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1. Introduction 

Light consists of coupled electric and magnetic fields which 
are spatially and temporally varying periodically. 
Perpendicular to the direction of propagation, the vectors of 
electric field can be projected on an orthogonal basis to a 
horizontal and vertical component. In isotropic media, both 
components propagate at the same speed and the original 
polarization of the light is conserved. However, in anisotropic 
media (physical properties depend on the spatial direction) 
this is not the case and the two polarization components can 
travel with different speed causing time delay between the 
two directions of polarization and thus the dispersion [1, 2].

In case the refractive index depends on the spatial direction, 
the physical phenomenon is called birefringence [3]. Contrary 
to the classical types of dispersion, like the chromatic 
dispersion, it is not possible to fix a certain value for 
polarization mode dispersion (PMD) [4]. Due to the manifold 
of parameters which affect PMD and which change over time 
and interact in a very complicated and unpredictable way, the 
PMD can be only described in a statistical model. It has been 
found that PMD does not scale linearly with the length of a 
fiber, but with its square root. PMD is about 0.2 /ps km ,
but bending the fiber can also increase PMD. The pulse 
spreading due to PMD is p pt L D   where pD  is the 
PMD parameter   [5].

2. Polarization-Mode Dispersion' 

By considered the spreading in time of a light pulse due to 
intermodal dispersion (light distributed among several 
modes) and chromatic dispersion (light distributed over a 
range of wavelengths). A third type of time-spreading 
mechanism that of PMD, is a consequence of the light being 
distributed over different polarizations. For a perfectly 
uniform and symmetrical fiber, the propagation speed would 
be independent of polarization, and light of all polarizations 

would arrive at the far end of the fiber at the same time. In 
real fibers, however, there are always small stresses on the 
fiber that make the refractive index slightly different for 
light of two orthogonal polarizations, and the arrival time, 
therefore, depends slightly on polarization. The resulting 
dispersion tends to be small, because light of one 
polarization is rather easily coupled (usually within a few 
meters) into the orthogonal polarization by fiber bends and 
irregularities. This gives rise to a fairly uniform propagation 
speed, with statistical fluctuations from the average that 
increase with fiber length [6,7].  

Now, assume that there is negligible polarization dependent 
loss, so that we can use the principal states model [8] to 
characterize first-order PMD. Under this model, there exist a 
pair of orthogonal input PSP’s, | a   and  | a   , and a 

pair of orthogonal output PSP’s, |b    and  |b   ,
where all of PSP’s are expressed as Jones vectors.  If an 

arbitrary polarized field  atEtE aa |  )()(


 is input to 
the fiber, this input field can be projected onto the two PSP’s 
as [9]

where   is PMD power splitting ratio, given by 
2| | |a a   . In terms of first-order PMD, the output 

field of the fiber takes the form 

where o  is the polarization 'independent' group' delay, and 

 is the DGD among the two PSP’s. The fiber transfer 
function for first-order PMD (often called PMD impulse 
response) in the time and frequency domains are given by 
[10]
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The root mean square width of this impulse response can be 
calculated as 
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By considered the spreading in time of a light pulse due to 

polarization is rather easily coupled (usually within a few 
meters) into the orthogonal polarization by fiber bends and 
irregularities. This gives rise to a fairly uniform propagation 
speed, with statistical fluctuations from the average that 
increase with fiber length [6,7].  

Now, assume that there is negligible polarization dependent 
loss, so that we can use the principal states model [
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pair of orthogonal input PSP’s, | a
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where all of PSP’s are expressed as Jones vectors.

arbitrary polarized field tEaEaE )(


the fiber, this input field can be projected onto the two PSP’s 

as [9]

where   is PMD power splitting ratio, given by 
2| | || | |a a| | | | | || | | | | | | | || | |a a| | | | | |a a| | || | || | | | | || | | . In terms of first-order PMD, the output 

field of the fiber takes the form 

where o  is the polarization 'independent
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where the signs ( ,- ) mean that the impulse response in 

directions of  |b    or |b   , respectively. That is; the 
width of impulse response in the direction of PSP’s will be 
zero, while the width in the direction of  |b   can be 
computed using Eqs.(5) and (6)  as follows 

Eq.(8) represents the extra width that results due to the effects 
of PMD on the propagated signal. It is clear that the 
maximum width arises if 1/ 2   and the minimum width 

occurs if 0,1  , i.e. 0PMD  . In other words, if the 
input SOP is in direction of PSP’s, then the pulse will not 
face any broadening. 

