
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Method for Training a Fuzzy Constraint Network

Huy-Khoi Do
1
, Thi-Xuan Tran

2
, Van-Nui Nguyen

3

1University of Information and Communication Technology (ICTU), Quyet Thang, Thai Nguyen, Vietnam

2University of Economics and Business Administration, Tan Thinh, Thai Nguyen, Vietnam

3,*University of Information and Communication Technology (ICTU), Quyet Thang, Thai Nguyen, Vietnam

Abstract: The architectures and learning procedures underlying ANFIS (Adaptive Network-based Fuzzy Inference System) and M-

ANFIS (Mamdani- ANFIS) were presented and successfully applied in many fields of science areas. Based on principles of ANFIS and

M-ANFIS, with the learning procedures of these two architectures, we proposed the so-called C-ANFIS (Constraint-ANFIS), being

useful for training a fuzzy constraint network.

Keywords: Fuzzy constraint network, ANFIS, M-ANFIS, C-ANFIS

1. Introduction

System modelling based on conventional mathematical tools

(e.g., differential equations) is not well suited for dealing

with ill-defined and uncertain systems [1-3,5,8, 9, 12]. By

contrast, a fuzzy inference system employing fuzzy if-then

rules can model the qualitative aspects of human knowledge

and reasoning processes without employing precise

quantitative analyses.

Jyh-Shing Roger Jang et al. [1, 2, 3] suggested the so-called

ANFIS (Adaptive-Network-based Fuzzy Inference System),

which is a fuzzy inference system implemented in the

framework of adaptive networks. By using learning

procedures, especially the Hybrid learning procedure, ANFIS

can construct an input-output mapping based on both human

knowledge (in form of fuzzy if-then rules) and stipulated

input-output data pairs. In simulation, this ANFIS

architecture is employed to model nonlinear functions,

identify nonlinear components on-linely, all yielding

remarkable results. However, these effective schemas and

learning procedures are based on fuzzy if-then rules. In fact,

there exist some systems and functions which are needed to

model not only based on fuzzy if-then rules, but also based

on some specific types of constraints. ANFIS is successful

with knowledge and data pairs in form of fuzzy if-then rules,

but there is very seldom schemas (or even there is no) papers

mentioned about how to deal with the systems which are

based on some specific types of constraint, included. And,

hence, this is now a hot problem interested by many

researchers and scholars.

This paper presented a method for training a fuzzy constraint

network. Besides, we proposed the so-called C-ANFIS,

which is better than ANFIS in dealing with those systems

above. In particular, we also presented the learning procedure

which can be applied for training a fuzzy constraint network.

2. Preliminary Knowledge

2.1. Adaptive-Network-based Fuzzy Inference System

(ANFIS)

2.1.1 . The Network architecture

ANFIS was firstly proposed by Roger Jang et al. [1], which

can serve as a basis for constructing a set of fuzzy if-then

rules with appropriate membership functions to generate the

stipulated input-output pairs. ANFIS can be described briefly

as follows:

For simplicity, we assume that the fuzzy inference system

under consideration has two inputs x and y; one output f.

Suppose that the rule base contains two fuzzy if-then rules of

Tagaki's and Sugeno's type:

Rule 1: If x is A1 and y is B1 then f1=p1x+q1y+r1

Rule 2: If x is A2 and y is B2 then f2=p2x+q2y+r2

Then, the type-3 fuzzy reasoning and the corresponding

equivalent ANFIS architecture (type-3 ANFIS) is shown as

Figure 1:

Figure 1: Type-3 fuzzy reasoning and Equivalent ANFIS

The node functions in the same layer are of the same function

family as described as below:

Layer 1: Every node i in this layer is an adaptive node with a

node function

1, ()
ii AO x , for i= 1, 2, or

Paper ID: ART20178985 DOI: 10.21275/ART20178985 1271

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

21, ()
ii BO y


 for i=3, 4.

