Composite Operators on Atomic Orlicz Spaces

Dr. Shally Gupta

Associate Professor in Mathematics, G.G.M Science College Jammu shallyg31[at]gmail.com

Abstract: In this paper we study composition operators on atomic measure spaces. The behaviour of composition operators on atomic measure spaces differs from that of composition operators on non-atomic measures spaces. Characterization for compact, fredholm, invertible and composition operators with closed ranges are studied in the paper.

PAMS (MOS): Mathematics subject classification Primary 47B38, Secondary: 46A06

Keywords: Composite operator, compact operator fredholm operator, Orlicz space, young function.

1. Introduction

Let $\phi \colon [0,\infty) \to [0,\infty)$ be a continuous convex function such that

(i) $\varphi(x)=0$ if and only if x = 0

(ii) $\lim_{x \to \infty} \phi(x) = \infty$

Such a function φ is known as young function. Let (X, S, μ) be a σ -finite measure space and let $L^{\varphi}(\mu) = \{f: X \to C \text{ is measurable:} \}$

 $\int \phi(\in |f|) d\mu < \infty \text{ for some } \in > 0 \}$ If we set $||f||_{\phi} = \inf\{\epsilon > 0 : \int \phi(|f|) d\mu \le 1\},$

If $\phi(x) = x^p, 1 \leq p$, then $L^{\phi}(\mu) = L^{\rho}(\mu)$, the well-known Banach space oflp-integrable functions on X. A young function $\phi: \mathbb{R} \to \mathbb{R}^+$ is said to satisfy the Δ_2 -condition (globally) if $\phi(2x) < k\phi(x), x \geq x_0 \geq 0(x_0 = 0)$ for some absolute constant k > 0. Ifl $\mu(x) = \infty$ then ϕ is called Δ_2 -regular. With each young function ϕ we can associate another convex function $\psi: \mathbb{R} \to \mathbb{R}^+$ defined by $\psi(y) = \sup \{x|y| - \phi(x): x > 0\}, y \in \mathbb{R}$ which have similar properties.

The function ψ is called the complementary function to φ . In general, simple functions are not dense in $L^{\phi}(\mu)$, but in case φ satisfy the Δ_2 -condition, then the class of simple functions become dense in $L^{\phi}(\mu)$. For more literature concerning orlicz space we refer to Roo [4] Kufner [3] and Hudzik [7]. Throughout our paper we assume that φ satisfy Δ_2 -condition.

A bounded linear operator A: $E \rightarrow E$ (where E is a Banach

Now

space) is called compact if $A(B_1)$ has compact closure, where B_1 denotes the closed unit ball of E. A bounded linear operator A: $E \rightarrow E$ is called fredholm if A has closed range, dim ker A and co dim Ran(A) are finite. The support of a function $f \in L^{\phi}(\mu)$ is denoted by supp f and the Randon Nidohym derivative of the measure $d\mu T^{-1}$ with respect to μ is denoted by f_0 . In this paper we study composite operators on atomic Orlicz spaces. The compact, Fredholm and invertible composite operators are also characterized.

2. Bounded Composite Operators on Atomic Orlicz Space

Theorem 2.1 Suppose $\varphi_2 < \varphi_1$. Then $C_T L^{\varphi}(\lambda) \to L^{\varphi}(\lambda)$ is a bounded operator if and only if f_0 is a bounded function.

Proof: We first assume that f_0 is a bounded function. Then there exist $M \ge 1$ such that $|f_0(x)| \le M \forall x \in \Omega$. Since $\phi_2 < \phi_1$, there exists $\alpha > 0$ such that $\phi_2(x) \le \phi_1(\alpha x) \forall x$. Therefore $f_0(x)\phi_2(x) \le M\phi_1(\alpha x)$

 $\leq \phi_1(M\alpha x)$

Hence

 $\|C_{T} f\|_{\phi_{2}} \leq \alpha M \|f\|_{\phi_{1}},$ which proves that C_{T} is a bounded operator.

