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Abstract: This study was designed to develop and apply a stochastic differential equation that proves and computes the probability of
extinction of a giving family using factorization method. This method was used on the stochastic birth-death process equation to
determine the probability generating function. The limiting values of the generating function G(t, z) as t— oo, z = 0 were taken to
determine the extinction probability. Forty (40) families were studied and purposefully administered ( by one-on-one interaction) to
heads of families using the ten (10) wards in Bekwarra Local Government Area, Cross River State to ascertain the birth rate, date rate

and extinction probability.
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1. Introduction

The probability of extinction is an important phenomenon in
population dynamics and the study of evolution. The major
factors affecting extinction are the birth and death
respectively (Dzaan, Onah, and Kimbir, 2009; Scott, 2006;
and Omotosho 2014).

Researchers have studied birth-death processes using certain
mathematical models without employing the factorization
method which is tractable in analysis the stochastic process
in extinction probability.

2. Methodology of stochastic differential

equation for birth-death process

The factorization method is used on the stochastic birth-
death process equation to determine the probability
generating function.

Consider the stochastic birth-death process equation given
as;

a

5P = A =1)pn- (1) + (N + 1)Pnea(t) = (4 + )npa(t) (1)
[Where, n is an integer and the probability for negative n is

assumed to be zero, (py(t) = 0 for n < 0 for non-negative
initial population size n(0) > 0), (Fugo, 2009).

The probability generating function for a probability
distribution p,, (t) is defined:

G(t, 2) =X5—o Pn(DZ" (2
We have (2) as; =G (t, 2) = Zi2_g 2" o-a(1) ©)
But,

P'n(t) =AM —=1)pn-1(t) + p(n + 1)praa(t) — (L +)npa(t)
Then,
Tt D) =z Pa® = A T —Dpy - a2 +
pXm + Dpua(t)z” — A+ p) X np, (92"

=[(ps()2* + 2p,(1)2° + 3ps(t)z) +. .. +]

+ ulp(02° + 2p, (02 + 3ps(t)2® + 4p, ()2
+... +]
+ (A + ) [-pa(t)z — 2p5()2°— Bps()2°—. . . ] +

= [Wpa()2° + ppa(®2°~ (A + p)pa(t)2]

+ [22po(0)2° + 2up2(t)z — (+ 1) 2py(t)2°]

+ [3hpa(t)z* + Bups(t)z’— (A + 1)3ps(t)2’]

= Ap1()Z* + upa()2°— Aps(t)z —pupa(t)z]

+ [2Ap2(Y)2° + 2upy(t)z —24po(t)2°— 2up,(1)2°]

+ [3Aps(t)z" + 3upa()z’~ 3Aps(t)z°~ 3ups()2’] + ... (4)
Rearrange the summation and factorise we now have:
Mpi()Z° + upi()2°~ Az —upi(Dz = (D7 +
upL()2°= Apa(H)z — ppa(t)z
= Ap1()Z°— Apa(t)z + upa(t)z°— pupa(t)z

=m1(H)z(z — 1) + ups(H(1 — 2) (5)

Also,
20pa(Y)2° + 2upy(t)z — 24pa(Y)2°— 2up(t)z?
= 20pa()2°— 2hpo(Y)2° + 2upy(1)Z — 2up(t)2?

= 2Wpa(1)2°[z — 1] + 2upo(t)z[1 — 2] (6)
similarly,
3hpsz’ + Bups(t)z’— 3Aps(t)z°— 3ups(t)z®
=3ps(t)2°[z — 1] + 3ups()Z°[1 — 7] (7)

Sum equations (5), (6) and (7), generated from equation (4)
[Ap1(D)z(z — 1) + ups(H)(1 — 2)]
H2Apo(1)2%(z — 1) + 2upa(t)z(1 — 2)]
+[3hps(t)2(z — 1) + Bups()Z°(1 — 2)]
=2z(z — D)[pa(t) + 2pa(t)z + 3ps(t)z°] +
u(l = 2)[pa(t) + 2p5()z + 3ps()z] + . . .
=[z(z = 1) + p(1 = 2)][p (1) + 2p2 ()2 + 3p3(V)2° + . . +]
=[z(z — 1) + (1 — 2)] T npa(t)z™
= (\2°= Az —pz + @) npa(t)z™
S o2 = - 02 +wz + plEronp(Z =

w0
2n=0 Zno pa(t)