The membership function is chosen here is usually bell-

shaped, such as:

 
2

1

1

()
i i

i

i

A b
x c

d

x
 

  


, or

2

() exp
1

2
i

i

i

A

x c
x




   
  

   

 

Layer 2: Every node in this layer is a fixed node labeled 

which multiplies the incoming signals and sends the product

out.

();2, 1,2() x

Biii i A iO x     

Each node output represents the firing strength of a rule (In

fact, any other T-norm operators that perform fuzzy AND

can be used as the node function in this layer)

Layer 3: Every node in this layer is a circle fixed node

labeled N. The
thi node calculates the ratio of the

thi rule's

firing strength to the sum of all rules's firing strengths.

3,

1 2

1,2;i
i i iO




 
  (Outputs of this layer

usually be called as normalized firing strengths)

Layer 4: Every node in this layer is an adaptive node with a

node function

 4, ()i i i i i i iO f p x q y r    

where
i is output of layer 3 and { , , }i i ip q r is the

parameter set. Parameters in this layer will be referred to as

consequent parameters.

Layer 5: The single node in this layer is a fixed node labeled

 , which computes the overall outputs as the summation of

all incoming signals.

5,1

i i
i i

i

f
O overll output f

i







   



2.1.2 . Learning procedures

One of the most important thing of ANFIS is its abilities in

learning and adapting by Hybrid learning procedure. The

abilities of ANIFIS in learning and adapting were firstly

given by Roger Jang et al. [1]. In this section, we will

summary the basics of Hybrid learning of ANFIS.

From the ANFIS architecture in Figure 1, it is observed that

given the values of premise parameters, the overall output

can be expressed as a linear combinations of the consequent

parameters. More precisely, the output in Figure 1 can be

written as:

1 2
1 2 1 1 2 2

1 2 1 2

f f f f f
 

 
   

   
 

1 1 1 1 1 1 2 2 2 2 2 2() () () () () ()x p y q r x p y q r          

which is linear in the consequent parameters (p1, q1, r1, p2, q2,

r2). As a result, we have:

+ S = set of total parameters

+ S1 = set of premise parameters

+ S2 = set of consequent parameters.

Then S= S1  S2 , and there exist functions H() and F(,)

are identify function and the function of fuzzy inference

system, respectively.

Therefore, the Hybrid learning algorithm can be applied

directly.

Forward pass:

In the forward pass of the hybrid learning algorithm, node

outputs go forward until layer 4 and the consequent are

identified by the least-squares method.

When the values of the premise parameters are fixed, the

overall output can be expressed as a linear combination of

the consequent parameters.

1 2
1 2 1 1 2 2

1 2 1 2

f f f f f
 

 
   

   
 

 1 1 1 1 1 1 2 2 2 2 2 2() () () () () ()x p y q r x p y q r          

f XW

If matrix X is invertible then
1W X f

Otherwise, a pseudo-inverse is used to solve for W.
1()T TW X X X f

Backward pass

In the backward pass, the error signals propagate backward

and the premise parameters are updated by gradient descent.

 (1) ()ij ij

ij

E

p a
a t a t

 


   

where  is the learning rate for ija . The chain rule is used to

calculate the partial derivatives used to update the

membership function parameters.

iji i

ij i i ij ij

f wE E f

a f f w a





   
    

     

The partial derivatives are derived as

21
()

2

tE f f  hence ()tE
f f e

f


  



1
i

n

i
f f


  hence 1

i

f

f






1

()i

i i i in

i
i

w
f p x q y r

w


  



 hence,

1

()i i i i
n

i
i

i

f p x q y r f

w w


   


 

1
ij

n

i A
i

w 


 hence
i i

ij ij

w w

 






Paper ID: ART20178985 DOI: 10.21275/ART20178985 1272

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The last partial derivative depends on the type of

membership functions used. The parameters of the other

membership functions are updated in the same fashion.