Conversely, if f0 is not a bounded function, then for every $n \in N$ there exists $x_n \in \Omega$ such that $f_0(x_n) > n$.

$$\begin{split} & \text{Hence} \\ & n\phi_1(|y|) \leq f_0(x_n)\phi_1(y) \\ & \leq f_0(x)\phi_2(|\alpha y|) \ \forall \ y \in C. \end{split}$$

$$\begin{aligned} \int_{\Omega} n\phi_1(\frac{\chi_{\{x_n\}}}{\alpha ||C_T\chi_{\{x_n\}}||_{\phi_2}}) d\lambda &\leq \int_{\Omega} f_0(x)\phi_2(\frac{\chi_{\{x_n\}}}{||C_T\chi_{\{x_n\}}||_{\phi_2}}) d\lambda \\ &= \int_{\Omega} \phi_2(\frac{C_T\chi_{\{x_n\}}}{||C_T\chi_{\{x_n\}}||_{\phi}}) d\lambda \leq 1 \end{aligned}$$

Hence

Volume 6 Issue 2, February 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

 $n \|\chi_{\{x_n\}}\|_{\phi_1} \le \alpha \|C_T \chi_{\{x_n\}}\|_{\phi_2} \, \forall n$

which shows that C_T is an unbounded operator. Hence f_0 must be a bounded function.

3. Compact and Invertible Composite Operators on atomic Orlicz Space

This section characterizes compact and invertible composite operators on atomic Orlicz space.

Theorem 3.1: Let $C_T \in B(L^{\varphi}(\lambda))$. Then C_T is compact if and only if the set $ME = \{x: \lambda T^{-1}(x) > E\lambda(x)\}$ is a finite set for each E > 0.

Proof: Let E > 0 be given. Let $\{f_n\}$ be a sequence in $L^{(\lambda)}$ converges weakly to zero. Suppose M_F contains k-elements say $m_1m_2...m_k$. Since $\lambda T^{-1}(x) \le \lambda(x)$ for every $x \in M'_c$, we have

$$\begin{aligned} \|C_T \frac{f_n}{\||f_n\||_{\phi}}\| &= \int_{\Omega} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda T^{-1}(x) \\ &= \int_{M_{\epsilon}} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda T^{-1}(x) + \int_{M'_{\epsilon}} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda T^{-1}(x) \\ &\leq M \int_{M_{\epsilon}} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda(x) + \epsilon \int_{M'_{\epsilon}} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda T^{-1}(x) \\ &\leq M k \phi(f_n(x_r)\lambda(x_p) + \epsilon \int_{\Omega} \phi(\frac{|f_n(x)|}{\||f_n\||_{\phi}}) d\lambda(x) \\ &\leq m k \phi(f_n(x_r)\lambda(x_p) + \epsilon \qquad (1) \\ &\text{where} \\ \phi(f_n(x_r)) &= \max_{i \in M_{\epsilon}} \phi(f_n(x_i)) \\ &\lambda(x_p) &= \max_{i \in M_{\epsilon}} \lambda(x) \end{aligned}$$

and M> 0 is such that $\lambda T^{-1}(x) \leq M\lambda(x)$. Now the sequence ${\bf f}_n$ converges to zero pointwise. Thus for some $E_1 > 0$ there exists n_0 such that

$$|\phi(f_n(x_r))| < \frac{\epsilon_1}{mk\lambda(x_p)} \forall n \ge n_0.$$

Hence from (1)

$$||C_T \frac{f_n}{||f_n||_{\phi}}||_{\phi} \ge \epsilon_1 + \epsilon$$

since E_1 and Eare arbitrary, we have $\lim_{n \to \infty} ||C_T f_n||_{\phi} = 0$

This shows that C_T is compact.

Conversely if for some E > 0, M_E is an infinite set, then for each $x_{n_k} \in M_{\epsilon}, \text{ set}$

$$f_{n_k} = y_{n_k} \chi_{\{n_k\}}$$

Where
$$y_{n_k} = \phi^{-1}(\frac{1}{\lambda_{n_k}})$$

So that $\|f_{n_k}\|_{\phi} = 1$. Now $f_{n_k} \rightarrow 0$. Weakly,

but

$$\begin{split} \int_{\Omega} \phi(\frac{|\epsilon f_{n_k}|}{||C_T f_{n_k}||_{\phi}}) d\lambda &< \int_{\Omega} \epsilon \phi(\frac{|f_{n_k}|}{||C_T f_{n_k}||_{\phi}}) d\lambda \\ &< \int_{\Omega} \phi(\frac{|f_{n_k}|}{||C_T f_{n_k}||_{\phi}}) d\lambda T^{-1} \\ &< \int \phi(\frac{|C_T f_{n_k}|}{||C_T f_{n_k}||_{\phi}}) d\lambda \leq 1 \end{split}$$

Thus

 $\left\| E f_{n_k} \right\|_{\! \phi} \! \leq \left\| C_T \, f_{n_k} \right\|_{\! \phi}$

 $\|C_T f_{n_k}\|_{\phi} \ge E$ Hence $\{C_T f_{n_k}\}$ cannot converge strongly to zero which contradicts the compactness of C_T .

