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Abstract: In the present paper, the author investigates the  4th-order differential inequality of harmonic univalent functions with 
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1. Introduction 
 

Harmonic functions play a significant role in a variety of 

problems in engineering, physics and applied mathematics. In 

geometric function theory (GFT), harmonic univalent 

functions have raised the interest of numerous complex 

analysts since the mid-1980s, which are a generalization of 

the holomorphic (analytic) functions. The first study of the 

theory of harmonic univalent functions was by Clunie and 

Sheil-Small [1] in 1984. In their studies, they discussed every 

harmonic function   in a simply connected domain can be 

expressed in the form   , where the functions   and 

  are holomorphic in  1:  zCz . The function   is 

called the holomorphic part while   is the co-holomorphic 

part of  . A necessary and sufficient condition [1] for   to 

be locally univalent and sense preserving in 

 1:  zCz  is for )(')(' zz    in  .  

 

Clunie and Sheil-Small [1] also introduced a class   of 

harmonic functions    that are univalent, sense-

preserving in the unit disk  , and normalized by the 

conditions 01)0(')0(   , where the functions   and 

  are of the form: 
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                                                                                         (1) 

Moreover, they investigates its geometric properties, that 

includes coefficient bounds, growth and distortion theorems. 

Note that for the co-holomorphic part 0 , the class   

reduces to the class S  of normalized holomorphic univalent 

functions for which  can be expressed as: [1] 
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Further, let   denote the class of functions   of the form (2) 

which are holomorphic in the unit disk  . For 10   , let 

)(  be the subclass of   consisting of all functions that 

satisfy  

                                 )(' z ,   )( z .                         (3) 

The functions in )(  are called functions of bounded 

turning (also called functions whose derivatives has positive 

real parts). It is known that functions of bounded turning are 

univalent in the unit disk  , [2].  

 

In 2003, Yalcin et al. [3] introduced a more general subclass 

of harmonic univalent functions (including )(  as a special 

case). This is the subclass )(  consisting of functions 

  that satisfy first-order differential inequality: 

                     )(')(' zz ,  ),10( Cz   .         (4) 

Also, let  )()(*  , where   [4] is the 

subclass of   such that the functions   and   in    

are of the form: 
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Furthermore, they studied a sufficient condition  
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where 11  , for functions to be in the subclass )( . 

This condition is necessary when the coefficients are 

negative. Growth theorem and extreme points are also 

derived.  

 

Note that the condition (4) slightly modifies the one given 

originally in (3). Note also that the subclass )(  

corresponds to 0 , [3]. Since then, various studies were 

conducted on a subclass )( . Pursuing this line of study 

will be presented here.  

 

In 2004, Yalcin and Ozturk [4] considered a subclass )(  

consists of functions   satisfying second-order 

differential inequality as: 

                0)(')('))('')(''(  zzzzz  ,             (7) 

where 0 . Further, they discussed a sufficient condition  
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n
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where 11  , for functions involving to an aforementioned 

subclass )( , which is shown to be necessary when the 

coefficients are negative. They analyzed growth bounds and 

extreme points as well.  

Paper ID: ART20178241 DOI: 10.21275/ART20178241 1491 

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 6 Issue 11, November 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

In 2010, based on the study of Yalcin and Ozturk [4], 

Chandrashekar et al. [5] introduced a subclass ),(   

consists of functions   satisfying the following 

condition 

                 )(')('))('')(''( zzzzz ,            (9) 

where, 0  and 10   .. They also studied a sufficient 

condition 
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where 11  , for functions including to above subclass 

),(  , which is shown to be necessary when the 

coefficients are negative. Note that )(),0(   . 

Further, the subclass ),(   reduces to )(  if 0 . 

 

In 2015, Sokol et al. [6] imposed a subclass ),(   consists 

of functions   satisfying third-order differential 

equation as: 

  ,)(')('))('')(''(3))(''')('''(2   zzzzzzzz   

                                                                                        (11) 

where, 0  and 10   . They examined a sufficient 

condition 
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where 11  , for functions belonging to above subclass 

),(  , which is shown to be necessary when the 

coefficients are negative. Moreover, growth bounds, extreme 

points, convolution and convex combinations are studied. 

Note that )(),0(   . Also, the subclass ),(   

reduces to )(  if 0 . 

 

Motivated by previous works on harmonic functions, we 

establish a new subclass ),(   of functions   

satisfying fourth-order differential inequality. In addition, 

coefficient bound, growth bound, extreme points, 

convolution, convex combinations, and closure under an 

integral operator are also discussed for harmonic functions 

satisfying the subclass ),(  . Harmonic functions with 

negative coefficients are also considered in this investigation. 

 

2. Geometric Results 
 

This section is composed of two subsections. Subsection 2.1 

presents a new subclass ),(   of harmonic univalent 

functions with bounded turning in  . Subsection 2.2 

provides some geometric properties involving coefficient 

condition, growth theorem, extreme points, convolution, 

convex combinations, and closure under an integral operator 

for this considered subclass.  

 

2.1 Subclasses ),(    

 

The part is devoted to define new subclasses ),(   and 

),(*  of harmonic univalent functions with positive and 

negative coefficients respectively in the open unit disk that 

satisfy fourth-order differential inequality.  