The gradient is then obtained as

1

() ij

ij

Ai i i i
n

ij A ij
i

i

E p x q y r f w

a aw

e





   


 

1

() ij

ij

Bi i i i
n

ij B ij
i

i

E p x q y r f w

b bw

e





   


 

The consequent parameters thus identified are optimal (in the

consequent parameter space) under condition that the

premise parameter are fixed. Acoordingly the hybrid

approach is much faster than the strict gradient descent and it

is worthwhile to look for the possibility of decomposing the

parameter set in the maner of
1 2" "S S S 

Roger Jang et al. [1] also showed that the computation

complexibility of the least squares estimate is higher than that

of the gradient descent. In fact, there are four methods to

update the parameters, listed as below base on their

computation complexities:

1) Gradient Descent Only: All parameters are updated by

the gradient descent.

2) Gradient Descent and One Pass of LSE: The LSE is

applied only once at the very begining to get the initial

values of the consequent parameters and then the gradient

descent takes over to update all parameters.

3) Gradient Descent and LSE: This is presented in detail by

Roger Jang et al. in [1].

4) Sequential (Approximate) LSE Only: The ANFIS is

linearized with respect to the premise parameters and the

extended Kalman filter algorithm is employed to update

all parameters.

In applications, the choice of these four methods above

should be based on the trade-off between computation

complexity and resulting performance.

The title of the paper is centered 17.8 mm (0.67") below the

top of the page in 24 point font. Right below the title

(separated by single line spacing) are the names of the

authors. The font size for the authors is 11pt. Author

affiliations shall be in 9 pt.

2.2. Mamdani ANFIS (M-ANFIS)

2.2.1 . The network architecture

As given by Yuanyuan Chai et al. in [8, 9], a general M-

ANFIS is described in shortly as:

Rule 1: If x is A1 and y is B1 then z1 is C1

Rule 2: If x is A2 and y is B2 then z2 is C2

The general model is displayed as Figure 2

Figure 2: General model of Mamdani ANFIS

Layer 1: Fuzzification layer

 1, ()
ii AO x , i=1, 2;

21, ()
ii BO x


 , i=3,4.

the membership function is the generalized bell function
2

1
()

2

exp i

i

Ai

x c
x


 

   
  

   

 , or

 
2

()
1

1
i i

i

i

A b
x c

d

x
 


  



where {ci, i} (or {bi, ci, di}) is the parameters set referred to

as premise parameters.

Layer 2: Inference layer or Rule layer

2, ()
Biii i A xO    , i=1,2. (The firing strength i

is generated with product method)

Layer 3: Implication layer

3, ; 1,2.i i iC iO   

(Implication operator is product)

Layer 4: Aggregation layer

; 1,2i iC iO   

Aggregation operator is sum. The consequent parameters are

determined by iC . If the consequent membership function

(MF) is trapezoidal MF, each MF has 4 nonlinear parameters

to be adjusted.

Layer 5: Defuzzification layer

5 4D OO f  

The crisp output f is archieved with the defuzzification

method, COA (center of Area).

2.2.2 . Learning procedures

Learning procedure presented by Yuanyuan Chai et al. [8]

was applied the Gradient Descent method for all model

parameters modifications and all these parameters are

nonlinear parameters. When there is adequate training data,

we can achieve M-ANFIS model.

Weight updating formulas are very important for adjusting

M-ANFIS model parameters. This can be conclude as follow:

The task here is to minimize an overall error measure defined

as:

Paper ID: ART20178985 DOI: 10.21275/ART20178985 1273

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

()
2

,
1

()
N L

p k L k
k

E d x


   ; kd is the
thk component of the

thp desired output vector; ,L kx is the
thk component of the

predicted output vector produced by presenting the
thp input

vector to the network.

In order to minimize the overall error measure, we have to

calculate the gradient vector, which is defined as the

derivative of the error measure w.r.t. the parameter variables.