Therefore,
Yoo 2" p'n(t) ={Az’- (A + p)z + u3 - npa(H)2"™

We write,
[z (0 + )z + H]Eo npa(D2™ = 2H(t, 2)
Or
St 2) = 2= (L +)z + I Zie p02" T (8)
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Recall that,
Z(t, 2) = N_o npa(D2", for G(t, 2) = T2 np()2"

Then, for the linear birth and death process in equation (8)
we have;

St 2)= DL (e + Nz +ulZL2)  (9)

Equating to zero :
Ft.2) = D~ (u+ Nz + 7t ) =0
Let
a(z,t,G) = — P2~ (u+ Nz + pl>i(t, 2)
b(z,t,G) =1
c(z,t,6)=0

The partial differential equation is of the form;

pL+ g% =¢
) at 2z
Written as,

bE +a¥=0
at dz
With the initial and boundary conditions for N(0) at time t =
0, the initial condition is P, (0) for n= N(0) and Py = 1,
that is
G(t, 2) = X, Pa()2" = 2"©, (10)

The boundary condition determines G(t, 0) and G(t, 1) is
expressed as;

G(t, z) = Py (11)

Gt 1) =X, Pa(hz=1 (12)
P, 1S undermined at this point. Solving p,(t) (t) is now
reduced to solving the partial differential equation of G(t, z)
in (9), with condition (10), (11) and (12).

Consider the partial differential equation in G(t, z) involving
Lt 2) and % (z,2), ( Fugo, 2009):

The auxiliary equation is given as;
ox _ oy _ 9

11 1’

Adopting similar pattern, we have the auxiliary equation as;

0: ___o_ 26
Az2+p—Q+p)z - 1 - 0
—0z _ 0t _ oG

A-2)(u-1z) 1 0

Integrate the equation

71 =
f(l_z)(#_)\z) dz =— [ 10t (13)

First, resolve LHS of (13)
1 A B

=2y w-1

(A-2)(u=12)

Multiply all through by (1 — z)(u — Az)
1=A(u—2z)+B(1l—-2) (14)
putting z = 1 in (14), we have,

1=A(u—-2)
-1
A_u—x
Putting z =0,
1=Au+B
B=1- Au

=1 - L
u—2
A
Y
Therefore,
1 1 A

1
A-z2(- 7\2): U — )\[1— z U — Az

we have (13) as,

1 1 A _

1 m(l—z_ ,u—?\z)az__fat
——[-In(1—-2)+In(u— Az] = —t

u— A

H—AzZ\ . —(u— M)t

[n(l—z)_e g
:K1

u—2Az
—az)e—@A—mwt
K, = (n —Az)

1 —z)e@—wlt
(1-2)

at _ 3G

1 0

joatz J@G

Kz = X
The general solution is,

G(t, 2) = X(V)
X can be any function of,

V= e G-mt (!11%1) (15)
for time (t) =0and A # 1, ¥°_; p,, (0)

we solve G(t,z) in the general solution

u — Az
G(t.2) = —(l—u)t< )
(Z) € 11—2
u — Az
G(0,2) =
( Z)oo x(l—z)

G(0,2) = Z p.(0)z" = z"
n=0
for t = 0 (15) becomes,

make z the subject in (16)
VAd—-2z)=pu- 2z
V-Vz=u- 2z
Az—Vz=u—-"V
zA—=V)=u—-"V a7
u—=Vv
z =—,
A=V
substitute (16) into (17) for,
G(0, z) = X(V}o) = 2 M@
Yields
G(0, 2) = X(Vlwo) = (—"‘V'f=0)N(O) 18
(0,2) = X(Vlo) = (4572 (18)
X is determined in it functional form by, G(t, z) = X(V) for
G(t, 1)=X(0),z=1and t > 0.

