
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Modified Bully Election Algorithm for Crash

Recovery in Distributed Systems

Sindhu Daniel

Assistant Professor of Mount Zion College of Engineering

Abstract: Many distributed algorithms require one process to act as coordinator, initiator or otherwise perform some special role. The

main role of an elected coordinator is to manage the use of shared resource in an optimal manner. An election algorithm is an

algorithm for solving the coordinator election problem. The coordinator election problem is to choose a process from among a group of

processes on different processors in a distributed system to act as the centre coordinator. Therefore, election algorithms are very

important in any distributed systems. Bully election algorithm is one of the classical approaches in distributed computing for

dynamically electing a coordinator with highest priority number or highest process ID number. In this paper, we are compared base and

efficient version of bully algorithm to minimize the number of messages during the election and when a process recovers from a crashed

state in distributed systems.

Keywords: Bully Election algorithm, Coordinator, Election message, OK message, and Process Status table

1. Introduction

Distributed system is a collection of independent computers

that appears to its user as a single coherent system.

A distributed system is a collection of processors that do not

share memory or a clock. Each processor has its own

memory, and the processors communicate via

communication networks. These computers communicate

and cooperate with each other only by passing the

messages over a communication network. To the users,

this collection of computers appears to be a single coherent

system. Users can communicate easily with this system without

knowing the physical location of the system. In distributed

computing, an election algorithm is used for choosing a single

process to perform a particular task which wi l l play the role of

the server. But it is important that all the processes have the

same opinion about the choice. When the process completes

and the server does not want to continue any more, then some

other process will perform the role of the server or leader and

the old server is replaced by a new one to lead the collection

of processors. In addition, if the coordinator node fails due

to some reason (e.g. link failure) then there is a need for

electing a new coordinator.

1.1 Election Algorithm

An election algorithm is an algorithm for solving the

coordinator election problem. Various algorithms require a

set of processes to elect a leader or a coordinator. Election

algorithms elect a coordinator process from among the

currently running processes.

These algorithms have two major goals:

 They attempt to locate the process with the highest

process number and designate it as the coordinator, and

inform all the active process about this coordinator.

 The second goal of an election algorithm is to allow a

recovered leader to reestablish control.

Therefore, whenever initiated, an election algorithm finds

out which of the currently active processes has highest

priority number and then informs this to all other active

processes. Leader election is the process of determining a

process as the manager of some task distributed among

several processes.

Election algorithms are based on the following assumptions:

 Provide each process with a unique process ID/system

number.

 Elect a process using a total ordering on the required set.

 All processes know the process number of members.

 All processes agree on the new coordinator.

 All processes hold an election to determine if the new

coordinator is up or crashed

1.2 Bully Election Algorithm

The Bully Algorithm proposed by Garcia Molina is based on

assumptions that are as follows:

1) It is a synchronous system and it uses timeout

mechanism to keep track of coordinator failure detection.

2) Each process has unique number to distinguish them.

3) Every process knows the process number of all other

processes.

4) Processes do not know which processes are currently up

and which processes are currently down.

5) In election a process with highest process number is

elected as coordinator which is agreed by all other live

processes.

6) A failed process can rejoin in the system after recovery.

7) The communication subsystem does not fail.

In this algorithm, it is assumed that every process knows the

priority number of every other process in the system. The

algorithm works as follows.

 When a process (say Pi) sends a request message to the

coordinator and does not receive a reply within a fixed

timeout period; it assumes that the coordinator has failed.

 It then initiates an election by sending an election

message to every process with a higher priority number

than itself. If Pi does not receive any response to its

Paper ID: ART20178852 DOI: 10.21275/ART20178852 958

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

election message within a fixed timeout period, it

assumes that among the currently active processes it has

the highest priority number. Therefore it takes up the job

of the coordinator and sends a coordinator message to all

the processes having lower priority numbers than itself,

informing that from now, it is the new coordinator.

 On the other hand, if Pi receives a response for its

election message, this means that some other process

having higher priority number is alive. Therefore, Pi does

not take any further action and just wait to receive the

final result of the election it initiated.

 When a process (say Pj) receives an election message, it

sends response message to sender informing that it is

alive and will take over the election activity. Now Pj

initiates an election if it is not already holding one. In

this way, election activity gradually moves on to the

process that has the highest priority number among the

currently active processes, eventually wins the election,

and becomes the coordinator.

 As a part of recovery action, this method requires that a

failed process (say Pk) must initiate an election on

recovery. If the current coordinator’s priority number is

higher than that of Pk, then current coordinator will win

the election initiated by Pk and will continue to be the

coordinator.
 On the other hand, if priority number of Pk is higher than

that of current coordinator, it will not receive any

response for its election message. Therefore, it wins the

election and takes over coordinator’s job from currently

active coordinator. Therefore, the active process having

the highest priority number always wins the election.

