Production of Cellulase – A Review
Chitranshu Pandey
MRD Life Sciences™ Lucknow

Abstract: Production of cellulases at commercial level is most actively grown area of research now a day. Screening of potential strain from new source and there by optimizing production condition for industrial cellulase. Cellulase is one of the several commercial enzymes which have been used in various industries like paper and pulp, textile, bio-fuel production, detergents, feed and food industry and brewing etc. The review discusses the current knowledge on cellulase production by bacteria. It discusses the industrial application of cellulases and challenges in cellulase research especially in direction of improving the process economics enzyme production.

Keywords: cellulose, detergent, brewing, biomass, biofule, cellulose, municipal waste

1. Introduction

Cellulase is the most abundant biomass; it is renewable and in-expensive for the bioconversion to bio-fuels and bio-products. There are many sources to derive cellulosic biomass from such municipal waste, agricultural residues, forestry or pulp and energy crops. Cellulase is commonly degraded by enzyme called cellulase. Cellulase refer class of enzymes produced chiefly by fungi, bacteria and protozoans that catalysis the cellulose. Due to its diversity of their application cellulase have attracted much interest. The major industrial application of cellulases are in textile industry for bio-polishing of fabrics, house-hold laundry detergents for improving fabrics softness and brightness. Cellulases hydrolyze cellulose and produces primary products glucose, cellobiose and cello-oligosaccharides. There are three types of cellulase enzymes [cellbiohydrolase(CBH), endo-β1,4-glucanase(EG) and β-glucosidase]. Enzymes within these classification can be separated into individual components, such as microbial cellulase composition may consist of one or more CBH component, one or more EG components and possibly β-glucosidase. Commercial production of cellulase has been tried by either solid or submerged culture including batch, fed batch and continuous flow process. Media used in cellulase fermentation contain cellulose in different degrees of purity, or as raw lignocellulosic substrates, which is especially true in solid state fermentation.

Cellulases
Cellulase (EC3.2.1.4) refers to a class of hydrolyases produced mainly by fungi ,bacteria, protozoans, and termites, which catalyzes the hydrolysis of cellulose (Lee et al., 2000; Watanabe et al., 1998). However, there are also cellulases produced by other types of organisms such as plants, molluscs, animals (Watanabe and Tokuda, 2001). This type of cellulase is produced mainly by symbiotic bacteria in the ruminating chambers of herbivores. Recently, following the report of an endogenous cellulose gene in termites, which were previously considered to digest cellulose exclusively through symbiotic protists (Watanabe et a., 1998), endogenous genes have also been found in many invertebrates such as insects, nematodes and molluscs (Watanabe and Tukuda, 2001). These findings contradict previously held notions that cellulose can only be degraded by micro organisms.

Cellulose decomposition or degradation requires the multiple enzymes, celluloses. In general, cellulose is degraded to cellodextrins or glucose by the sequential synergistic action of three cellulase systems: end-1,4-β-glucanase, exo-1,4-β-glucanase, and β-glucosidase (Bayer et al., 1998; Henrissat, 1994).

Endo-1, 4-β-glucanase (EC 3.2.1.4)
Endo-1, 4-β-glucanase (EG), simply called endoglucanase, cleave randomly intermolecular β-1, 4-glucosidic linkages within the cellulose chain. The endoglucanases are commonly assayed by viscosity reductions in carboxymethyl cellulose (CMC) solution. Themodes of actions of endoglucanases and exoglucanases differ in that endoglucanases decrease the specific viscosocity of CMC significantly with little hydrolysis due to intramolecular cleavages, whereas exoglucanases hydrolyze long chains from the ends in aprogressive process (Teeri, 1997; Zhang and Lynd, 2004).

Exo-1, 4-β-glucanase (EC 3.2.1.91)
Exo-1, 4-β-glucanases (exo-1, 4-β-D-glucanohydrolases, CBH), simply called exoglucanases, cleave the accessible ends of cellulose modules to liberate glucose and cellobiose. Triochoderma reesei celllobiohydrolase I and II act on the reducing and nonreducing cellulose chain ends respectively (Teeri, 1997; Teeri, et al., 1998). Avicel has been used for measuring exoglucanase activity among insoluble cellulosic substrates. Unfortunately, amorphous cellulose and soluble colloids are substrates for both purified exoglucanases and endoglucanases. Therefore, unlike endoglucanases and β-glucosidases, there is no substrates specific for exoglucanases within the cellulose mixtures (Sharrock, 1988). However, the enzymatic deploymentization step performed by endoglucanases and exoglucanases is the rate-limiting step for the cellulose hydrolysis process.

1,4-β-Glucosidase (EC 3.2.1.21)
β-D-glucosidases hydrolyze soluble cellobiose and other cellodextrins with a degree of polymerization (DP) up to six to produce glucose in the aqueous pHase. The hydrolysis rate markedly decreases as the substrate degree of polymerizations increases (Henrissat et al., 1989; Zhang and Lynd, 2004). The term “cellobiase” is often misleading due to this key enzymes broad specificity beyond a DP of two. Relative to endoglucanases and celbiohydrolases, low
levels of the *T. reesei* β-glucosidase are selected in submerged culture.