3. Pulse Spreading 

We have been using the time delay of waves to characterize 
the dispersion of a fiber. An alternative approach is to 
consider quantitatively the pulse spreading that is induced by 
the dispersion. In this approach, we can imagine measuring 
the pulse width at the input and at the output and attributing 
the increase in pulse width to the dispersion. The pulse width 
of rms is defined as the standard deviation of the pulse width 
and is related to the first and second moments of the pulse by 

Many optical pulses are symmetric or are assumed to be. The 
mean value of the first moment of a symmetric input pulse is 
zero; so, for symmetric pulses the mean-square pulse width is  

The pulse width at the output of the fiber is a combination of 
the initial pulse width and the pulse spreading of the fiber 
caused by dispersion. For the mean-square pulse width, the 
effects are combined according to   

Similar results are available in terms of the pulse width of 
rms of the dispersion terms, where the results are combined 
as

where conv stands for the conventional polarizations.  
We will analyze these expressions for the dispersion induced 
pulse spreading. The rms pulse spread for material dispersion 
is certain by  

On the other hand, the pulse spreading due to modal 
dispersion is defined as [11] 

From both modal and chromatic dispersions, i.e. Eqs.(13)
and (14), one can obtain the total dispersion. Instead of 
adding them directly, it is given by the following square sum 
expression 

Note that, the total increasing of pulse width is proportional 
to the fiber length. That is; the higher fiber lengths will be 
induced higher broadening.  

The time spread of a pulse due to PMD is found to obey 

PMD PMDD L  , where PMDD is the PMD coefficient. 
Typical values for communications fiber are  

(0.2 2) /ps km . The origin of L  dependence lies in 
the statistical nature of the processes. Light is coupled 
randomly from mode to mode, or from one polarization to 
another, resulting in statistical fluctuations from an average. 
This corresponds to the well-known “random walk problem” 
in statistics, which is characterized by a distribution with a 
width proportional to the square root of the number of steps 
[12].

To determine the total time spread of a pulse, we must 
combine the various sources of fiber dispersion. The way 
that we combine them depends on whether they are 
correlated or uncorrelated. For example, material and 
waveguide dispersions are correlated because they both 
depend on wavelength. In this case, we add these dispersion 
directly, as  

To obtain the total chromatic dispersion. However, 
intermodal" dispersion, chromatic dispersion; and PMD do 
not share any common origin, and therefore uncorrelated. In 
this case, we must add the time spread in quadrature as 
follows 

In many situations, one of these three terms dominates and 
the others can be neglected. For example, in "step-index"
multimode fiber, the 2

mod  term usually dominates. The 
contribution from PMD can be neglected, but can be 
significant in long fiber spans when very monochromatic 
light sources are used.  
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[12].

To determine the total time spread of a pulse, we must 
combine the various sources of fiber dispersion. The way 
that we combine them depends on whether they are 
correlated or uncorrelated. For example, material and 
waveguide dispersions are correlated because they both 
depend on wavelength. In this case, we add 
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To obtain the total chromatic dispersion. However, 
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4. Polarization Mode Dispersion and Chromatic 
Dispersion 

The pulses that propagate inside single mode fiber are 
affected by two types of dispersion which are chromatic 
dispersion and PMD. Note that the effecting of the two types 
of dispersion happen in the same time, so to give a distinct 
sense of the two types of dispersion we decided to obtain the 
effects in the frequency domain, see Fig.(1).   