In order to calculate the gradient vector, error signal must be

obtained, which is defined as the derivative of the error

measure w.r.t. the output of a neuron. Once we obtain the

gradient vector by chain rules, we can conclude the

parameters updating formula for the whole network. The

main idea is to go along (learn) against the direction of the

gradient vector, and update the parameters by learning rules,

eventually we can minimize the overall error measure for

network output.

The weight updating formula in M-ANFIS

i i

ij i

ij i ij ij

E E f f

x  
  

   


   
      ;

next now

ij

E


 







Where: j<i, that is, ix =)(i ij jf x   in which:
if is

the activation function of node i; x i is the output of node i.

The error signals
i are propagated from the output layer

back to input layer, layer by layer. And, the error signals of

each node can be derived by error signals in previous layer

nodes.

With assuming that ()
j

j

i i
ij

ij

f f
or

x
x






 
 


, the weight

updating formula is rewritten as ij i jx   , the

parameter updating formula for each node can be derived,

and the weights in whole network can be updated.

The general weight-updating formula is:

()
ij i i j

d x x    X

where:  is learning step (learning rate), id is the desired

output for node i , ix is the real output for node i , jx is the

input for node i , X is a Polynomial (usually, X is

(1)i ix x ).

3. ANFIS-alike for training a Fuzzy Constraint

network

For simplicity, assume that given a fuzzy constraint network

is displayed in Figure 3 as follow:

Figure 3: A fuzzy constraint network

wherein: A, A1, A2, B, B1, B2 are the fuzzy sets.

We can consider that, this network has two constraints:

Constraint (1) is the set of two fuzzy rules; and, Constraint

(2) is a fuzzy equation.

In this section, we described how to design a ANFIS-alike for

training a fuzzy constraint network whose architecture was

called as C-ANFIS. Besides, we also introduced its learning

procedures and some experiments results.

3.1. The network architecture

The C-ANFIS architecture is designed by applying the

Algorithm 1. "Designing the C-ANFIS architecture", step by

step.

Algorithm 1. Designing the C-ANFIS architecture

The algorithm includes 4 steps descibing as followings:

1) Deriving from Constraint (1) (set of the rules), design

the architecture as the same as ANFIS

2) Add the "Weakly satisfy" layer to the architecture

3) Add the "Strongly satisfy" layer to the network

architecture which is obtained in Step 1

4) Finishing and completing the finally network

architecture.

Applying Algorithm 1, the network architect obtained after

each step is descibed in detail as Figure 4.

Figure 4: Network architecture obtained after applying

Algorithm 1

(A): Network architecture after applying step 1;

(B): Network architecture after applying step 2

(C): Network architecture after applying step 3;

(D): Network architecture after applying step 4.

* The C-ANFIS architecture

As a result, the network architecture, which is obtained at the

last step of applying Algorithm 1, is our proposed network

architecture called as C-ANFIS.

Paper ID: ART20178985 DOI: 10.21275/ART20178985 1274

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: The C-ANFIS architecture

3.2. Outputs of the nodes in the network

Straightforwardly, the node's outputs of the proposed

network can be derived from M-ANFIS, as below:

Layer 1: Fuzzification layer

1, ; 1, 2()
ii A iO x 

The membership function is generalized function as:

 
2

1

1

()
i i

i

i

A b
x c

d

x
 

  


 ;

where { , , }i i ia b c is the parameter set referred to as premise

parameters.

Layer 2: Inference layer

2, ()
ii i AO x   , i=1,2.

Layer 3: Implication layer.

3, () ()
i ii i i A BO B x y    , i=1, 2.

(The implication operator is product)

Layer 4: Aggregation layer

 4 1 i i iBO f   

1 1 2 2
() () () ()A B A Bx y x y     , i=1, 2.

