respect
given bug report. Here, relevance

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

adequate amount of project specific knowledge, such as a
comprehensive API documentation and an initial number of
previously fixed bug reports. To determine a bug, developers
use not only the content of the bug report but also domain
knowledge relevant to the software project. Furthermore, the
proposed ranking model exceed three recent state-of-the-art
approaches. Feature selection experiments employing greedy
backward feature eliminations, it shows that all features are
useful. When united with runtime analysis, the feature
selection results can be utilized to pick a subset of features
in order to conquer a target trade-off between system
accuracy and runtime complexity. Furthermore, the ranking
performance can benefit from instructive bug reports and
well documented code major to a better lexical similarity,
and from source code files that already have a bug-fixing
history. Correspondence the bugs to the relevant files is a
paper based documents, it did not have the clear idea about
the bug. This system uses only less ranking models. It
consumes large amount of time for reproduce the problem.

4. Support Vector Machine (SVM)

In machine learning, support vector machines (SVMs, also
support vector networks[4]) are supervised learning models
with associated learning algorithms that analyze data used
for classification and regression investigation. Given a set of
training examples, each noticeable as belonging to one or the
other of two categories, an Support Vector Machine training
algorithm constructs a model that allocates new examples to
one collection or the other, building it a non-probabilistic
binary linear classifier. An SVM model is a sign of the
examples as points in space, plotted so that the examples of
the separate collection are divided by a clear gap that is as
wide as possible.In our work, we will leveraging further
types of domain knowledge, such as the stack traces
submitted with bug reports and the file change history, as
well as features previously used in fault prediction systems.
We also plan to use the ranking SVM with nonlinear kernels
and further measure the approach on projects in other
programming languages. Using Support Vector Machine
algorithm we can easily find out the bug and it can be
quickly employed by the developers. This system uses more
ranking methods and it takes less time for processing.

When data are not labeled, supervised learning is not
probable, and an unsupervised learning approach is required,
which attempts to find earthy clustering of the data to
groups, and then plot new data to these groups. The
clustering algorithm provides an betterment to the SVM is
recognized as support vector clustering[2] and is repeatedly
used in industrial applications either when data are not
labeled or when only some data are labeled as a
preprocessing for a classification pass.

4.1 Preprocessing

The first step towards managing and inspect textual data
formats in general is to consider the text based information
available in free formatted text documents or text. Initially
the pre-processing is done by the following process.
Removing Stop words and Stem words[3].The first step is to
remove the un-necessary information available in the
sentence of stop words. These include few verbs,

conjunctions, disjunctions and pronouns, etc. (e.g. is, am,
the, of, an, we, our) and Stemming words e.g. ‘deliver’,
‘delivering’ and ‘delivered’ are stemmed to ‘deliver’.

4.2 Collaborative Filtering

In collaborative filtering process, if previously fixed bug
reports are textually similar with the current bug report, then
the files that have been associated with the similar reports
may also be relevant for the current report[6]. It has been
observed in that a file that has been fixed before may be
responsible for similar bugs.The feature computes the
textual similarity between the text of the current bug report
and the summaries of all the bug reports there is not much
historical information that can be used for computing
features that are based on collaborative filtering or the file
revisal history. In particular, there is fewer possibility for
exploiting duplicated bug reports.

4.3 Bug Report Analysis

In general there are seven types of bugs are accessible,
Functionality Errors, Communication Errors, Missing
command errors, Syntactic Error, Error handling errors,
Calculation Errors and Control flow errors. The bug reports
can be analyzed for which kind of bugs[5].

4.4 Ranking

The resultant ranking function is a linear collection of
features, whose weights are automatically trained on
previously solved bug reports using a learning-to-rank
technique[8]. The ranking approach to the problem of
mapping source files to bug reports that enables the
unseamed integration of a wide diversity of features;
exploiting before fixed bug reports as training examples for
the planned ranking model in conjunction with a learning-to-
rank technique.

4.5 Classification Result

In this classification, the bug reports has been analyzed and
classified into which categories[4]. The model of the
training task as a classification in which bug reports and files
are assigned to multiple topics, we directly train our
framework for ranking, which we believe is a better match
for the way the model is used.

Figure 1: Bug Reports(Dataset)

Paper ID: ART2017697 1289

Machine (SVM)

machine learning, support vector machines (SVMs, also
support vector networks[4]) are supervised learning models
with associated learning algorithms that analyze data used
for classification and regression investigation. Given a set of

 noticeable as belonging to one or the or the or
an Support Vector Machine training an Support Vector Machine training an

algorithm constructs a model that allocates new examples to
 the other, building it a non-probabilistic it a non-probabilistic it

An SVM model An SVM model An is a sign of the of the of
 space, plotted so that the examples of

the separate collection are divided by a clear gap that by a clear gap that by is as
 possible.In our work, we will leveraging further
 domain knowledge, such as the stack traces

 reports and the file change history, as
 features previously used in fault prediction systems. in fault prediction systems. in

 use the ranking SVM with nonlinear kernels
and further measure the approach on projects on projects on in other in other in
programming languages. Using Support Vector Machine

 can easily find out the bug and it can be
 the developers. This system uses more

 takes less time for processing.

hen data are not labeled, supervised learning is not

4.3 Bug Report Analysis

In general there are seven types In general there are seven types In
Functionality Errors, Communication Errors, Missing
command errors, Syntactic Error, Error handling errors,
Calculation Errors and Control flow errors. The bug reports
can be analyzed for which kind of

4.4 Ranking

The resultant ranking function
features, whose weights are automatically trained
previously solved bug reports using a learning-
technique[8]. The ranking approach
mapping source files to bug reports that enables the
unseamed integration of a wide diversity of a wide diversity of
exploiting before fixed bug reports
the planned ranking model in conjunction with a learning-
rank technique.