> **Theorem 3.2:** Let $\varphi_1 \approx \varphi_2$. Then $C_{T_2} \stackrel{\varphi_1}{L} (\lambda) \rightarrow \stackrel{\varphi_2}{L} (\lambda)$ is invertible if and only if (I) T is invertible (II) There exists $\delta > 0$ such that $f_0(x) \ge \delta$ for all $x \in \Omega$.

> **Proof:** If C_T is invertible, then T is invertible. We need only to prove that condition (II). For if it is false, then for every n \in N there exists $x_n \in \Omega$ such that $f_0(x_n) < \frac{1}{n}$. Choose $\alpha > \alpha$ n. Then

$$\begin{split} &\int_{\Omega} \phi_2(\frac{nbC_T\chi_{\{x_n\}}}{a||\chi_{\{x_n\}}||_{\phi_1}})d\lambda = \int_{\Omega} f_0\phi_2(\frac{nb\chi_{\{x_n\}}}{a.||\chi_{\{x_n\}}||_{\phi_1}})\lambda \\ &= \int_{\omega} f_0(x_n)\phi_2(\frac{nb}{a||\chi_{\{x_n\}}||_{\phi_1}})\lambda(x_n) \\ &\leq \int_{\Omega} \phi_2(\frac{b}{||\chi_{\{x_n\}}||_{\phi_1}})\lambda(x_n) \\ &\leq \int_{\Omega} \phi_2(\frac{b}{||\chi_{\{x_n\}}||_{\phi_1}})\lambda(x_n) \\ &\leq \int_{\Omega} \phi_1(\frac{1}{||\chi_{\{x_n\}}||_{\phi_1}})\lambda(x_n) \text{ for some b} \\ &= \int_{\Omega} \phi_1(\frac{\chi_{\{x_n\}}}{||\chi_{\{x_n\}}||_{\phi_1}})d\lambda \leq 1 \\ &\text{ Hence } ||C_T||\chi_{\{x_n\}}||_{\phi_2} \leq \frac{a}{nb}||\chi_{\{x_n\}}||_{\phi_1} \text{ for every n.} \end{split}$$

which shows that C_T is not bounded away from zero so that C_T is not invertible. Hence condition (II) must hold. Conversely if T is invertible then $T^{-1}(S) = S$ a.e. so that C_T has dense range. Suppose the condition (II) holds. We can assume that $0 < \delta < 1$.

Let $f \in L^{\phi_1}(\lambda)$. Consider

Volume 6 Issue 2, February 2017 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

1175

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

$$\begin{split} &\int_{\Omega} \phi_1(\frac{\delta|f|}{a||C_T f||_{\phi_2}}) d\lambda \leq \int_{\Omega} \phi_2(\frac{\delta|f|}{||C_T f||_{\phi_2}}) d\lambda \\ &\leq \int_{\Omega} \delta.\phi_2(\frac{|f|}{||C_T f||_{\phi_2}}) d\lambda \\ &\leq \int_{\Omega} f_0 \phi_2(\frac{|f|}{||C_T f||_{\phi_2}}) d\lambda \\ &= \int_{\Omega} \phi_2(\frac{|C_T f|}{||C_T f||_{\phi_2}}) d\lambda \leq 1 \\ &\text{Hence} \end{split}$$

AL 41

$$||C_T f||_{\phi_2} > \frac{\delta}{a} ||f||_{\phi_1}$$

for every $f \in L^{\varphi_1}(\lambda)$

This proves that C_T is bounded away from zero. Now C_T is bounded away from zero and has dense range. Therefore C_{T} is invertible.

Theorem 3.3: Let $C_T \in B(L^{\varphi}(\lambda))$. Then C_T has closed range if and only if f_0 is bounded away from zero on $supp f_0 = s$.