Applying the uniqueness of solution of partial differential
equation, G(t, z) is evaluated, hence

G(t, z) =z N
. 74 N(o)
=) (19)

Substitute (16) in (19),
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_HBZAz (-t
= s 1—z €
A— LA (-t
N(o)

u—(l—z)—(u—/lz)e*@*#)f] (20)

“G(t 2) = [/1(1—z)—(u—/12)e—(/1—#>t

Equation (20) is the probability generating function, Van
Doorn (2004).

The extinction probability is derived from (20) by letting
population size n = 0 at time py(t) and is given by G(t, 0).

In the Birth — Death process, equation (20) yields:

Table 1: Invaluable information arising from Locality

_pe—G-myrN (@)
Po(t) = G(t, 0)= [%]
for,A>u
N(0)
Po(t—= ) = lim,_, G (0, ¢) = (%) <1,
A<u

Po(t— o0) =lim,_,, G (0,t) =1,

If the birth rate is less than the death rate i.e, A < u the
populations go extinct and if the birth rate is larger than the
death rate (A > ) the populations can go extinct with non-

N(0)
zero probability (%) :
For stochastic process, the probability of extinction is
always positive and population is never free from extinction
in the stochastic world

SIN WARD | WIFE | Np | Na Tg Tp Ta Tg X A u Pr
1 Otukpuru 1 1 2 5 1 6 4 2.500 | 833 | 167 0.200
2 Ibiaragidi 3 0 4 16 2 18 14 | 1.333 | 889 | 111 0.125
3 Ugboro 2 1 2 10 1 11 9 1.430 | 909 91 0.100
4 Ibiaragidi 2 1 3 11 2 13 9 1570 | 846 | 154 0.182
5 Ukpah 1 0 5 9 3 12 6 2.250 | 750 | 250 0.333
6 Nyanya 2 0 1 3 0 3 3 1.500 | 1000 0 0.000
7 Ukpah 3 1 3 18 2 20 16 | 1.286 | 900 | 100 0.111
8 Gakem 1 0 3 6 2 8 4 2.000 | 750 | 250 0.333
9 Ibiaragidi 4 3 8 17 7 24 10 | 2.800 | 708 | 292 0.412
10 Ukpah 3 1 3 6 1 7 5 3.00 | 857 | 143 0.170
11 Gakem 3 1 4 8 3 11 5 2.670 | 727 | 273 0.376
12 |Abouchicheg 4 3 8 17 7 24 10 | 2.800 | 708 | 292 0.412
13 Ibiaragidi 2 0 7 13 3 16 10 | 2.170 | 813 | 188 0.231
14 |Abuochichg 3 1 11 21 3 24 18 | 2.100 | 875 | 125 0.143
15 Afrike 1 1 0 4 15 2 17 13 | 1.364 | 882 | 118 0.134
16 Nyanya 2 1 7 13 2 15 11 | 2.600 | 867 | 133 0.153
17 Ugboro 3 3 7 38 11 42 27 136 | 776 | 224 0.031
18 |Abuochichq 4 0 3 12 1 13 11 | 1.330 | 923 77 0.083
19 Otukpuru 4 2 5 12 2 14 10 | 2.400 | 857 | 143 0.167
20 Beten 7 2 10 62 3 65 59 | 1.240 | 954 46 0.048
21 Ukpah 3 2 4 10 3 13 7 2500 | 769 | 231 0.300
22 Nyanya 4 0 3 13 1 14 12 | 1.300 | 929 71 0.076
23 Otukpuru 3 2 4 12 5 17 7 2400 | 706 | 294 0.416
24 Beten 2 0 0 3 0 3 3 1.000 | 1000 0 0.000
25 Ibiaragidi 8 0 4 12 3 15 9 1.50 | 800 | 200 0.250
26 Afrike 11 3 1 3 7 2 9 5 2.330 | 778 | 222 0.285
27 Otukpuru 4 4 8 20 7 27 13 | 2.500 | 741 | 259 0.350
28 Beten 5 2 12 25 6 31 19 227 | 806 | 194 0.241
29 Afrike Il 4 4 12 30 8 38 22 | 2140 | 789 | 211 0.267
30 Ukpah 5 5 20 36 8 44 26 | 4.000 | 818 | 182 0.222
31 Afrike | 3 1 5 11 4 15 7 2.200 | 733 | 267 0.364
32 Afrike Il 3 1 10 22 9 31 13 | 2.000 | 710 | 290 0.408
33 Nyanya 7 4 18 40 14 54 36 | 2220 | 741 | 259 0.350
34  |Abouchichd 4 1 7 14 4 18 10 | 2.300 | 778 | 222 0.129
35 Ugboro 8 3 54 70 8 78 62 | 5380 | 897 | 103 0.145
36 Beten 41 1 4 10 2 12 8 2.000 | 833 | 167 0.200
37 Gakem 9 6 25 65 9 85 45 | 1910 | 765 | 235 0.307
38 Afrike | 7 4 15 31 11 42 20 | 2.580 | 738 | 262 0.355
39 Afrike 11 8 3 28 44 4 48 40 340 | 917 83 0.091
40 Beten 6 3 14 30 12 42 18 | 2.310 | 909 | 286 0.315