The initial pulse, )},0({),0(~ TUwU  , first faces the 

effect of chromatic dispersion (the transfer function 1( )H w )

to obtain ),0(~)(1 wUwH . Note that, the chromatic 
dispersion does not depend on SOP therefore the input SOP 
(the Jones vector | a  ) will not change. Next, the pulse 
divides into two orthogonal components towards PSP’s 

( | a  and | a  ) under the effects of PMD. The 

component in the direction | a   will face the effects of 

the function 2 ( )sH w  to obtain the pulse 

),0(~)()( 12 wUwHwH s  and in the same time the SOP will 

change from | a   to  |b   . On the other side, the pulse 

in the direction | a   faces the effects of the function 

)(2 wH f  to yield  ),0(~)()( 12 wUwHwH f  and also the 

SOP will change from | a   to  |b   . We should not 
forget that the input or output PSP does remain orthogonal 
when the polarization dependent loss is absent. Finally, the 
vector sum of two components will give the final pulse 

2 1( ) ( ) (0, ).H w H w U w( ) ( ) (0, ).( ) ( ) (0, ).H w H w U w( ) ( ) (0, ).

Figure 1: Effects of chromatic dispersion (CD) and PMD on the input pulse (0, )U w , where 1( )H w represents the transfer 

function of CD, 2 ( )H w  represents the transfer function of PMD, and  a|  and b| are the input and output SOP’s.

The transfer function of a lossless fiber, when PMD is absent 
and only the chromatic dispersion is considered, can be 
expressed in the frequency domain as [10]   

where 2
2 ( ) / 2chD c     and   is light wavelength.  

For a chirped normalized Gaussian pulse [9,1]   

where A is constant. The Fourier transform of Eq.(18) takes 
the form 

The total effects on the pulse shape can be obtained using 
the convolution of the transfer functions of the combined 
"PMD" and "chromatic dispersion" with the input Gaussian 
signal in the time domain, or equivalently by using the 
inverse Fourier transform of the product of Eqs.(4), (17), and 
(19), i.e. the inverse Fourier transform of  
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We then obtain the following expression 
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divides into two orthogonal components towards PSP’s 
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and only the chromatic dispersion is considered, can be 
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For a chirped normalized Gaussian pulse [9,1]   

The total effects on the pulse shape can be obtained using 
the convolution of the transfer functions of the combined 
"PMD" and "chromatic dispersion
signal in the time domain, or equivalently by using the 
inverse Fourier transform of the product of Eqs.(
(19), i.e. the inverse Fourier transform of  
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where 3
3 / (2 )b z p . The parameter 2x  can be 

eliminated with another transformation 3/ /x u b i b  .

Using the method proposed in Ref. [13], the resulting 
integral can be written in terms of Airy function ( )Ai x as

 
3

2( , )  (z,T) | 1  (z,T) |                       (23)
| |
oAU z T b b
b


  

       

where 

The reconstructed pulse power will be 

where the properties | 1b b    and | 0b b 

were used.  

Note that, the power is divided into two parts, the slow axis 

has the power
2P    with the weight   and the other 

axis has the power
2P    with the weight (1 ) .

Depending on the distributions of each power and weights, 
the resulted signal will be induced a broadening. For the 
special cases ( 0,1)  : the total power will be propagated 
on the slow or fast axis, respectively. These cases will 
prevent the induced broadening. For unchirped pulse and 
without 3  effect, Eq.(24) will be  

where  

The parameter 1T  represents the pulse width after the effects 
of chromatic dispersion where it is the same for the two 
orthogonal components.The width' of each of component;
will not increase under the effects of PMD (this coincides 

with the form of Eq.(7)), but the pulse which results from 
the vector sum of the two orthogonal components will face a 
broadening that can be determined from Eq.(24). Eq.(26d) 
represents the nonlinear phase that generates through the 
propagation in optical fiber. The nonlinear phase as a 
function of time differs from one component to another by 
the amount ,  but in the frequency domain they remain 
the same and adding the same value of noise to both
components. Using Eq.(26d), one can find the frequency 
chirp of the two components as follows 

