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Abstract: The architectures and learning procedures underlying ANFIS (Adaptive  Network-based Fuzzy Inference System) and M-

ANFIS (Mamdani- ANFIS) were presented and successfully applied in many fields of science areas. Based on principles of ANFIS and 

M-ANFIS, with the learning procedures of these two architectures, we proposed the so-called C-ANFIS (Constraint-ANFIS), being 

useful for training a fuzzy constraint network. 
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1. Introduction 
 

System modelling based on conventional mathematical tools 

(e.g., differential equations) is not well suited for dealing 

with ill-defined and uncertain systems [1-3,5,8, 9, 12]. By 

contrast, a fuzzy inference system employing fuzzy if-then 

rules can model the qualitative aspects of human knowledge 

and reasoning processes without employing precise 

quantitative analyses. 

 

Jyh-Shing Roger Jang et al. [1, 2, 3] suggested the so-called 

ANFIS (Adaptive-Network-based Fuzzy Inference System), 

which is a fuzzy inference system implemented in the 

framework of adaptive networks. By using learning 

procedures, especially the Hybrid learning procedure, ANFIS 

can construct an input-output mapping based on both human 

knowledge (in form of fuzzy if-then rules) and stipulated 

input-output data pairs. In simulation, this ANFIS 

architecture is employed to model nonlinear functions, 

identify nonlinear components on-linely, all yielding 

remarkable results. However, these effective schemas and 

learning procedures are based on fuzzy if-then rules. In fact, 

there exist some systems and functions which are needed to 

model not only based on fuzzy if-then rules, but also based 

on some specific types of constraints. ANFIS is successful 

with knowledge and data pairs in form of fuzzy if-then rules, 

but there is very seldom schemas (or even there is no) papers 

mentioned about how to deal with the systems which are 

based on some specific types of constraint, included. And, 

hence, this is now a hot problem interested by many 

researchers and scholars. 

 

This paper presented a method for training a fuzzy constraint 

network. Besides, we proposed the so-called C-ANFIS, 

which is better than ANFIS in dealing with those systems 

above. In particular, we also presented the learning procedure 

which can be applied for training a fuzzy constraint network. 

 

2. Preliminary Knowledge 
 

2.1. Adaptive-Network-based Fuzzy Inference System 

(ANFIS) 

 

2.1.1 . The Network architecture 

ANFIS was firstly proposed by Roger Jang et al. [1], which 

can serve as a basis for constructing a set of fuzzy if-then 

rules with appropriate membership functions to generate the 

stipulated input-output pairs. ANFIS can be described briefly 

as follows: 

 

For simplicity, we assume that the fuzzy inference system 

under consideration has two inputs x  and y; one output f. 

Suppose that the rule base contains two fuzzy if-then rules of 

Tagaki's and Sugeno's type: 

Rule 1: If x is A1 and y is B1 then f1=p1x+q1y+r1 

Rule 2: If x is A2 and y is B2 then f2=p2x+q2y+r2 

 

Then, the type-3 fuzzy reasoning and the corresponding 

equivalent ANFIS architecture (type-3 ANFIS) is shown as 

Figure 1: 

 

 
Figure 1: Type-3 fuzzy reasoning and Equivalent ANFIS 

 

The node functions in the same layer are of the same function 

family as described as below: 

 

Layer 1: Every node i in this layer is an adaptive node with a 

node function 

1, ( )
ii AO x , for i= 1, 2, or 
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21, ( )
ii BO y


  for i=3, 4.  

 

The membership function is chosen here is usually bell-

shaped, such as: 
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Layer 2: Every node in this layer is a fixed node labeled  

which multiplies the incoming signals and sends the product 

out. 

( );2, 1,2( ) x

Biii i A iO x        

 

Each node output represents the firing strength of a rule (In 

fact, any other T-norm operators that perform fuzzy AND 

can be used as the node function in this layer) 

 

Layer 3: Every node in this layer is a circle fixed node 

labeled N. The 
thi node calculates the ratio of the 

thi  rule's 

firing strength to the sum of all rules's firing strengths. 

 
3,

1 2

1,2;i
i i iO




 
   (Outputs of this layer 

usually be called as normalized firing strengths) 

 

Layer 4: Every node in this layer is an adaptive node with a 

node function 

 4, ( )i i i i i i iO f p x q y r       

where 
i  is output of layer 3 and { , , }i i ip q r  is the 

parameter set. Parameters in this layer will be referred to as 

consequent parameters. 

 

Layer 5: The single node in this layer is a fixed node labeled 

 , which computes the overall outputs as the summation of 

all incoming signals. 

