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Abstract: The research presents a formulation for optimum design of partially prestressed concrete beams based on elastic analysis. 

The optimum design is selected to satisfy the limitations of ACI-Code 2014. The objective function is the cost of the beam. The design 

variables are the cross-sectional dimensions, the area of strands, and the additional ordinary reinforcement area used. The constraints 

represent inequality limitations on stresses, ultimate strength capacity, shear, deflection, and practical considerations according to the 

design requirements. The optimization problem is formulated for several sections like; rectangular, symmetrical I-, T-, and 

unsymmetrical I-section. The formulation of the optimization problem has been made by utilizing the sequential unconstrained 

minimization technique (SUMT). The procedure could be used practically by structural engineers. 
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1. Introduction 
 

No one type of structural medium can offer the perfect 

solution to all design situations. However, partially 

prestressed concrete does offer a number of distinct 

advantages over ordinary reinforced and prestressed concrete 

and these advantages do lead to the choice of partially 

prestressing as a viable design solution. 

 

Partially prestressed concrete construction uses prestressed, 

or a combination of prestressed and nonprestressed, 

reinforcement. Partially prestressed concrete falls between 

the limiting cases of conventionally reinforced concrete and 

fully prestressed concrete, which allows no flexural tension 

under service loads.  When flexural tensile stresses and 

cracking are allowed under service loads, the prestressed 

members have historically been called partially prestressed.  

ACI 318-14 [1] defines prestressed concrete as “concrete in 

which internal stresses have been introduced to reduce 

potential tensile stresses in concrete resulting from service 

loads.” The design formulas for ultimate load are identical if 

the yield stress (fy) used for reinforced concrete is replaced 

by the stress fps of prestressing steel. 

 

Since different degrees of prestress are possible according to 

the above definition, beams of various properties can be 

obtained. These properties can be represented by a family of 

load-deflection curves (see Figure 1) for under-reinforced I-

beams with well bonded steel. Type (i) shows a member, 

which is overprestressed to such an extent, that it would 

crack and fail simultaneously. Type (ii) represents a so-called 

“fully” prestressed beam, which remains in compression 

under service load. Type (iii) depicts a “partially” prestressed 

member in which concrete tensile stresses of desired 

magnitude occur and cracks of any desired nature may 

develop under service load. Whereas type (iv) represents an 

ordinary reinforced or prestressed concrete member in which 

the initial prestress has become ineffective. All these types of 

beams have approximately the same failure load. 

 

 
Figure 1: Family of load-deflection curves of reinforced and 

prestressed concrete beams 

 

Various kinds of partially prestressed concrete beams may be 

considered, depending on one of the following conditions: 

whether the member remains in compression under dead load 

and visible cracks are avoided even under service load: Type 

(a); or whether temporary cracks of limited width may 

develop under service load, which close on its removal: Type 

(b); or whether permanent open cracks of limited width may 

occur: Type (c). This later case is based on the consideration 

that if this type is allowed in ordinary reinforced concrete it 

should also be permitted in prestressed concrete. However, 

the objection may be made that prestressing steel is more 

sensitive to corrosion than ordinary reinforcing steel. Experts 

have different opinions. Nevertheless, there is an advantage 

to partial (or call it “limited”) prestressing because cracks can 

be limited to a much greater extent than with ordinary 

reinforced concrete. 

 

Prestressing can be achieved by different tendon 

configurations as shown in Figure 2. 
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Figure 2: Tendon configurations 

 

Among the various concrete structures, the structural 

component, which will benefit most from an optimization 

procedure, is the simply supported, partially prestressed 

concrete beam. In fact, this element is mass-produced, and it 

is clear that even minor savings on a single beam could result 

in a substantial cost reduction. Despite such an incentive for 

research on the optimization of prestressed concrete beams, 

this area has received surprisingly little attention [2]. 

 

Naaman [3] studied the optimization of prestressed concrete 

tensile members with two variables, cross-sectional area and 

area of steel. He showed that both the objective function and 

the constraints have a linear form. 

 

This study presents a comprehensive solution to the nonlinear 

optimization of a simply supported, partially prestressed 

concrete beam with unsymmetrical cross section. Design 

problems will be optimized assuming cracked and uncracked 

sections. Qualitative and quantitative conclusions regarding 

the behavioral characteristics of some design parameters and 

their interplay will be discussed, and a cost comparison will 

be made with actual designs. 

