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1. Introduction

Let A be the class of functions f(z) which are analytic in
the open unit disk

U={z:|z|<l} (1.1)

As usual, we denote by S the subclass of A, consisting of
functions which are also univalent in U.

Let w be fixed point n U and
Aw)={feHU): f(w)=f"(w)—1=0}In. [19],

Kanas and Ronning introduced the following classes
S, ={f € A(w): f isunivalent in U}

()

v = feA(w):1+Re((ZL)f"(Z)j>O,zeU
f(z)

ST, = feA(w):Re((z_}V—)ﬂz)j>o,zeU

(1.2)
Later Acu and Owa [1] studied the classes extensively.

The class STW is defined by geometric property that the
image of any circular arc centered at w is starlike with
respect to f{w), and the corresponding class C Vw is defined

by the property that the image of any circular arc centered at
w is convex. We observed that the definitions are somewhat
similar to the ones introduced by Goodman in [7],[8] for
uniformly starlike and convex function except that , in this

case, the point w is fixed. Let Ew denote the subclass of

A(w) consisting of the function of the form

1 & \
f(2)= W+;an(z—w>

Z_

(1.3)

The functions f{z), in EW are said to be starlike functions of
order ¢ if and only if

ReJ—Ml>a,(z—w)eU.
f=

for some @ (0 <« <1) we denote by ST‘;= (a) the class

(1.4)

of all starlike function of order «

Similarly, a function f in ZW is said to be convex of order
¢ if and only if

Re {_ |_Z=wf'@)
/'(2)

for some @ (0< aw<1) We denote by C, (&) the class

}>a, (z=w)elU . (1.5)

of all convex functions of order «

For the function f € 2.
I f(2)=f(2),
ILf(2) = (2= w) f(2) +——,
zZ—WwW

. » we define

Ef=G-w(I'1e) +—— 0o

and for £=1,2,3.... we can write

I f(@) = (- w7 f (@) + %W

_1 + X1+ A= 4, (- w)',

z=w =l (1.7)
where 1>1,k>0 . (z=w)elU).

The differential operator / lk is studied by Ghanim and Darus
[9],[10] and Ghanim et al., [11].
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Let us define the function g(a ,CZ)

— o0 a

dla,c:z)= > (@) a,(z=w)" (1.8
2w ()

for c#0,—1,-2,...,,and a €l /{O},

where (A), = A(A+1),,,is the Pochammer symbol. We
note that

Ha,c;2) =—— , F(La,c;2)
z- (1.9)
where
F(b.aez) =y Dl G20
= (o), n (1.10)

is the well-known Gaussian hypergeometric function.
Corresponding to the function ¢(a,c;z) using the

Hadamard product for f €X, we define a new linear

operator L L(a,c) on T by

n+]

_yy, (11D
BN

L (a,c)f(z)= ¢acz) f(2) ——+Z

n=l

u

The meromorphic functions with the generalized
hypergeometric functions were considered recently by Dziok
and Srivastava [4],[5], Liu [15] and Srivastava [16],
[171,[18], Cho and Kim [2,3].

For a function f € Ltv (a,c) f(z) we define

I°(L(a,0) f(2) = L (a,¢) f(2)
and for k=1,2,3,...........

I (@) f(2) = 2T (Lase) f(2)) + ﬁ
+Z nt (a),m

n=1 ((’)11+1

(1.12)

a,(z—=w)"

We note that 1" (L:}(a, a) f (Z)) studied by Frasin and
[9,10] and Ghanian et al [11].
a(-1<a<l1) , we let Z;(Ot,k) be the subclass of 4

consisting of the form (1.3) and satisfying the analytic
criterion

Re {Ik;‘git,(a,c)ﬂz) _a} N
'L (a,0) [ (2)
(1.13)
where L;,(a, c)f(z)is given by (1.11).
The main objective of this paper is to obtain necessary and
sufficient conditions for the functions f € Ztv(a k).