Proof: Suppose f_0 is bounded away from zero on s. Then there exists $1 \ge 0$ such that $f_0(x) \ge \in \forall x \in s(1)$

For
$$f \in L^{\circ}(s)$$
 consider.

$$\int_{s} \phi(\frac{\epsilon |f|}{||C_{T}f||_{\phi}}) d\lambda \leq \int_{s} \epsilon \phi(\frac{|f|}{||C_{T}f||_{\phi}}) d\lambda$$

$$\leq \int_{s} f_{0}\phi(\frac{|f|}{||C_{T}f||_{\phi}}) d\lambda$$

$$\leq \int_{s} \phi(\frac{|C_{T}f|}{||C_{T}f||_{\phi}}) d\lambda \leq 1$$

This shows that

$$|C_T f||_{\phi} \ge \epsilon ||f||_{\phi} \forall f \in L^{\phi}$$

But ker $C_T = L^{T}(\Omega|s)$. It follows that C_T has closed range. Conversely suppose C_T has closed range. Then there exists δ> such

$$||C_T f||_{\phi} \ge \delta ||f||_{\phi}$$
 for every $f \epsilon L^{\phi}(s)$ (2)

For each $n \in H$, define

$$H_n = \{x \in s : \frac{1}{(n+1)^2} \le f_0(x) \le \frac{1}{n^2}\}$$

Set
$$H = \{n : \lambda(H_n) > 0\}$$

Let

$$f = \sum_{n \in H} \phi^{-1} \left(\frac{1}{\lambda(H_n)}\right) C_T \chi_{H_n}$$

Then

$$\int_{\Omega} \phi(f) d\lambda = \sum_{n \in H} \int \phi(\phi^{-1}(\frac{1}{\lambda(H_n)}) C_T \chi_{H_n}) d\lambda$$

$$= \sum_{n \in H} \int \frac{1}{\lambda(H_n)} C_T \chi_{H_n} d\lambda$$
$$= \sum_{n \in H} \frac{1}{\lambda(H_n)} \int_{H_n} f_0 d\lambda$$
$$\leq \sum_{n \in H} \frac{1}{n^2} < \infty$$

Using (2) we see that $f_1 \in L^{\varphi_1}(S)$, where

$$f_1 = \sum_{n \in H} \phi^{-1} \frac{1}{\lambda(H_n)} \chi_{H_n}$$

But

$$\int_{\Omega} \phi(f_1) d\mu = \sum_{n \in H} \int \phi(\phi^{-1}(\frac{1}{\lambda(H_n)})\chi_{H_n}) d\lambda$$

$$= \sum_{n \in H} \int \frac{1}{\lambda(H_n)} \chi_{H_n} d\lambda$$
$$= \sum_{n \in H} \int_{H_n} \frac{1}{\lambda(H_n)} d\lambda = \sum_{n \in H} 1 = \infty$$

IfIH is an infinite set. Hence H must be a finite set. Therefore there exists n_0 such that $n \ge n_0$ implies $\lambda(H_n) = 0$. Thus

$$\delta_0(x) > \frac{1}{n_0^2} = \delta \text{ (say) } \forall x \in s$$

4. Fredholm Composite Operators on Atomic **Orlicz Space**

Theorem 4.1: Let $C_T \in B(L^{\varphi}(\lambda))$. Then C_T is fredholm if and only if (1) $\Omega \setminus T(\Omega)$ is a finite set. (II) $\{x: pT^{-1}(x) > 2\}$ is a finite set. (III) There exists $\delta > 0$ such that $f_0(x) \ge \delta$ $\forall x in S$.

Proof: Since $\ker C_T = L^{(\Omega)}(\Omega)$, it follows that $\ker C_T$ is finite dimensional if and only if Ω is a finite set. Then C_T has dense range if and only if the condition (III) holds. We need only to prove that $L^{\varphi}(\Omega|ranC_T)$ is finite dimensional if and only if the condition (II) holds. Suppose T $({x})-{x_1,x_2,...,$ $x_n \in \operatorname{ranC}_T$ for some $x \in \Omega$. Clearly $C_T \chi_{\{n\}} = \chi_{\{x_1, x_2, \dots, x_n\}}$. It can be easily seen that E = span{ χ_{x_i} : 1 $\leq i \leq n$ } is n-dimensional. Moreover there are n -1 vectors $g_1, g_2...g_{n-1}$ which are linearly independent as well as linearly independental of the vectors $\chi_{\{x_1,x_2\ldots x_n\}} in$ E. It can be easily seen that $\{f_{1}\ +\ ranC_{T}\ ,\ ...f_{n-1}\ +\ ranC_{T}\ \}are linerly$ independental vectors in $L^{(\lambda)}(\lambda)$ ran C_{T} . Hence it shows that $L^{^{\phi}}(\lambda)|\text{ran}C_{_{\mathrm{T}}}$ is finite dimensional if and only if the set $\{x||\; pT$ $(x) \ge 2$ is a finite set.