 

It is appropriate to mention that while the current literature 

defines partial prestressing as a process in which tensile 

stresses and cracking are allowed to occur in a prestressed 

beam, the author adopt Naaman’s [4] proposed definition 

which is somewhat different (“A necessary and sufficient 

condition for a member to be called partially prestressed is to 

contain prestressed and non-prestressed reinforcement 

intended to resist external loads of the same nature.”) and 

will differentiate between cracked and uncracked partially 

prestressed beams. 

 

2. ACI Code Design Assumptions  
 

Partially prestressed beams are permitted by most design 

specifications. While ACI Code does not mention partial 

prestressing explicitly, the Code permits the computed stress 

in tension to pass '
cf , well above the usual modulus of 

rupture, in ordinary design of prestressed members. 

Furthermore, equations for flexural strength in ACI Code and 

Commentary account explicitly for the presence of both 

nonprestressed and prestressed flexural tension steel. 

ACI Code classified prestressed flexural members as Class 

U, Class T, or Class C based on the computed extreme fiber 

stress in tension in the precompressed tensile zone calculated 

at service loads using gross section properties (ft) as follows: 

(a) Class U: 
'62.0 ct ff   

(b) Class T: 
'' 0.162.0 ctc fff   

(c) Class C: 
'0.1 ct ff   

It can be seen that the Code defines three classes of behavior 

of prestressed flexural members; Class U members are 

assumed to behave as uncracked members. Class C members 

are assumed to behave as cracked members. The behavior of 

Class T members is assumed to be in transition between 

uncracked and cracked. 

 

For Class U and Class T flexural members, stresses at service 

loads shall be permitted to be calculated using the uncracked 

section. For Class C flexural members, stresses at service 

loads shall be calculated using the cracked transformed 

section. 

 

3. Problem Formulation 
 

The method has been formulated for a general I-shaped cross 

section with six geometrical design variables denoted by x1 

through x6, see Figure 3. Also three other variables x7, x8, 

and x9, representing the area of prestressing steel, the area of 

bottom tensile steel, and the area of top compressive steel 

respectively, were used. It is assumed that for maximum 

efficiency the eccentricity takes its largest allowable value at 

mid-span (with minimum concrete cover), and that the initial 

prestressing stress (after prestress transfer) is also at its 

maximum allowable value of 0.70fpu [ACI 318-14]. 
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Figure 3: Geometrical and steel design variables in a general 

I-shaped cross section 

 

The cost function to be minimized is denoted by Z and the 

constraint functions by g(x). The optimization problem can 

thus be written as: 

 

osospspscc CLACLACLAZ ......                         (1) 

 

in which Ac, Aps, Aos are the concrete cross-sectional area, 

prestressed strand area, ordinary reinforced steel area 

respectively; L the length of the beam; and Cc, Cps, Cos the 

cost of concrete, prestressed strand, ordinary reinforced steel. 

The costs of forming, casting concrete, and shear 

reinforcement are not included. 

Subjected to 0)( xgi     i = 0, 11     and 0ix     i = 0, 9. 

The following behavior constraints were considered: 

1) Flexural stresses (four). 

2) Initial camber. 

3) Dead load deflection. 

4) Live load deflection. 

5) The final deflection. 

6) Ultimate moment capacity of the section with 

reference to the factored load and the cracking          

moment. 

7) Shear strength. 

 

4. Derivation of Constraints Inequalities 
 

4.1 Normal stresses 

 

There are two critical loading stages that the section will 

experience. The first is the transfer stage which is the 

application of the self-weight effects simultaneously with the 

prestressing force. The second stage, working (service) load, 

occurs with the addition of the full superimposed load (live 

load plus dead load added after transfer). The acting of a load 

on a typical partially prestressed simply supported beam at 

the critical section (end of pre-tension beam at the transfer 

stage and mid span of pre-tension beam at the working load 

stage and post-tension beam at both stages) with the stress 

distribution is illustrated in Figure 4. The initial top (denoted 

by 1) and bottom (denoted by 2) stresses are then 

respectively given by: 
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where Pi is the initial prestressing force, c1 and c2 are the 

distance between the neutral axis and the top and bottom 

fibers respectively, Ig is the moment of inertia of the 

uncracked cross section, r is the radius of gyration, Ms is the 

moment caused by beam’s own self weight, and  










tensionpostfor

tensionprefor

1

0
   

 
Figure 4: Stress distribution at the critical section 

 

It must be noted that the sign convention is the tensile stress 

is positive and the compressive stress is negative, the 

eccentricity is considered positive when it lies below the 

centroid. 