Layer 5: "Weakly satisfy" layer

 2
15,1 2 1(,)i i iB AA BfO   

  1

2
1 ,() () (), ()

i
i B A A B iy x x y    

  
 

T S

 2
15, 2 3 1(,)i i iB AA BfO   

  2

2
1 ,() () (), ()

i
i B A A B iy x x y    

 
 

 T S

Layer 6: "Strongly satisfy" layer

6 5,1 5, 2 2 3(,) (,)O O O f f T T

where: T is T-Norm operator, S is S-Norm (or T-Conorm)

operator. T, S can be one of the four operators below:

Minimum: min (,) min(,)T a b a b a b  

Algebraic product: ap (,)T a b ab

Bounded product: (,) 0 (1)bpT a b a b   

Drastic product:

, 1

(,) , 1

0, , 1

dp

a if b

T a b b if a

if a b




 
 

Maximum: max (,) max(,)S a b a b a b  

Algebraic sum: as (,)S a b a b ab  

Bounded sum: (,) 1 ()bsS a b a b  

Drastic product:

, 0

(,) , 0

1, , 0

ds

a if b

S a b b if a

if a b




 
 

(It is more intuitive if Tmin, Tap, Smax, Sas are selected.)

Layer 7: Defuzzification layer

7O y D f  

(Where:  is composition operator. It can be max-min

composition or max-product composition. This operator is

almost the same as matrix multiplication).

The crisp output y is achieved with the defuzzification

method, COA (Center of Area).

3.3. Learning procedures

It is simple to see that this network architecture is as same as

the M-ANFIS architecture which is given by Yuanyuan Chai

et al. Error! Reference source not found., hence, the

learning procedure for this network architecture can be

applied as the same as the one in Error! Reference source

not found..

The task is minimize an overall error measure defined as:
()

2

,
1

()
N L

p k L k
k

E d x


  

kd is the thk component of the thp desired output vector;

,L kx is the thk component of the predicted output vector

produced by presenting the thp input vector to the network.

The weight updating formula in the network

i i
ij i

ij i ij ij

E E f f

x  
      


   

    ;

next now

ij

E


   






where: j<i, that is,)(i i ij jx f x    , in which: if is

the activation function of node i

and xi is the output of node

i.

The error signals i are propagated from the output layer

(Defuzzification layer) back to "Strongly satisfy" layer, then

propagated back to "Weakly satisfy" layer, then propagated

back to "Aggregation" layer, and then, this propagation is

propagated continuously till to input layer.

With assuming that ()i i
ij j

j ij

f f
or

x
x


 

 
 

, the weight

updating formula, is rewritten as
ij i jx   , the

Paper ID: ART20178985 DOI: 10.21275/ART20178985 1275

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

parameter updating formula for each node can be derived,

and the weights in whole network can be updated.

The general weight-updating formula is:

 ()ij i i j Xd x x    

where:  is learning step (learning rate), id is the desired

output for node i , ix is the real output for node i , jx is the

input for node i , X is a Polynomial (usually, X is

(1)i ix x ).

For the network architecture given above, this general

weight-updating formula can be used for every layers in the

network (including satisfy layers).

4. Conclusions

In this paper, a method for training a fuzzy constraint

network is proposed. The so called C-ANFIS (Constraint-

ANFIS) was proposed, also. By applying the algorithm

named "Designing the C-ANFIS", we can obtain the C-

ANFIS architecture deriving from ANFIS or M-ANFIS. We

presented the way how to calculate the node's outputs of the

network. Finally, a learning procedure was presented base on

the basics of Hybrid learning procedures.

References

[1] Jyh-Shing Roger Jang, ANFIS: Adaptive-Network-Based

Fuzzy Inference System, IEEE Transactions on System,

Man, and Cybernetics, Vol. 23, No. 3, May/June 1993.

[2] Jyh-Shing Roger Jang, dept. of Computer Science,

National Tsing Hua University Hsinchu, Taiwan, Input

Selection for ANFIS Learning.