  
5,1

i i
i i

i

f
O overll output f

i







   


  

 

2.1.2 . Learning procedures 

One of the most important thing of ANFIS is its abilities in 

learning and adapting by Hybrid learning procedure. The 

abilities of ANIFIS in learning and adapting were firstly 

given by Roger Jang et al. [1]. In this section, we will 

summary the basics of Hybrid learning of ANFIS. 

 

From the ANFIS architecture in Figure 1, it is observed that 

given the values of premise parameters, the overall output 

can be expressed as a linear combinations of the consequent 

parameters. More precisely, the output in Figure 1 can be 

written as: 

1 2
1 2 1 1 2 2

1 2 1 2

f f f f f
 

 
   

   
 

 

1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )x p y q r x p y q r          

 
 

which is linear in the consequent parameters (p1, q1, r1, p2, q2, 

r2). As a result, we have: 

+ S  =  set of total parameters 

+ S1  =  set of premise parameters 

+ S2  =  set of consequent parameters. 

 

Then S= S1  S2 , and there exist functions H() and F(,) 

are identify function and the function of fuzzy inference 

system, respectively.  

 

Therefore, the Hybrid learning algorithm can be applied 

directly. 

 

Forward pass: 

In the forward pass of the hybrid learning algorithm, node 

outputs go forward until layer 4 and the consequent are 

identified by the least-squares method. 

 

When the values of the premise parameters are fixed, the 

overall output can be expressed as a linear combination of 

the consequent parameters. 

1 2
1 2 1 1 2 2

1 2 1 2

f f f f f
 

 
   

   
   

   1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )x p y q r x p y q r          
 

f XW  

If  matrix X is invertible then 
1W X f  

Otherwise, a pseudo-inverse is used to solve for W. 
1( )T TW X X X f  

 

Backward pass 

In the backward pass, the error signals propagate backward 

and the premise parameters are updated by gradient descent. 

 ( 1) ( )ij ij

ij

E

p a
a t a t

 


      

where   is the learning rate for ija . The chain rule is used to 

calculate the partial derivatives used to update the 

membership function parameters. 
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The partial derivatives are derived as 
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The last partial derivative depends on the type of 

membership functions used. The parameters of the other 

membership functions are updated in the same fashion. 

 

The gradient is then obtained as 

 

1

( ) ij

ij

Ai i i i
n

ij A ij
i
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E p x q y r f w

a aw

e
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1
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Bi i i i
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b bw

e
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

   

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The consequent parameters thus identified are optimal (in the 

consequent parameter space) under condition that the 

premise parameter are fixed. Acoordingly the hybrid 

approach is much faster than the strict gradient descent and it 

is worthwhile to look for the possibility of decomposing the 

parameter set in the maner of 
1 2" "S S S   

 

Roger Jang et al. [1] also showed that the computation 

complexibility of the least squares estimate is higher than that 

of the gradient descent. In fact, there are four methods to 

update the parameters, listed as below base on their 

computation complexities: 

1) Gradient Descent Only: All parameters are updated by 

the gradient descent. 

2) Gradient Descent and One Pass of LSE: The LSE is 

applied only once at the very begining to get the initial 

values of the consequent parameters and then the gradient 

descent takes over to update all parameters. 

3) Gradient Descent and LSE: This is presented in detail by 

Roger Jang et al. in [1]. 

4) Sequential (Approximate) LSE Only: The ANFIS is 

linearized with respect to the premise parameters and the 

extended Kalman filter algorithm is employed to update 

all parameters. 

 

In applications, the choice of these four methods above 

should be based on the trade-off between computation 

complexity and resulting performance. 

 

The title of the paper is centered 17.8 mm (0.67") below the 

top of the page in 24 point font. Right below the title 

(separated by single line spacing) are the names of the 

authors. The font size for the authors is 11pt. Author 

affiliations shall be in 9 pt. 

 

2.2. Mamdani ANFIS (M-ANFIS) 

 

2.2.1 . The network architecture 

As given by Yuanyuan Chai et al. in [8, 9], a general M-

ANFIS is described in shortly as: 

Rule 1: If x is A1 and y is B1 then z1 is C1 

Rule 2: If x is A2 and y is B2 then z2 is C2 

The general model is displayed as Figure 2 

 

 
Figure 2: General model of Mamdani ANFIS 

 

Layer 1: Fuzzification layer 

   1, ( )
ii AO x , i=1, 2;  

21, ( )
ii BO x


 , i=3,4. 

the membership function is the generalized bell function 
2
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where {ci, i} (or {bi, ci, di}) is the parameters set referred to 

as premise parameters. 