4.5 Classification Result

In this classification, the In this classification, the In bug reports has been analyzed and
classified into which categories[4]. The model
training task as a classification in which bug reports and files in which bug reports and files in
are assigned to multiple topics,

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Preprocessing

Figure 3:Stop words removal

Figure 4: Calculating Term Frequency

Figure 5: Calculating IDF

5. Conclusion

To find out a bug, developers use not only the content of the
bug report but also field knowledge applicable to the
software project. We introduce a learning-to-rank approach
that emulates the bug discovering process affianced by
developers. The ranking model qualify useful relationships
between a bug report and source code files by leveraging
field knowledge, such as API description, the syntactic
artifact of code, or issue tracking data. Experimental
measure on six Java projects show that our approach can
find out the relevant files within the top 10
recommendations for over 70 percentage of the bug reports
in Eclipse Platform and Tomcat. Moreover, the proposed
ranking model outperforms three recent state-of-the-art
approaches. Feature valuation research employing greedy
backward feature elimination demonstrate that all properties
are useful. When coupled with runtime analysis, the feature
valuation results can be utilized to select a subset of
properties in order to achieve a target trade-off between
system accuracy and runtime complexity.

Reference

[1] Y. Brun and M. D. Ernst, “Finding latent code errors via
machine learning over program executions,” in Proc.
26th Int. Conf. Softw. Eng., Washington, DC, USA,
2004, pp. 480–490.

[2] B. Dit, A. Holtzhauer, D. Poshyvanyk, and H. Kagdi, “A
dataset from change history to support evaluation of
software maintenance tasks,” in Proc. 10th Working
Conf. Mining Softw. Repositories, Piscataway, NJ, USA,
2013 pp. 131–134.

[3] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Mining source code to automatically split identifiers for
software analysis,” in Proc. 6th IEEE Int. Working Conf.
Mining Softw. Repositories, Washington, DC, USA,
2009, pp. 71–80.

[4] T. Joachims, “Training linear SVMs in linear time,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, 2006 pp. 217–226.

[5] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying
software changes: Clean or Buggy?” IEEE Trans. Softw.
Eng., vol. 34, no. 2, pp. 181–196, Mar. 2008.

[6] S. Rao and A. Kak, “Retrieval from software libraries for
bug localization: A comparative study of generic and
composite text models,” in Proc. 8th Working Conf.
Mining Softw. Repositories, New York, NY, USA, 2011,
pp. 43–52.

[7] R. Saha, M. Lease, S. Khurshid, and D. Perry,
“Improving bug localization using structured information
retrieval,” in Proc. IEEE/ ACM 28th Int. Conf. Autom.
Softw. Eng., Nov. 2013, pp. 345–355.

[8] X. Ye, R. Bunescu, and C. Liu, “Learning to rank
relevant files for bug reports using domain knowledge,”
in Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw.
Eng., New York, NY, USA, 2014, pp. 689–699.

Paper ID: ART2017697 1290

Figure 3:Stop words removal

properties in order in order in to achieve a target trade-off between
system accuracy and runtime complexity.

Reference

[1] Y. Brun and M. D. Ernst, “Finding

machine learning over program
26th Int. Conf. Softw. Eng., Washington, DC, USA,
2004, pp. 480–490.

[2] B. Dit, A. Holtzhauer, D. Poshyvanyk, and
dataset from change history
software maintenance tasks,”

Conf. Mining Softw. Repositories, Piscataway, NJ, USA,
2013 pp. 131–134.

[3] E. Enslen, E. Hill, L. Pollock, and
“Mining source code to automatically split
software analysis,” in Proc. 6th in Proc. 6th in
Mining Softw. Repositories, Washington, DC, USA,
2009, pp. 71–80.

[4] T. Joachims, “Training linear SVMs
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA,

[5] S. Kim, E. J. Whitehead, Jr., and
software changes: Clean or Buggy?”

Eng., vol. 34, no. 2, pp. 181 196, Mar. 2008.

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 2, February 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Author Profile

Ms. S. Gomathi is currently working as Assistant
Professor in Department of Computer Science and
Engineering. Her area of interest is Neural Networks,
Data Mining.

Ms. K. Swathini is currently pursuing Bachelor’s
degree in Computer Science and Engineering at Sri
Krishna College of Technology, Coimbatore. Her area
of interest includes Software Engineering and Data

Structures.

Ms. M. Suvetha is currently pursuing Bachelor’s
degree in Computer Science and Engineering at Sri
Krishna College of Technology, Coimbatore. Her area
of interest includes Software Engineering and
Database Management System.

Ms. M. Deepa is currently pursuing Bachelor’s degree
in Computer Science and Engineering at Sri Krishna
College of Technology, Coimbatore. Her area of
interest includes Software Engineering and Database

Management System.

Paper ID: ART2017697 1291

College of Technology, Coimbatore. Her area of
interest includes Software Engineering and Database

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