 
Eq.(27) means that the new frequencies generated are 
similar for the two components and the difference in the 
mathematical forms, i.e. 2/T , means that one of the 
components advances the other by time  . Eqs.(20) to 
Eq.(23) explain that the pulse amplitude will decrease by 
increasing the propagation distance. These equations will 
convert to the same equations in Ref.[9] with ignoring the 
effects of PMD. The value of DGD,  , changes 
randomly from one optical fiber to another and from one 
segment to another (according to Rayleigh distribution) and 

PMD PMDL D     . On the other hand, the 
splitting ratio   can be determined from the polarization 

vectors, where   represents the projection of | a   onto 

| a   (i.e.   aa | ). We can also write   as a 
function of Stokes vectors as 

where  ˆ | |P a a   | | | |P a a P a a| |P a a| | | |P a a| | P a a P a a| |P a a| | | |P a a| || |P a a| || |P a a| | | |P a a| || |P a a| |   P a a P a a P a a P a a| |P a a| | | |P a a| | | |P a a| | | |P a a| |  is the Stokes vector of the slow 

PSP, ˆ | |S a a | |S a a| |S a a| | S a a S a a| |S a a| | | |S a a| || |S a a| || |S a a| | | |S a a| || |S a a| |  is the Stokes vector of the input SOP, 




 is the spin vector [14], and  is the random angle 

between P̂  and Ŝ . Substituting Eq.(28) into (23), yields 
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Note that, the power is divided into two parts, the slow axis 
2

 with the weight   and the other 
2

      with the weight (1 )(1 )(1 )(1 )(1 ) .
Depending on the distributions of each power and weights, 
the resulted signal will be induced a broadening. For the 

: the total power will be propagated 
on the slow or fast axis, respectively. These cases will 
prevent the induced broadening. For unchirped pulse and 

 effect, Eq.(24) will be  

propagation in optical fiber. The nonlinear phase as a 
function of time differs from one component to another by 
the amount ,  but in the frequency domain they remain 
the same and adding the same value of noise to bot
components. Using Eq.(26d), one can find the frequency 
chirp of the two components as follows 

Eq.(27) means that the new frequencies generated are 
similar for the two components and the difference in the 
mathematical forms, i.e. T
components advances the other by time 
Eq.(23) explain that the pulse amplitude will decrease by 
increasing the propagation distance. These equations will 
convert to the same equations in Ref.[
effects of PMD. The value of DGD, 
randomly from one optical fiber to another and from one 
segment to another (according to Rayleigh distribution) and 

PMD PMDPMD PMDPMD PMDPMD PMDL DPMD PMDL DPMD PMD    PMD PMD   PMD PMD      . On the other hand, the 
splitting ratio   can be determined from the polarization 

vectors, where   represents the projection of 
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 
3

2( , ) cos( / 2) (z,T) | sin( / 2) (z,T) |                 (29)
| |
oAU z T b b
b


  

      

The Jones vectors  |b    and b|  are orthogonal, i.e. 

| 0b b   . That is enough to assume a random form to 
one of them to find the other. For example, if  

tiyxb ][| 
 then 

txiyb ][| 
 keeping in 

mind that all the polarization vectors have unit values, i.e. 
122  yx , here  t  represents the matrix transpose. The 

width of reconstructed pulse can be found as: according to 
Fig.(1) and using the above equations, the pulse width after 
the effects of chromatic dispersion is 1T . That is; the 
broadening ratio (BR) for the reason that; chromatic 
dispersion' is oTT /1 . Next, the input pulse has a width 1T
which will increase by the amount PMD  due to the PMD, so 

the BR due to PMD is 1/PMD T .