Furthermore, we obtain extreme points, growth and
distortion bounds and closure properties for the class

Z;(a,k),

Darus Now, for

ML(@of()

= ,zelU
I"L,(a,c)f(2)

2. Coefficient Estimate

In this section we obtain necessary and sufficient
conditions for functions f'in the class 2 (&, k)

Theorem 1. A function f of the form (1.3) is in
Z*W(a,k) if

( )n+1

( )n+1
-1<a<l.
Proof. It suffices to show that
M wore | T T ware
v ~1|-Re “l|<1-a
k. * k. *
I'L (a,¢)f(z) I L (a,c)f(z)
w w
We have

I me* (a,c) f(2)

1L @, f(2) 1‘ .

-1
1°L (a,0)f(2) I'L ’(a ) f(2)
L 22;1 (n-1 ). | 1||Z—W|
1L (@.0f(2) I( ).
<2— -1f< @
1'L (a,0)f(2) I e, '
" — =) n —|allz-w
il 2 o Pl

Letting (z—w) — 1 along the real axis, we obtain

ZZn (n-1) ||E ;1||

) ’(a)n+1
; |(C)n+1|

This last expression is bounded above by (1 - ) if

z [2n—1- a]|§)

n=l1 | n+l
Hence the theorem.

Our assertion in Theorem 1 is sharp for functions of the
form

R = (1-a)|©)
A — +Z n'[2n-1-al|(a)
2.2)

(Z - W)” ’

(nzLkeN,)

Corollary 1. Let the functions f be defined by (1.11) and
let € A then

(1-a)|©), .|
"' 2n-1-a)]|(a),.|

2.3)

Volume 6 Issue 2, February 2017

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2017571

623


file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064
Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

(nZl;kENO) . |f(Z)|:L+i (a)n+l|a (Z_W)n
Theorem 2. Let f define by (1.3) and I-w g |(C)n+1 '
1 - N
g(z2)= +an(z—w)" be in the class X (&, k) n+1|
zZ—W n=1 ”
Then the function /4 defined by |Z W
1 i 0
hz)=(1-4)f(2)+Ag(2) = m+§qn(z—W)
- a
(24) Z|( )n+1|
where ¢, =(1—A)a ,+Ab,,0< A <1 is also in the class |(C)n+l| V
x hich 1 the th .
5" (@,k) which yields the theorem
. Theorem 4. Let the function f defined by (1.11) be in the
3. Growth and Distortion Theorem class 2. (a0, k)
Then
Theorem 3: Let the function f'defined by (1.11) be in the 1 1
* 4
S (k) then —-1<]f'(2)| <= +1 (3.4)
r r
1 1
. rs |f(Z)| = - tr Equality holds for the function f(z) = +z-w.
G.D Z—w
Equality holds for the function Proof. We have
-1 = (a) _
f(z)= —w f|=——=+> n—2g (z—w)""
z-w (3.2) | | (z—w)’ ; (€
Proof. Since 2. ((Z k), by Theorem 1, 1 o0 (a)w] el
|( ) S—2+Znian (z—w
Z [2”1 1 a] n+l < 1 ~qa. |Z| n=1 (C);H—l
| n+1
Now 1 |(a) +1
— ——na, (3.5)
Z||( )n+l|| _Z( o |( )”+1 < 7/'2 ; (C)n+1
n n n= c n .
7(0) +1 | ) 1| +1 STee f(Z)Ez W(O!,k) /e have
% a
Yt 2n—1-al Dl <1 : ﬁ 0
(©),] (1-0) ), —=na < )" n-1-a]—"na,
and therefore, nl (C)W w1 |(C),1+1
= |(a
n=l1 |(C)n+1|
Since |( ) | Hence,
n+l n
f)=— +Z|( G z'“‘)w na, <1 66
n=1 )n+1 |(C)n+l
1 (a),. n Substituting (3.6) in (3.5), we get
@)= ‘ 3l a ) 1
= (O 1£'(2)]| < 5 +1
1 Z |(a)n+l| q
Sl & @, RS
< 1 + ,-Z M l + 7 This completes the proof.
r |(C)n+l | r
and 4. Radii of Starlikeness and Convexity

The radii of starlikeness and convexity for the class for the

class 2; (a,k) is given by the following theorems.
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Theorem 5. If the function f be defined by (1.11) is in the
classz ((Z k) then fis meromorphically starlike of order

S(0<5<1) in (z-w)<p
where ’

4.1)

1

nf(1-82n—1—a]|""
n+2-5(1-a)

The result is sharp for the function f'given by (2.2).

n=nla,p.k) =ir§{

Proof. It suffices to prove that
(z-w{" f(2)) N
I'f(2)
For (z—w) <17 the left hand side we have
(@l ,
(o
Z k ’( Jasi
(e

n+1‘

1]<1-6.