[3] Jyh-Shing Roger Jang and Chuen-Tsai Sun, Neuro-Fuzy

Modeling and Control, IEEE, 1995.

[4] Ching-Yu Tyan, Paul P.Wang, Dennis R.Bahler, and

Sathya P.Rangaswamy, A New Methodology of Fuzzy

Constraint-Based Controller Design via Constraint

Network Processing.

[5] James Bowen, Robert Lai, and Dennis Bahler, Dept. of

Computer Science, North Carolina State University,

USA, Fuzzy Semantics and Fuzzy Constraint Networks,

IEEE, 1992.

[6] K. Robert Lai and Yi-Yuan Chiang, Dept. of Computer

Science, Yuan Ze University, Taiwan, A Constraint-

based Framework for Incorporating A Priori

Knowledge into Fuzzy Modelling, IEEE, 2008.

[7] D. Dubois, H. Prade, and L. Ughetto, A New Perspective

on Reasoning with Fuzzy Rules, Springer-Verlag Berlin

Heidelberg 2002.

[8] Yuanyuan Chai, Limin Jia, and Zundong Zhang,

Mamdani Model based Adaptive Neural Fuzzy Inference

System and its Applications, World Academic of

Science, Engineering and Techonology 51 2009.

[9] Yuanyuan Chai, Limiin Jia, Zundong Zhang, Mamdani

Model based Adaptive Neural Fuzzy In-ference System

and its Application in Traffic Level of Service

Evaluation, 2009 sixth International Conference on

Fuzzy Systems and Knowledge Discovery.

[10] Bryan Davis, University of Florida, System modeling

using a Mamdani rule base.

[11] Deepak R.Keshwani, David D.Jones, George E.Meyer,

and Rhonda M.Brand, Rule-based Madani-type fuzzy

modeling of skin permeability, Elsevier, 2007.

[12] Robert Babuska and Henk Verbruggen, Delft University

of Technology, Netherlands, Neuro-fuzzy methods for

nonlinear system identification, Annual Reviews in

Control 27, Elsevier, 2003.

[13] Oliver Elles, Martin Fischer, and Bernd Muller, Institute

of Automatic Control Laboratory of Con-trol

Engineering and Process Automation, Germany, Fuzzy

Rule Extraction by a Genetic Algorithm and Constrained

Nonlinear Optimization of Membership Functions,

IEEE, 1996.

[14] David Lesaint, Intelligent System Lab, BTexact

Technologies, BT France, France, Inferring Con-straint

Types in Constraint Programming, Springer-Verlag

Berlin Heidelberg 2002, CP 2002, LNCS 2470, pp. 492-

507, 2002.

[15] G. Castellano, C. Castiello, A.M. Fanelli, and C. Mencar

Dept. of Computer Science, University of Bari, Italy,

Knowledge discovery by a neuro-fuzzy modeling

framework, Elsevier, 2004.

[16] Babak Rezaee, M.H. Fazel Zarandi, Dept. of Industrial

Engineering, Amirkabir University of Tech-nology, Iran,

Data-driven fuzzy modeling for Takagi- Sugeno- Kang

system, Elsevier, 2009.

Author Profile

Huy-Khoi Do was born in Vietnam. He obtained his

master degree in Military Technical Academy. His

research interests include fuzzy constraint network,

communication sytems, images and speech processing,

telecommunication.

Thi-Xuan Tran was born in Vietnam. She obtained

his master degree in University of Information and

Communication technology. Her research interests

include computer science, fuzzy constraint network,

data mining and machine learning.

Van-Nui Nguyen was born in Vietnam. He obtained

his PhD degree in Department of Computer Science &

Engineering from Yuan Ze University, Taiwan. His

research interests include computer science, fuzzy

constraint network, bioinformatics, computational

proteomics and data mining.

Paper ID: ART20178985 DOI: 10.21275/ART20178985 1276

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