5. Results and Discussion 

Fig. (2) represents the function shape for different distances 
for a number of assortment coefficients 2 3,  . It's clarify 

from the figure that the efficacy of 2 is centralize in pulse 
broadening. This broadening increase with the distance 
increasing. While 3 efficacy represented by shifted pulse 
center and appearing waviness in its preceding border, so this 
waviness increases with the propagation distance increasing. 
The two effects admixture with other will be caused in the 
pulse broadening, waviness, and shifted its center in 
depending on the propagation distance and the two 
factors 2 3,  .

Fig. (3) represents the same concept to a constant propagation 
distance with changing the input pulseT   . With presence of 

the same antecedent effects and with notice that T 

increasing represented in decreasing chromatic dispersion 
effects appearance. This is because of the time declination of 
the broad pulse is so little in comparison with the narrow 
pulses. Fig. (4) represented the pulse shape by using the same 
formations with a length and T  constancy and chirp 
changing. We notice that there is a negative or positive chirp 
which will trade with addition more complication to the 
pulses behavior that is represented by a different shifts and a 
different wavelike behavior. 

Fig. (5) represents the resultant pulses shape with a constant 
T  and neglected 3 effect for a number of lengths and for a 
different chirp values. From figure we notice that the pulse 
may be compressed or broad depending on L, chirp, 2 .
Where it may be compression the first propagation distance 
and then the pulse may be broads. In general the compression 
is happen within a short distance only then the broadening is 

follow it. And the compression did not back a new. The 
equalizing between 2 , L, chirp values may be enable in 

controlling with the pulses behavior. As long as 2

participate in the broadening and the remainder coefficient 

3 and the higher represents with the distortion, therefore 

we will concenters our recognition on 2 and considered it 
the chromatic dispersion with neglecting of the highest 
orders effects where we want to calculate the pulses 
broadening.  

Fig. (6) represents the resultant pulse shape by using a 
number of pulses of  angle and  . The  angle 
represents the basis of the weight which each power 
component take. For this reason we note for each   angle 
the resultant pulse may be turn to left or right with 
dependent on  value. This turning is go to be zero 

at 2
   in which the power is equilibrate on two 

axis.  Magnitude represents by antecedence or retardation 
of the generated pulse. With dependent on the  angle.  In 
general form the decreasing in process in power is because 
of there is a stationary magnitude of dispersion  

2
2 10 /ps km   and surely increasing of this magnitude 

caused a larger broadening. Actually the PMD did not 
caused broadening to any of the two components but the 
directional summation between the two components will 
produce shape have some of broadening. 

Fig. (7)  illustrate the relation between the power peak and 
the  angle in existence of different T  and  .  Notice 

thatT   increasing signify decreasing of effect this is a 

legitimate thing as long as   will be small in scale toT  .

From other side, the reliability of 0   denoted that 
PMD is lost, and the power peak effects only in existence of 

z and there is a pulse peak independent on . As that 

appearance in blue line. With  increasing PMD starts in 
appearance and the power being at least it possible 

at 2
  . As long as the broadening in this angle is the 

maximum.  

Fig.(8) represents the relation between the pulse width and 
 in apparent number of values of z ,  . From figure 

notice that the z increasing mean that the pulse width 
increasing this known with existence of width independent 
on when 0   (PMD=0) with addition PMD then the 
pulse width achieve another increasing at the 
range 0    , then the increasing will be maximum 

at 2
  . For this reason the pulse width will 
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which will increase by the amount PMD  due to the PMD, so 

1/PMD T1T1 .

Results and Discussion 

Fig. (2) represents the function shape for different distances 
for a number of assortment coefficients 2 3 2 3 2 32 3,2 3 2 3,2 3 . It's clarify 

from the figure that the efficacy of 2 is centralize in pulse 
broadening. This broadening increase with the distance 

efficacy represented by shifted pulse 
center and appearing waviness in its preceding border, so this 
waviness increases with the propagation distance increasing. 
The two effects admixture with other will be caused in the 
pulse broadening, waviness, and shifted its center in 
depending on the propagation distance and the two 