Definition 2.1.1 A function   is said to be in subclass 

),(   [the subclass of harmonic univalent bounded turning 

functions] if it satisfies the following inequality: 

  ,
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   (13) 

where, 11  , 0 , 10   , and z .  

 

Also denote by   ),(),(*   where   is the 

subclass of harmonic univalent functions   with negative 

coefficients given in (5). 

 

Remark 2.1.1 We note that 

 

1)  For 0  in (13), the subclass ),(   reduces to the 

subclass )(  of harmonic univalent bounded turning 

functions defined in (4). 

2) For 0  in (13), the subclass ),(   reduces to the 

earlier subclass )(  of bounded turning functions  

introduced in (3). 

 

2.2  Basic Properties of Subclass ),(   

 

In this subsection, a sufficient coefficient condition for 

functions included in the subclass ),(  is determined. This 

condition is also shown to be necessary when the coefficients 

are negative, which leads to growth formulae, extreme points, 

convolution, convex combinations, and closure under an 

integral operator. 

 

The first theorem gives a necessary and sufficient condition 

for a function   to be in the subclass ),(  . 

 

Theorem 2.2.1 Let    be of the form (1). If  
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where, 11  , 0 , 10   , and z , then   is 

harmonic univalent, sense-preserving in  , and ),(   . 

 

Proof. Suppose zz 2,1  such that zz 21  , then 
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Hence, 0)2()1(  zz   and   is univalent in  . To prove 

  locally univalent and sense-preserving in  , it is enough 

to show that )(')(' zz   . 
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Utilizing the fact   }{  if and only if 

|1||1|   , it is sufficient to show that 
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in proving ),(   . Substituting for )(z  and )(z  in 

(18) yields, 
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by the condition (14). So the proof is complete.. 

 

Remark 2.2.1 The harmonic function  
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, shows that the coefficient 

bound given by (14) is sharp. The functions of from (20) are 

in subclass ),(   because condition (14) can be satisfied as 

follows: 
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If we 0  in Theorem 2.2.1, then we yield the following 

result introduced by Yalcin et al. [3]. 

 

Corollary 2.2.1 Let    be given by (1). If 








2

2|)||(|

n
nn

n   where, 11  , 0 , 

10   , and z , then   is harmonic univalent, sense-

preserving in  , and )( . 

 

In the following outcome, it is shown that the condition (14) 

is also necessary for functions    where   and   of 

the form (5). 

 

Theorem 2.2.2 Let    be of the form (5). Then 

),(*    if and only if condition (14) is achieved and it 

is as follows: 
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where, 11  , 0 , 10   . 

 

Proof. Considering that ),(),(*    , we only need to 

prove the necessary part of the theorem. Assume that 

),(*   , then by virtue of (13), we gain  
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The above required condition (22) must hold for all values of 

z  in  . Upon choosing the values of z  on the positive real 

axis where 10  rz , we must have 
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Letting 1
r  through real values, it follows that 
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Therefore, we yield 
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which is the required condition. 

 

Remark 2.2.1 The harmonic function  
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belongs to the subclass ),(*  . 

 

The following result gives the upper and lower bound 

formula (growth formulae) for functions in ),(*  . 

 

Paper ID: ART20178241 DOI: 10.21275/ART20178241 1493 

file:///D:\IJSR%20Website\www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2016): 79.57 | Impact Factor (2015): 6.391 

Volume 6 Issue 11, November 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Theorem 2.2.3 Let ),(*   . Then 1||  zr  
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Next we determine the extreme points of closed convex hulls 

of ),(*   denoted by ),(* co . 

 

Theorem 2.2.4 A function ),(*   co  if and only if  
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Therefore, in view of Theorem 2.2.2, we acquire 
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Thus, ),(*   co . 
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as required. 

 

For our next theorem, we need to define the convolution of 

two harmonic functions. For harmonic functions of the form: 
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the convolution of )(z  and )(z  is given by 
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Utilizing this definition, we show that the subclass ),(*   

is closed under convolution. 

 

Theorem 2.2.5 For 10   , let ),(*    and 

),(*   . Then ),(*),(*    . 

 

Proof. Since ),(*    and ),(*   , the 

coefficient of    must satisfy the required condition given 

in Theorem 2.2.2. For ),(*    we note that 1|| n  
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Since 10    and ),(*   . Therefore 

),(*),(*    . 

 

Now we show that ),(*   is closed under convex 

combinations of its member. 

 

Theorem 2.2.6 The subclass ),(*   is closed under 

convex combinations. 
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Utilizing the Theorem 2.2.2, it follows that  
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and therefore ),(*

1
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Now, we examine a closure property of the subclass 

),(*   under the generalized Bernardi-Libera-Livingston 

integral operator )(zF  
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which was defined by Bernardi [7]. 
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Thus by Theorem 2.2.2, ),(* F . 

 

3. Conclusion 
 

In this study, we have discussed new subclass of harmonic 

univalent bounded turning functions in the open unit. 

Differential inequality of 4
th

-order is suggested in this work. 

This inequality has been shown the coefficient condition , 

growth bounds, extreme points, convolution property, convex 
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linear combination and a class-preserving integral operator.   
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