Hence, the algorithm is termed as bully algorithm [1].

Consider the example in figure 1.1, suppose there are six

processes P1, P2, P3, P4, P5 and P6 respectively. Among

these six processes let P1 is down and P6 is the coordinator

as it has highest process number. Suppose P2 wants some

service from coordinator and P6 is crashed. So P2 comes to

know that coordinator is failed due to some reason so it

initiates an election. Process P2 sends election messages to

all the processes with higher process number than itself. The

live processes with high process number reply with OK

message to process P2. Now P2 stops and waits to receive

coordinator message. Now processes P3, P4 and P5 make

elections and among them P5 wins the election. Now P5 is

new coordinator so P5 sends coordinator message to all

processes having lower priority.

Figure 1.1: Election of Coordinator by Garcia

(a)P2 request service from P6 (b)P2 sends election message

to P3,P4,P5 and P6 (c)P3,P4 and P5 send OK message to P2

(d)P3,P4 and P5 initiate election (e)P4 sends OK message to

P3, P5 sends OK message to P3 and P4 (f)P5 sends

coordinator messages to P1,P2,P3 and P4.

Now suppose process P1 recovers from its failed state and is

now unaware about who is the coordinator. As shown in

figure 1.2, P1 holds the election by same procedure of

algorithm above and P5 wins the election again as shown in

figure below. Now if process P6 recovers then P6 knows

that it is the process with highest process number so it will

simply bully every one and send coordinator messages to all

the processes in the system.

Figure 1.2: Recovery Process by Garcia

(a) P1 sends election message to P2,P3,P4,P5 and P6 (b)

P2,P3,P4 and P5 send OK message to P1 (c) P2,P3,P4 and

P5 initiate election (d)P3 sends OK message to P2 ,P4 sends

OK message to P2 and P3, and P5 sends OK message to

P2,P3 and P5 (e)P4 sends OK message to P3, P5 sends OK

message to P3 and P4.

1.3Limitations

Bully algorithm has following limitations:

 The main limitation of bully algorithm is the highest

number of message passing during the election and it has

order O(n2) which increases the network traffic.

 When any process that notices coordinator is down then

holds a new election. As a result, there may number of

elections can be occurred in the system at a same time

which imposes heavy network traffic.

 As there is no guarantee on message delivery, two

Processes may declare themselves as a coordinator at

the same time. Say, p initiates an election and didn’t get

any reply message from Q, where Q has a higher process

number than p. At that case, p will announce itself as a

coordinator and as well as Q will also initiate new

election and declare itself as a coordinator if there is no

process having higher process number than Q.

 Again, if the coordinator is running unusually slowly

(say system is not working properly for some reasons) or

the link between a process and a coordinator is broken

for some reasons, any other process may fail to detect the

coordinator and initiates an election. But the coordinator

is up, so in this case it is redundant election.

 Again, if a process p with lower process number than the

current coordinator, crashes and recovers again, it will

initiate an election where the current coordinator will win

again. This is also a redundant election.

Paper ID: ART20178852 DOI: 10.21275/ART20178852 959

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2. Modified Bully Algorithms

As we are considering distributed systems, hence, some

assumptions also need to make about the communications

network. This is very important because nodes communicate

only by exchanging messages with each other. The

following aspects about the reliability of the distributed

communications network should be considered [4].

This research tries to reduce network traffic present in

distributed systems during leader election and process

recovery. Suppose process Pi detects coordinator has failed

so it checks the status table and sends election message to

second highest priority message (say Pj).On receiving

message from Pi, process Pj immediately sends coordinator

messages to every live process. After receiving coordinator

message from Pj each live process would update its process

status table.

Consider the example in figure 3, suppose there are six

processes P1, P2, P3, P4, P5 and P6 respectively in the

system. Among these six processes P6 is considered as

highest priority and P1 is with lowest priority. So P6 is the

coordinator as it has highest process number and let process

P1 is down. Suppose P2 wants some service from

coordinator. So P2 sends a request to the coordinator

P6.Now if process P2 does not receive a response within a

fixed period of time, then process P2 assumes that the

coordinator has crashed. Having a look at the current process

table, process P2 will send an ELECTION message to the

process having priority just below the failed coordinator’s

priority(P5 in this case). On receiving election message from

P2 process P5 sends coordinator messages to all live

processes. The process status table when new coordinator P5

is elected is shown in table I.