At working stage, assuming an uncracked section, the 

flexural stresses at the top and bottom fibers are respectively 

given by: 
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in which Pe is the effective prestressing force (remaining after 

all losses take place), and Md and Ml are the dead and live 

load moments. If f2 exceeds the concrete modulus of rupture 

(fr), then f1 should be computed on the basis of cracked 

section and f2 will be zero. Nilson [5] has shown that in such 

a case the compressive stress is given by: 
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and c1
*
 is the distance from the top of the member to the 

centroid of the cracked concrete section. 
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It would be important to make a distinction between the 

prestress force of the tendon and the reduction of the 

concrete force which is equal to the loss of prestress plus the 

force in non-tensioned steel. Thereby, prestress losses are 

strongly affected by the presence of non-tensioned steel. 

Top and bottom fiber normal stresses should be within the 

allowable limits specified by ACI 318-14, resulting in the 

following inequality constraints: 
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In which fti and fci are the allowable tensile and compressive 

initial stresses and fts and fcs are the allowable tensile and 

compressive service stresses. 

 

It should be noted that when the section is uncracked (f2s less 

than the modulus of rupture), f1s is computed from Equation 

(4). When the section is cracked, f1s is computed from 

Equation (6), and g(4) is assigned an arbitrary large value. 

Permissible stresses in concrete and prestressing steel: 

1) The stresses in concrete immediately after prestress 

transfer (before time dependent prestress losses) shall not 

exceed the following: 

a. Extreme fiber stress in compression 

……………………….…..….... '6.0 cif  

b. Extreme fiber stress in tension except as permited in 

c……………………….…….
'25.0 cif  

c. Extreme fiber stress in tension at ends of simply 

supported members…………
'5.0 cif  

2) The stresses in concrete at service loads (after allowance 

for all prestress losses) shall not exceed the following: 

a. Extreme fiber stress in compression due to prestress plus 

sustained loads ……... '45.0 cf  

b. Extreme fiber stress in compression due to prestress plus 

total load …… ………
'6.0 cf  

c. Extreme fiber stress in tension in precompressed tensile 

zone ……………….…
'62.0 cf  

Tensile stress in prestressing steel shall not exceed the 

following: 

Immediately after prestress transfer........ 0.82fpy but not 

greater than 0.74fpu. 

 

4.2 Deflection constraints 

 

The deflections at initial stage and long-term are considered 

as an important phase for the design of partially prestressed 

concrete beams. The initial stage is occurred when the beam 

is acted upon by the initial prestress force (Pi) and its own 

weight. After this stage the deflection is modified due to 

prestressing losses and to the developed deflections due to 

concrete creep under sustained loads and shrinkage. The 

downward deflection of the beam caused by its own self 

weight is: 
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This deflection is opposed by an initial upward camber 

caused by the prestressing cable given by: 
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The initial camber stage occurred due to the initial prestress 

and the self-weight of the beam [6]. 

ispii                                              (15) 

where i  is the allowable initial upward camber (negative 

value). 

Then the inequality constraint becomes: 
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The dead load (beam’s self-weight and all additional dead 

load) deflection, without time dependent effects, is: 
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Shaikh and Branson [7] showed that the Ie method can be 

used to compute deflections of partially prestressed beams 

loaded above the cracking load. For this case, the cracking 

moment must take into account the effect of prestress. 

Finally, it can be shown [6] that the long term dead load 

deflection, after all losses and creep when the effective 

prestress force and the dead load act, can be adequately 

calculated from: 
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in which Cu is the creep coefficient and 
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With d  (positive downward) as the maximum allowable 

long term dead load deflection, the constraint becomes: 
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Another constraint on the live load deflection should be 

considered: 
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where l  is the deflection due to superimposed live load, 

and l  is the allowable live load deflection. 

 

The final deflection position of the beam will be the 

combination of the above stages as follows [6]: 

 ld                                                    (24) 

 

where   is the maximum allowable deflection. 

 

Then the inequality constraint becomes: 
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ACI Code state that immediate deflections of Class U 

prestressed concrete members may be calculated by the usual 

methods or formulas for elastic deflections using the moment 

of inertia of the gross (uncracked) concrete section. While for 

Class C and Class T flexural members deflection calculations 

shall be based on a cracked transformed section analysis. It 

shall be permitted to base computations on a bilinear 

moment-deflection relationship, or an effective moment of 

inertia (Ie). 