4.2)

n ‘

a,(z—w)"

(1" zl Zn(n+1)
(1 f())+1=

I'f(2)

| )n+l
1
Zn ( ’ )|( )n+1

1 ‘_an |(a)n+l

d
zZ—Ww n=l1 |(C)n+l‘ !

ll

n

Z—W

(4.3)

The last expression is less than 1—¢ if

Z ( +1)|E )n+l

n=1 | r1+l|

k ‘( )n+1
Z |( )n+1

z-wf' <

)l

4.4

(1- )(

or
ink (n+2-9) |(a)n+1|l
n=l1 1_5 |(C)n+1|
With the aid of (2.1) and (4.5) is true if
Z (m+2— 5)| o ‘2n-1-«a]
o (1-96) : (1 a)
n>1.

Solving (4.6) for |Z — W| , we obtain

—w‘")

Il

n+l

<. (4.5)

(4.6)

e

|Z_ w| <Jr ‘1-5)2n-1-a](a),, |"
(n+2-0)1-a) (c)
This completes the proof of Theorem 5.

n+l

Theorem 6. If the function f/* be defined by (1.11) is in the
class 2 (&, k) then f{z) is meromorphically convex of

order 5(0< 6 <1) in (Z —w) <r, where
r=n(ak)=

1
ke _1— n+l
e[nta-oN2n-1-a]
2| (n+2-8)1-a)
The result is sharp for the function f'given by (2.2)

4.7)

Proof: By using the technique employed in the proof of
Theorem, we can show that

(z=m/"@)
1)

for |Z —W| <7,, with the aid of Theorem 1. Thus we have

2/ <(1-5) (4.8)

the assertion of Theorem 6.

5. Convex Linear Combinations

Our next result involves linear combinations of several
functions of the type (2.2).

Theorem 7. Let

1
fo(z)=—— (.1
zZ—Ww

and

1 (l_a) (c)n+

fol2) = +— (),
Z=w n [2n—1—a]|(a)

nzl,-l<a<landk=0

(z—=w)" (5.2)

n+1|

Then f(z)€ Z*W(CZ, k) if and only if it can be expressed
in the form

1= A1)

n=0

where 4, >0 and Ziﬂ =1(5.3)
n=0
Proof. From (5.1), (5.2) and (5.3), it is easily seen that

\ A A (-
(@)=Y Afizy= — k (-a©,]
=0 z=w . n[2n(-1-@a)] |(”)M |

(z— W)”

Since
ink[zn—l—a)ma)w\ A (1-a)|(©),.|
= (-0, #2n-1-a)]a)

“3 4, =1- 4, <1
n=l1

n+l |

n

It follows from Theorem 1 that f(Z) € Z*W(OC, k)

Conversely, let us suppose that f € Z*W(a,k) . Since
(1-a)|(©),.]
"' 2n-1-a)]|(a),,|
n>l,—-l<a<land k>0
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k 2 _1_
n[2n a)]|(a)"+1|’n21,k20 and

Setting 4, =
(1-)|(©),..]
Ay =1- i A,
n=1

It follows that f(z) = Zlﬂfn (2) . This completes the
n=0

proof of the theorem.

Finally, we prove the following:

Theorem 8: The class E;(O{ k ) is closed under convex

linear combinations.

Proof: Suppose that the function f,(z) and f,(z)
defined by

j‘j(Z): ( )n+l

( )n+1

(z=w)'

’1 J

(]:l,2;z—weU) (5.4)
are in the class Z;(Of,k). Setting
S@)=ufi(2)+(A- ) f(z), (0< p<T)

(5.5)

We find from (5.4) that

_ 1 . (a)n+1
f@=——+3

n=l1 (C)n+1

{/uan,l + (1 - #)an,z } (Z - W)”

(5.6)
O<su<l,z—w)el)

In view of Theorem 1, we have

(a)nﬂ

S w20 -1-a)] o e, (= 40a,.)

n+l

( )n+1
(C)Iﬁ-l

(@)1
1- [2n—1- s
+( ﬂ)zn n— 0!)]‘ (C)M

Spu(l-a)+(1-pd-a)=(1-a)
which shows that f (Z) € Z*w(a, k) , Hence the Theorem.