Figure 3: Election of Coordinator in Proposed Method

(a)P2 request service from P6 (b)P2 sends election message

to P5 (c)P5 sends coordinator message to P2,P3 and P5.

Now suppose process Pm recovers from failure so there can

be two cases:

 If the current coordinator’s priority is higher than Pm’s

priority, in that case, Pm will send its priority number and

an UPDATE messages to all other live processes in the

system, to tell them to update Pm’s status (from

CRASHED to NORMAL) in their own process status

table.

 If Pm’s priority is higher than the current priority; then Pm

will be the new coordinator and update the process status

table and sends the COORDIANTOR message to all other

live processes in the system, and takes over the

coordinator’s job form the currently active coordinator.

Table 1: Process Status Table When P5 Is Elected As

Coordinator
Process priority status

P1 Crashed

P2 Normal

P3 Normal

P4 Normal

P5 Coordinator

P6 Crashed

Now suppose in example above if process P1 recovers from

its failed state and is now unaware about who is the

coordinator and status of processes. So it immediately, sends

a REQUEST message to any of its live neighbors (in this

case Process P2). So, as soon as any of P1’s live neighbors

receives a REQUEST message, it sends a copy of the current

process status table to P1. After receiving the process status

table, P1 checks whether its own priority number is less than

the process having the highest priority (i.e. current

coordinator’s priority) or not. Since P1 is smaller than

current coordinator so it will send its priority number and an

UPDATE messages to all other live processes in the system,

to tell them to update P1’s status (from CRASHED to

NORMAL) in their own process status table as shown in

figure 4. The process status table when P1 recovers from

failure is shown in table II.

Table 2: Process Status Table When P1 Is Recovers From

Failure

Process priority status

P1 Normal

P2 Normal

P3 Normal

P4 Normal

P5 Coordinator

P6 Crashed

Figure 4: Proposed Recovery Process

a) P1 sends Request message to P2 (b)P2 sends Reply

message to P1 (c)P1 sends update message with its process

number to P2,P3,P4 and P5

We have analyzed number of messages required to be

exchanged for various numbers of nodes and can say that in

our paper number of message is reduced.

1) According to algorithm in [1] the number of messages

required for various numbers of nodes is as shown in

table I.

Table 1: No. of messages required for various numbers of

nodes according to algorithm in [1]
No. of

Nodes

No. of messages in

electing a coordinator

No. of messages when

process recovers from failure

6 20 29

10 72 89

15 178 205

Paper ID: ART20178852 DOI: 10.21275/ART20178852 960

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391

Volume 6 Issue 12, December 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2) In our proposed system the number of messages required

for various numbers of nodes is as shown in table below

No. of

Nodes

No. of messages in

electing a coordinator

No. of messages when

process recovers from failure

6 4 6

10 8 10

15 13 15

3. Conclusion

In original bully algorithm and modified bully algorithm we

can say that our proposed method is better since it requires

less number of messages to be sent in system in both cases

when electing coordinator and on recovery of any process.

In original bully algorithm the number of messages to be

exchanged is very large. To overcome this drawback we

have proposed an optimized method by combining ideas

from initially modified algorithms. From analysis we can

say that our proposed method requires less number of

messages than from all other algorithms and also we

compared our recovery method with initially modified

recovery method.

References

[1] Sinha P.K, “Distributed Operating Systems Concepts and

Design”, Prentice-Hall of India private Limited, 2008.

[2] M.S.Kordafshari, Gholipour, M.Jahanshahi,

A.T.Haghighat, “Modified bully election algorithm in

distributed system”, SEAS Conferences, Cancun,

Mexico, 2005.

[3] Rachna Gajre and Dr. Leena Ragha, “Optimized Bully

Election Method for Selection of Coordinator Process

and Recovery of Crashed Process”, International Journal

of Scientific and Research Publications, Volume 3, Issue

5, May 2013.

[4] ” Comparisons of bully election algorithms in distributed

systems”. Vaibhav P. Gajre*International Journal of

Scientific and Research Publications, Volume 3, Issue 9,

September 2013 ISSN 2250-3153

[5] Pawan Kumar Thakur, Ram Kumar, Ruhi Ali and

Rajendra kumar Malviya ,“A New Approach of Bully

Election Algorithm for Distributed Computing” Int. J. of

Electrical, Electronics and Computer Engineering

(IJEECE) Vol 1(1): 72-79,2011.

[6] S. Mahdi Jameii “A Novel Coordinator Selection

Algorithm in Distributed Systems”,(IJAEST)

International Journal Of Advanced Engineering Science

and Technologies Vol No. 9, Issue No. 2, 2011.s

Paper ID: ART20178852 DOI: 10.21275/ART20178852 961

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