 

Additional long-term deflection of prestressed concrete 

members shall be computed taking into account stresses in 

concrete and steel under sustained load and including effects 

of creep and shrinkage of concrete and relaxation of steel. 

The Code requires that “bilinear moment-deflection 

relationships” be used to calculate instantaneous deflections 

of prestressed concrete members when the bottom tension 

exceeds 
'62.0 cf . This means that the deflection before the 

member has cracked is calculated using the gross (uncracked) 

moment of inertia (Ig) and the additional deflection after 

cracking is calculated using the moment of inertia of the 

cracked section [8]. This is illustrated graphically in Figure 5. 

 
Figure 5: Bilinear moment-deflection relationship 

 

The Code allows an alternative to the method of calculation 

described in the previous paragraph. An effective moment of 

inertia (Ie) can be determined and the deflection then 

calculated by substituting Ie for Ig in the deflection 

calculation. The difference between the bilinear method and 

the Ie method is illustrated in Figure 6. 

 

 
Figure 6: The difference between the bilinear method and 

the Ie method 

 

Mast [9] gave additional information on the deflection of 

cracked prestressed concrete members. 

 

4.3 Ultimate moment capacity 

 

Naaman [10] showed that two relations exist between fps and 

ps . The first is of the form: 

DC
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A
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where A, B, C, and D are parameters depending on material 

characteristics, effective prestress, mild steel reinforcement, 

and properties of the section. The derivation of this equation 

is based on equilibrium consideration with linear strain 

distribution at failure. 

The other relationship, between fps and ps , is the one 

experimentally derived for each type of prestressing 

reinforcement. Typically, such a curve is divided into three 

parts: linear, nonlinear, and linear. Using curve fitting 

techniques, equations for stress strain curves of prestressing 

strands and prestressing bars were determined by Naaman 

with a maximum error of 0.4% (Figure 7). 
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Figure 7: Stress strain relations [10] 

 

At failure, fps and ps  have to satisfy both equations 

simultaneously. To find the intersection of the two equations 

a numerical technique is employed. Once fps has been 

determined, then the ultimate moment capacity Mn can be 

easily computed. Four different expressions exist for Mn 

depending on whether there is an over or under-reinforced 

rectangular or T-section. For the sake of clarity those 

expressions will not be given here, but can be found in [10]. 

Once Mn has been determined, then the inequality constraint 

with respect to the cracking moment becomes 
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and the inequality constraint with respect to the ultimate 

applied moment (Mmax) becomes 
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4.4 Shear strength 

 

The critical section for shear is assumed to occur at L/4 from 

the support [6]. The resisting nominal shear, provided by 

concrete Vc, is given by: 

 cicwc VVV ,min                                                  (28) 

 

where Vcw is the nominal shear strength corresponding to 

web shear cracking. This is given by [1]: 
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  is the slop of the tendon at the considered section, Vp is 

the vertical component of the effective prestress: 

sin.ep PV                                                           (30) 

Vci is the flexure-shear strength and is given by [1]: 
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Since there are no design provisions for shear reinforcement, 

Vc is arbitrarily increased by 20% to reflect the increased 

strength, which could easily be provided by vertical 

reinforcements. With Vmax, the ultimate shear at L/4 is given 

by: 

4
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and the shear constraint becomes 

  0111
max


V

V
g c                                               (33) 

 

4.5 Design constraints 

 

In addition to the eleven behavior constraints, there were nine 

geometrical constraints. The first required that the web width 

be greater than 75 mm, and the other eight simply required 

each physical dimension (except the web width) to remain 

positive [g(13) – g(20)]. 

 

5. Optimization Procedure 
 

The minimum cost for the design of partially prestressed 

concrete beams is the objective. Two types of objective 

functions are considered in this study: the first one is for a 

beam with predefined cross sectional dimensions, while the 

second one is for a beam with variable cross sectional 

dimensions. 

 

The constraints indicated above and the objective function 

are then used to define a non-linear program. The solution is 

carried out using the sequential unconstrained minimization 

technique (SUMT) algorithm to minimize the objective 

function and to get the optimum solution of the design 

variables. 