,uZn [2n—1-a)]

References

[1] M. Acu and S. Owa, “On some subclasses of univalent
functions,” Journal of Inequalities in Pure and Applied
Mathematics, vol. 6, no. 3, (2005), 1-6.

[2] N. E. Cho and I. H. Kim, “Inclusion properties of
certain classes of meromorphic functions associated
with the  generalized hypergeometric function,”
Appl. Math, and Compu., 187 (2007), 115-121.

[3] N. E. Cho, S. H. Lee, and S. Owa, “A class of
meromorphic univalent functions with positive
coefficients,” Kobe J. Math., 4, No.l, (1987), 43-
50.

[4] J. Dziok, H.M. Srivastava, “Some subclasses of
analytic functions with fixed argument of coefficients
associated with the generalized hypergeometric
function,” Adv. Stud. Contemp. Math., 5, No.2,
(2002), 115-125.

[5] J. Dziok, H.M. Srivastava, “Certain subclasses of
analytic functions associated with the generalized
hypergeometric function,” Trans. Spec. Fund., 14
No.l, (2003), 7-18.

[6] B.A. Frasin and M. Darus, “On certain meromorphic
functions with positive coefficients,” South East
Asian Bulletin of Math., 28, (2004), 615-623.

[71 A. W. Goodman, “On uniformly starlike functions,”
Journal of Mathematical Analysis and Applications, vol.
155, no. 2, (1991), 364-370.

[8] A. W. Goodman, “On uniformly convex functions,”
Annales Polonici Mathematici, vol. 56, no. 1,(1991),
87-92.

[9] F. Ghanim and M. Darus, “On certain class of analytic
function with fixed second positive coefficient,”
International Journal of Mathematical Analysis, vol. 2,
no. 2, (2008), 55-66.

[10]F. Ghanim and M. Darus, “Some subordination results
associated with certain subclass of analytic
meromorphic functions,” Journal of Mathematics and
Statistics, vol. 4, no. 2, (2008), 112—-116.

[11]F. Ghanim, M. Darus, and S. Sivasubramanian, “On
new subclass  of analytic wunivalent function,”
International Journal of Pure and Applied Mathematics,
vol. 40, no. 3, (2007), 307-319.

[12]F. Ghanim and M. Darus, “Linear operators associated
with a subclass of hypergeometric meromorphic
uniformly convex functions,” Acta Universitatis
Apulensis, no. 17, (2009), 49—60.

[13]F. Ghanim and M. Darus, “Certain subclasses of
meromorphic functions related to Cho-KwonSrivastava
operator,” Far East Journal of Mathematical Sciences,
vol. 48, no. 2, (2011), 159-173.

[14]F. Ghanim, M. Darus, and A. Swaminathan, “New
subclass of hypergeometric meromorphic functions,”
Far East Journal of Mathematical Sciences, vol. 34, no.
2, (2009), 245-256.

[15]J. L. Liu, “A lincar operator and its applications on
meromorphic p-valent functions,” Bull. Institute
Math. Academia Sinica, 31 (2003), 23-32.

[16]J. L. Liu, HM. Srivastava. “A linear operator and
associated families of merornorphically multivalent
functions,” J. Math. Anal. Appl., 259, (2001), 566-
581.

[171]. L. Liu, H.M. Srivastava, “Certain properties of the
Dziok-Srivastava operator,” Appl. Math. Comput.,
159, (2004), 485-493.

[18]J. L. Liu, H.M. Srivastava, Classes of
merornorphically multivalent functions associated
with the generalized hypergeometric function, Math.
Comput. Moddl., 39, No.1,(2004), 21-34.

[19]S. Kanas and F. Ronning, “Uniformly starlike and
convex functions and other related classes of univalent
functions,” Annales Universitatis Mariae Curie-
Sklodowska, vol. 53,(1991), 95-105.

Volume 6 Issue 2, February 2017

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART2017571

626


file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