Example 4.2: Let $\alpha \in N$, $\Omega = N$, S = P(N) $\lambda(\{n\}) = \alpha^{2n} 0 < \alpha < 1$

Define $T_q: N \to N$ by

Volume 6 Issue 2, February 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

$$T_{\alpha}(m) = \begin{cases} (n-1)\alpha & \text{if } m = n\alpha \in E \\ m & \text{if } m \notin E \end{cases}$$

where E = { α n: n \in N\{ α }} Then $T_{\alpha}^{-1}(\{m\}) = \begin{cases} m & \text{if } n \notin E \\ (n+1)\alpha & \text{if } m = n\alpha \in Eforn \neq 1 \end{cases}$

But N|E is an infinite set. Therefore $\{n : \lambda T_{\alpha}^{-1}(\{n\}) > \frac{1}{2}\lambda(n)\}$ is an infinite set. Hence $C_{T_{\alpha}}$ cannot be compact.

Example 4.3 Let $\Omega = N, \alpha > 1, a > 1$

$$\begin{split} \lambda(\{n\}) &= a^{\alpha n} \\ Define \ T_{\alpha} : N \to N \ by \ T_{\alpha}(n) &= n\alpha \\ T_{\alpha}^{-1}(\{m\}) &= \begin{cases} \phi & if \ m \neq n\alpha \\ \frac{n}{\alpha} & if \ m = n\alpha \end{cases} \\ \lambda T_{\alpha}^{-1}(\{m\}) &= 0 or \frac{a^{m}}{a^{\alpha m}} \\ &= \frac{1}{a^{(\alpha-1)m}} \to 0 \ as \ m \to \infty \end{split}$$

Hence the set {m: $\lambda T_{\alpha(\{m\})}^{-1} \ge \lambda(m)$ } is a finite set. Therefore $C_{T_{\alpha}}$ is a compact operator for any integer $\alpha \ge 1$. Example 4.4 Let $\alpha \in N$, $a \ge 1$ be an integer, Define $\lambda(\{n\}) = a^{an}$ for each $n \in N$ Let T_{α} : $N \to N$ as

$$T_{\alpha}(m) = \begin{cases} \alpha & \text{if } m \leq \alpha \\ m+1 & \text{if } m > \alpha \end{cases}$$

Then

$$f_0(m) = \frac{\lambda T^{-1}(\{m\})}{\lambda(\{m\})} = \frac{a^{\alpha(n-1)}}{a^{\alpha n}} = \frac{1}{2}$$

for all m> α . Hence C_T has closed range. Clearly dim kerC_T =

 α and dim L^{ϕ}(Ω)—ran C_T = α – 1 Hence C_{T_{\alpha}} is fredholm for each α . Clearly C_{T_{\alpha}} is not invertible.

References

- J. B. Conway: A course in functional Anatysis, Springer Ver-lag, New York (1985)
- [2] H. Takagi: Fredholm weighted Composition operators, Integral equations and operator theory 16 (1993) 267-276.
- [3] A. Kufner, O. John and S. Fuick: Function Spaces, Academia Prague, 1977.
- [4] M. M. Rao and Z.D.Ren: The theory of orlicz spaces, Marcel Dekker, Inc. New York (1991).
- [5] B. S. Komal and Shally Gupta: Multiplication operators between Orlicz spaces, Integral equations and operator theory 41(2001)324-330.
- [6] Shally Gupta and B. S. Komal: Operators of composition on Orlicz sequence spaces International Mathematical forum Vol 7, 2012, no. 6, 259-264.
- [7] H. Hudzik, Ar{ italic chi }, Math 44(1985) 535-538

): 2319