Fig. (3) represents the same concept to a constant propagation 
distance with changing the input pulseT   . With presence of 

the same antecedent effects and with notice that T 

increasing represented in decreasing chromatic dispersion 

component take. For this reason we note for each 
the resultant pulse may be turn to left or right with 
dependent on  value. This turning is go to be zero 

at 2
   in which the power is equilibrate on two 

axis.  Magnitude represents by antecedence or retardation 
of the generated pulse. With dependent on the
general form the decreasing in process in power is because 
of there is a stationary magnitude of dispersion  

2
2 10 /ps km10 /ps km10 /210 /2ps km210 /2   and surely increasing of this magnitude 

caused a larger broadening. Actually the PMD did not 
caused broadening to any of the two components but the 
directional summation between the two components will 
produce shape have some of broadening. 

Fig. (7)  illustrate the relation between the power peak and 
the  angle in existence of different 

thatT   increasing signify decreasing of effect this is a 

legitimate thing as long as   will be small in scale to

From other side, the reliability of 
PMD is lost, and the power peak effects only in existence of 

z and there is a pulse peak independent on
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be

2

2
1 21 zT T

T






 
   

 
without existence of PMD and 

there is another broadening adds to it in PMD presence. This 

last broadening being a maximum at 2
  and increase 

with J increasing. With note that the increasing because of 
PMD will be maximum at 2 0  and with increasing of 

2 its effect will be decrease. Because of it is will be small in 

measurement with the broadening caused by 2 .

Fig.(9) represents the power as a function of  with a 
different values of 2 ,  2 ,  . Clarify from figure that 

is the power peak decrease with 2 increasing because of its 

broadening as it mentioned above. At 2 0  the power have 
effecting only with PMD. Thus, it will be stationary at 

0  and decline with a maximum it possible at 2
 

which the maximum broadening have happen. At the large 
values of 2 , the PMD effect will be not discrete as long as 

the broadening of 2 is so large in measure to the broadening 
caused by PMD.  

Fig.(10) represent the peak locale as a function to   for a 
number values of 2 ,  . We notice initially that the change 

of 2 did not affect never on the peak locale this is supports 

our speech about respectability that 2 have not relationship 
with pulse shifting in chromatic dispersion topic. From other 
side the blue color ( 0  ) exhibits that the peak locale 
will not changes. But PMD presence mean that peak locale 
changing in a form that depend on  increasing with note 

that for each cases the peak locale did not change if 2
 

at which the power equilibrates on the two axis is as a result 
of the vector adding results un shifted pulse. 

Finally fig. (11) represents the pulse width as a function of 

2 in existence the different values of ,  It is clarify 

from figure that the increasing in 2 will causes an 

increasing in the pulse width and for all ,  cases. 
Because it is simply independent on ,  . From other side 
we notice that PMD addition pertinent with the  angle 
value where at 0  , indeed deferent  values did not 
causes any changing. With  increasing we notice that PMD 
cases an additional changing have a maximum summit when 

0z  . In general the maximum   cases superior 
changing.  
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broadening as it mentioned above. At 2 0 the power have 
effecting only with PMD. Thus, it will be stationary at 

and decline with a maximum it possible at 2
 

which the maximum broadening have happen. At the large 
, the PMD effect will be not discrete as long as 

is so large in measure to the broadening 

) represent the peak locale as a function to   for a 
  . We notice initially that the change 

Because it is simply independent on
we notice that PMD addition pertinent with the
value where at 0  , indeed deferent 
causes any changing. With  increasing we notice that PMD 
cases an additional changing have a maximum summit when 

0z  . In general the maximum 
changing.  
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Figure 2: The resultant pulse shape by using a number of pulses of  angle and  .
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Figure 3: Peak power as a function of for different and . 
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Figure 4: Pulse width as a function of for different values of andand . 
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Figure 5: Peak power as a function of for different and . 

Paper ID: ART20164081 DOI: 10.21275/ART20164081 601

file:///D:/IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 2, February 2017 
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 6: the peak locale as a function to   for a number values of 2 ,  . 
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Figure 7: represents the pulse width as a function of 2 in existence the different values of , 
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