 

Layer 2: Inference layer or Rule layer 

2, ( )
Biii i A xO    , i=1,2. (The firing strength i  

is generated with product method) 

 

Layer 3: Implication layer 

3, ; 1,2.i i iC iO     

 

(Implication operator is product) 

 

Layer 4: Aggregation layer 

; 1,2i iC iO      

 

Aggregation operator is sum. The consequent parameters are 

determined by iC . If the consequent membership function 

(MF) is trapezoidal MF, each MF has 4 nonlinear parameters 

to be adjusted. 

 

Layer 5: Defuzzification layer 

5 4D OO f    

The crisp output f is archieved with the defuzzification 

method, COA (center of Area). 

 

2.2.2 . Learning procedures 

Learning procedure presented by Yuanyuan Chai et al. [8] 

was applied the Gradient Descent method for all model 

parameters modifications and all these parameters are 

nonlinear parameters. When there is adequate training data, 

we can achieve M-ANFIS model. 

 

Weight updating formulas are very important for adjusting 

M-ANFIS model parameters. This can be conclude as follow: 

 

The task here is to minimize an overall error measure defined 

as: 
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( )
2

,
1

( )
N L

p k L k
k

E d x


   ; kd  is the 
thk  component of the 

thp desired output vector; ,L kx is the 
thk component of the 

predicted output vector produced by presenting the 
thp  input 

vector to the network. 

 

In order to minimize the overall error measure, we have to 

calculate the gradient vector, which is defined as the 

derivative of the error measure w.r.t. the parameter variables. 

 

In order to calculate the gradient vector, error signal must be 

obtained, which is defined as the derivative of the error 

measure w.r.t. the output of a neuron. Once we obtain the 

gradient vector by chain rules, we can conclude the 

parameters updating formula for the whole network. The 

main idea is to go along (learn) against the direction of the 

gradient vector, and update the parameters by learning rules, 

eventually we can minimize the overall error measure for 

network output. 

 

The weight updating formula in M-ANFIS 

i i

ij i

ij i ij ij

E E f f

x  
  

   


   
       ; 

next now

ij

E


 





   

Where: j<i, that is, ix  = )(i ij jf x    in which: 
if is 

the activation function of node i; x i  is the output of node i. 

 

The error signals 
i  are propagated from the output layer 

back to input layer, layer by layer. And, the error signals of 

each node can be derived by error signals in previous layer 

nodes. 

 

With assuming that ( )
j

j

i i
ij

ij

f f
or

x
x






 
 


, the weight 

updating formula is rewritten as  ij i jx   , the 

parameter updating formula for each node can be derived, 

and the weights in whole network can be updated. 

 

The general weight-updating formula is: 

( )
ij i i j

d x x    X   

where:   is learning step (learning rate), id  is the desired 

output for node i , ix  is the real output for node i , jx is the 

input for node i , X is a Polynomial (usually, X is  

(1 )i ix x  ). 

 

3. ANFIS-alike for training a Fuzzy Constraint 

network 
 

For simplicity, assume that given a fuzzy constraint network 

is displayed in Figure 3 as follow: 

 

 
Figure 3: A fuzzy constraint network 

wherein: A, A1, A2, B, B1, B2 are the fuzzy sets. 

 

We can consider that, this network has two constraints: 

Constraint (1) is the set of two fuzzy rules; and, Constraint 

(2) is a fuzzy equation. 

 

In this section, we described how to design a ANFIS-alike for 

training a fuzzy constraint network whose architecture was 

called as C-ANFIS. Besides, we also introduced its learning 

procedures and some experiments results. 

 

3.1. The network architecture 

 

The C-ANFIS architecture is designed by applying the 

Algorithm 1. "Designing the C-ANFIS architecture", step by 

step. 

 

Algorithm 1. Designing the C-ANFIS architecture 

The algorithm includes 4 steps descibing as followings: 

1) Deriving from Constraint (1) (set of the rules), design 

the architecture as the same as ANFIS 

2) Add the "Weakly satisfy" layer to the architecture 

3) Add the "Strongly satisfy" layer to the network 

architecture which is obtained in Step 1 

4) Finishing and completing the finally network 

architecture. 

 

Applying Algorithm 1, the network architect obtained after 

each step is descibed in detail as Figure 4. 

 
Figure 4: Network architecture obtained after applying 

Algorithm 1 

(A): Network architecture after applying step 1;  

(B): Network architecture after applying step 2 

(C): Network architecture after applying step 3;  

(D): Network architecture after applying step 4. 