 

In this study, the interior penalty function has been used with 

all constraints are inequalities: 
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j j xg
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The function is minimized for a decreasing sequence of 

values of r [11]. To accelerate the optimum operation and 

convergence the ),( rx  to the real function )(xf  a 

reduction factor on r has been used: 

10
1

k
k

r
r                                                                 (35) 

 

where k is the iteration number. 

 

A computer program for the optimum design of partially 

prestressed concrete beams has been written in Microsoft 

Quick Basic version 4.5 to comprise the formulation of 

optimization presented in this study. The optimum solution 

shall need several attempts to ensure the optimality. 
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6. Applications 
 

6.1 Constant dimensions 

 

One of Hamorabi Company prestressed concrete I-beam for 

highway bridges was investigated. Its dimensions and 

properties are shown in Figure 8. The beam is optimized as 

uncracked section with predefined dimensions. The original 

beam is designed to carry a bending moment equals 750 

kN.m. 

 
Figure 8: Dimensions and properties of one of Hamorabi 

prestressed concrete I-beam for highway bridges. 

 

Figure 9 shows the variation in the cost of one beam as the 

prestressed strand replaced gradually by ordinary 

reinforcement for different ordinary reinforcement cost to 

prestressed strand cost ratios. It can be seen that replacing the 

prestressed strand with ordinary reinforcement when the ratio 

is more than 1/1.75 can reduce the cost of the beam. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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C
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t

 
Figure 9: The variation in the cost 

 

6.2 Variable dimensions 

 

For partially prestressed concrete beam with rectangular 

cross section and has compression reinforcement, the 

ultimate moment capacity equals to: 

21 nnn MMM                                                    (36) 

where 

).(. ''
1 ddordfAM pysn                                    (37) 

)
2

.(.)
2

.(.)
2

.(. '
2

a
dordfA

a
dfA

a
dfAM pysysppspsn      (38) 

bf

fAfAfA
a

c

yssspsps

.85.0

...

'

'
                                  (39) 

To design a rectangular beam to carry a specific ultimate 

moment capacity (Mu), the beam was optimized with variable 

cross sectional dimensions. The beam is optimized as an 

uncracked and cracked section. The final design variables 

and cost of the uncracked and cracked sections are indicated 

in Tables 1 and 2 respectively for seven deferent ultimate 

moment capacities. It should be noted that the final stresses 

and deflection could easily be obtained from the program. 

 

Table 1: Final values of the design variables and the cost, 

uncracked section 
Mu 

(kN.m) 

b 

(mm) 

D 

(mm) 

Aos 

(mm2) 

Aps 

(mm2) 

Cost 

(units) 

50 200 600 80 75 9.312 

100 200 740 100 100 11.568 

150 240 780 100 150 14.664 

200 280 800 100 200 17.580 

250 360 780 125 275 22.074 

300 400 800 125 325 24.917 

350 460 800 150 375 28.926 

 

Table 2: Final values of the design variables and the cost, 

cracked section 
Mu 

(kN.m) 

b 

(mm) 

d 

(mm) 

Aos 

(mm2) 

Aps 

(mm2) 

Cost 

(units) 

50 200 380 100 125 6.246 

100 200 520 150 150 8.502 

150 200 600 100 225 9.858 

200 200 660 100 275 10.914 

250 200 740 125 300 12.192 

300 200 780 175 325 13.171 

350 220 800 200 350 14.604 

 

Table 3 shows comparisons between the costs for uncracked 

and cracked sections for the seven deferent ultimate moment 

capacities. It can be notice that the design of the beam as a 

cracked section has the benefit of reducing the cost from 

27%-50%. 

Table 3: comparisons between the costs 

Mu 

(kN.m) 

Cost (units) 
Benefit 

(%) 
uncracked 

section 

cracked 

section 

50 9.312 6.246 32.925 

100 11.568 8.502 26.504 

150 14.664 9.858 32.774 

200 17.580 10.914 37.918 

250 22.074 12.192 44.768 

300 24.917 13.171 47.141 

350 28.926 14.604 49.513 

 

7. Conclusions 
 

Using the SUMT algorithm to minimize the objective 

function, the optimum design of partially prestressed, simply 

supported concrete beams with several sections has been 

presented. For a beam with constant dimensions, a reduction 

in the cost of the beam can be gained when replacing the 

prestressed strand with ordinary reinforcement when the ratio 

of costs is more than 1/1.75. For sections with variable 

dimensions, cost reduction ranged from 27%-50%. 
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