Where,

Np = number of individuals who died without offspring, N,
= number of individuals who are alive without offspring,
Ty = total number of births, T,,= total number of death, T =
total number of events, T,= total number of individual who
are alive, x = mean number of individuals, A= birth rate per

thousands, u = death rate per thousands and p, = extinction
probability.

Evaluating extinction probability in the first family with
number of birth 5 and death 1.

Let
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d
Where. A = birth rate, 4 = death rate, b = number of births in
the family,

d = number of death in the family.

Problem 1
Letb =5 and d =1 in the first family, then;

d
= —— (1000
U b+d( )

5
= ——— (1000
5+1 (1000)
= 2.(1000)
:5000

6
=833

n .(1000)

T bh+d

1
= ——.(1000
5+1 ( )

= %0 =167

The probability of extinction (3.3.2) for the family is given

by:
ree ()"

_r107\!
= (&%)
=0.200
X=The mean number of offspring =

Total number of birt hs

Number of fertile parents

— Tp
s Tp—(Np+Na)
T5-3
=2.500

Problem 2
We have the second family as;

b=16, d=2:

d
Then, A= rd (3.6000)

_16
== .(1000)
— 16000

18

= 889
—_2

u == (1000)

_ 2
== .(1000)
2000

18
=111
Again the probability of extinction is given by
_ ()"
Pe=(5) 1
_ (111
= (5)
=0.125

From the results, number of individuals that died without
offspring = 0.

Number of individuals alive without offspring = 4

To evaluate the mean number, we first know the number of
individuals who died without offspring (Np) and those who
are alive without offspring (Ny). let,

Nd = 0, Na =4,

Total number of birt hs

Mean number of offspring (x) =

Number of fertile parents
— Tp
Tp—(Np+Na)
_ 16

T 16-4
_ 16

T 12
=1.333
The mean number of offspring (x) = 1.33
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Figure 1: Graph of Extinction Probability against Number of offspring

3. Conclusion

We have developed a method on the stochastic differential
equation for birth-death process to generate and solving
extinction probability. The family with p, . = 0.013 has
low extinction probability rate as shown in fig 1. p,, has
the highest extinction probability and killing rate. If the
killing continue at this rate, death will overtake birth while
Pre =0=p,, hasno killing effect since death is impossible.

References

[1] Dzaan, S., Onah, E.S and Kimbir, A. R., 2009. On the
extinction probability of a family name. Science world
Journal. Www. Scienceworldjournal.org. 4: 1597-6343.

[2] Omotosho, M., 2014. College and University Statistics.
Ibadan : Yosod Book Publisher Limited.

[3] Scott. E.C., 2006. Extinction (Biology). Microsoft@
Student 2007 [DVD].Redmond, WA : Microsoft
Corporation ,2006.

[4] Fugo, T., 2013. Birth- Death models. J. Appl. Prob 6,
205-218

[5] Van Doorn, E., 2004. Representation for the rate of
convergence of Birth - Death process. Theory of
probability. Math statistic. 65, 37-43.

Volume 6 Issue 12, December 2017

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: 23111706 DOI: 10.21275/23111706 1094


www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