* The C-ANFIS architecture 

 

As a result, the network architecture, which is obtained at the 

last step of applying Algorithm 1, is our proposed network 

architecture called as C-ANFIS. 
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Figure 5: The C-ANFIS architecture 

 

3.2. Outputs of the nodes in the network 
 

Straightforwardly, the node's outputs of the proposed 

network can be derived from M-ANFIS, as below: 

 

Layer 1: Fuzzification layer 

1, ; 1, 2( )
ii A iO x   

The membership function is generalized function as: 

 
2

1

1

( )
i i

i

i

A b
x c

d

x
 

  


 ; 

where { , , }i i ia b c is the parameter set referred to as premise 

parameters. 

Layer 2: Inference layer 

2, ( )
ii i AO x   , i=1,2. 

 

Layer 3: Implication layer. 

3, ( ) ( )
i ii i i A BO B x y    , i=1, 2.  

(The implication operator is product) 

 

Layer 4: Aggregation layer 

 4 1 i i iBO f      

1 1 2 2
( ) ( ) ( ) ( )A B A Bx y x y     , i=1, 2. 

 

Layer 5: "Weakly satisfy" layer 

 2
15,1 2 1( , )i i iB AA BfO   

 

  1

2
1 ,( ) ( ) ( ), ( )

i
i B A A B iy x x y    

  
 

T S  

 2
15, 2 3 1( , )i i iB AA BfO   

 

  2

2
1 ,( ) ( ) ( ), ( )

i
i B A A B iy x x y    

 
 

 T S  

 

Layer 6: "Strongly satisfy" layer 

6 5,1 5, 2 2 3( , ) ( , )O O O f f T T  

where: T is T-Norm operator, S is S-Norm (or T-Conorm) 

operator. T, S can be one of the four operators below: 

 

Minimum: min ( , ) min( , )T a b a b a b    

Algebraic product: ap ( , )T a b ab  

Bounded product: ( , ) 0 ( 1)bpT a b a b     

Drastic product: 

, 1

( , ) , 1

0, , 1

dp

a if b

T a b b if a

if a b




 
 

  

Maximum: max ( , ) max( , )S a b a b a b     

Algebraic sum: as ( , )S a b a b ab    

Bounded sum: ( , ) 1 ( )bsS a b a b     

Drastic product: 

, 0

( , ) , 0

1, , 0

ds

a if b

S a b b if a

if a b




 
 

  

(It is more intuitive if Tmin, Tap, Smax, Sas are selected.) 

 

Layer 7: Defuzzification layer 

7O y D f    

(Where:   is composition operator. It can be max-min 

composition or max-product composition. This operator is 

almost the same as matrix multiplication). 

 

The crisp output y is achieved with the defuzzification 

method, COA (Center of Area). 

 

3.3. Learning procedures 

 

It is simple to see that this network architecture is as same as 

the M-ANFIS architecture which is given by Yuanyuan Chai 

et al. Error! Reference source not found., hence, the 

learning procedure for this network architecture can be 

applied as the same as the one in Error! Reference source 

not found..  

 

The task is minimize an overall error measure defined as: 
( )

2

,
1

( )
N L

p k L k
k

E d x


    

kd  is the thk component of the thp desired output vector; 

,L kx is the thk component of the predicted output vector 

produced by presenting the thp input vector to the network. 

 

The weight updating formula in the network 

i i
ij i

ij i ij ij

E E f f

x  
      


   

     ; 

next now

ij

E


   




  

where: j<i, that is, )(i i ij jx f x    , in which: if  is 

the activation function of node i
 
and  xi is the output of node 

i. 

 

The error signals i  are propagated from the output layer 

(Defuzzification layer) back to "Strongly satisfy" layer, then 

propagated back to "Weakly satisfy" layer, then propagated 

back to "Aggregation" layer, and then, this propagation is 

propagated continuously till to input layer. 

With assuming that ( )i i
ij j

j ij

f f
or

x
x


 

 
 

, the weight 

updating formula, is rewritten as     
ij i jx   , the 
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parameter updating formula for each node can be derived, 

and the weights in whole network can be updated. 

 

The general weight-updating formula is: 

    ( )ij i i j Xd x x       

where:   is learning step (learning rate), id  is the desired 

output for node i , ix  is the real output for node i , jx is the 

input for node i , X is a Polynomial (usually, X  is 

(1 )i ix x  ). 

 

For the network architecture given above, this general 

weight-updating formula can be used for every layers in the 

network (including satisfy layers). 

 

4. Conclusions 
 

In this paper, a method for training a fuzzy constraint 

network is proposed. The so called C-ANFIS (Constraint-

ANFIS) was proposed, also. By applying the algorithm 

named "Designing the C-ANFIS", we can obtain the C-

ANFIS architecture deriving from ANFIS or M-ANFIS. We 

presented the way how to calculate the node's outputs of the 

network. Finally, a learning procedure was presented base on 

the basics of Hybrid learning procedures. 
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