Substrates for Cellulase Activity Assays

Soluble:

Long chain cellulose derivatives: CMC, HEC.

Short chain (low DP): Cellodextrins, Radio-labelled cellulodextrins.

Cellodextrin derivatives: β -methylumbelliferyl-oligosaccharides, p-nitrophenol oligosaccharides.

Insoluble:

Crystalline cellulose: cotton microcrystalline, Cellulose (Avicel), veloniaCellulose, bacterial cellulose. Amorphous cellulose: PASC, alkali-swollen cellulose, RAC.

Keys: RS = reducing sugars, CMC = Carboxymethyl Cellulose; HEC = Hydroxymethyl cellulose; RAC = Regenerated amorphous cellulose.

Soluble Substrates

Soluble substrates include low DP cellodextrins from two to six sugar units and their derivatives, as well as long cellulose derivatives.

They are often used for measuring individual cellulase component activity.

CMC-Na(sodium carboxymethyl cellulose) customarily is used to measure reducing sugars. CMC is easy to absorb moisture, it dissolve easily in cold or hot water as colloidal solution, it can dissolve in many organic factor solvent such as methanol, ethanol, acetone, chloroform, and so on. Degree of substitution (DS) is an important factor that affects its water-soluble, viscosity also affects its water-soluble greatly. CMC is water soluble when its DS more than 0.4. With increase of DS transparency of the CMC water substitution becomes much better.

Chromogenic p-nitrophenyl glycosides and fluorogenic methylumbelliferyl-D-glycosides derived from soluble cellodextrins are very useful for the study of initial cellulase kinetics (Tuohy et al., 2002), reaction specificity (Zverlov et al., 2002), and binding isothermodynamics (Barr and Holewinski, 2002). They are also used to determine the inhibition constants of cellulase in the presence of added collobiose and glucose (Tuohy et al., 2002), because chromopHores released from substituted glycosides can be easily measured independently of sugars.

Insoluble Substrates

Insoluble cellulose-containing substrates for cellulase activity assays include nearly pure celluloses (Cotton linter, Whatman No.1 filter paper, bacterial cellulose, microcrystalline cellulose and amorphous cellulose) and impure cellulose—containing substrates (dyed cellulose, α-cellulose, and pretreated lignocellulose). Native cellulose, referred to as cellulose I, has two distinct crystalline forms-Iα, which is dominant in bacterial and algal cellulose, Iβ which is dominant in higher plants (Atalla and Vanderhart, 1984).

Native cellulose (cellulose I) can be converted to other crystalline forms (II-IV) by various treatments (O'Sullivan, 1997). Several very physical values such as crystallinity index (CI), degree of polymerization, and cellulose accessibility to cellulase, can be estimated based on maximum cellulase adsorption (Zhang and Lynd, 2004).

Lignocellulose pretreatment breaks up the recalcitrant structure of lignocellulose so that cellulase can hydrolyze pretreated lignocellulose faster and more efficiently. Current leading lignocellulose pretreatment technologies, including dilute acid, hot water, flow through ammonia fiber explosion (AFEX), ammonia recycle percolation, and lime, have been recently reviewed (Mosier et al., 2002; Wyman et al., 2005). Other insoluble substrates include α-cellulose which contains major cellulose, and a small amount of hemicelluloses and dyed cellulose. Insoluble cellulose derivatives can be chemically substituted with trinitrophenyl groups to produce chromogenic trinitrophenyl-carboxymethyl cellulose (TNP-CMC).

Approaches for cellulase activity assay

Two approaches to measure cellulase activity are:

- Measuring the individual cellulase (endoglucanase, exoglucanase, and beta-glycosidase) activities
- Measuring the total cellulase activity

Endoglucanase activity assay can be measured on reduction in substrate viscosity or increase in reducing end determined by reusing sugar assay.

In Exonuclease activity assay Avicel has been used for measuring exoglucanase activity. During chromatographic fractionation of cellulase mixtures, enzymes with little activity on soluble CMC but showing relatively high activity on avicel, are usually identified as exoglucanases. Unfortunately, amorphous cellulose and soluble cellodextrins are substrates for both purified exoglucanases and endoglucanases. Therefore, unlike endoglucanases and β-glucosidases, there is no substrates specific for exoglucanases within the cellulase mixture (Sharrock, 1998; Wood and Bhat, 1988).

β-D-glucosidase are very amenable to a wide range of simple sensitivity assay methods, based on coloured or fluorescent products from p-nitrophenyl- β-D-1,4-glucopyranoside (Stobell and Russell, 1987), β-naphthyl-β-D-glucopyranoside, 6-bromo-2-naphthyl- β-D-glucopyranoside (Setlow et al., 2004). Also, β-D-glucosidase activities can be measured using cellobiase, which is not hydrolyzed by endoglucanases and exoglucanases, and using longer cellodextrins, which are hydrolyzed by endoglucanases and exoglucanases (Ghose, 1987; McCarthy et al., 2004).

The total cellulase system includes endoglucanases, exoglucanases, and β-D-glucosidases, all hydrolyze cellulose synergistically. Total cellulase activity assays are always measured using insoluble substrates, including pure cellulosic substrates such as Whatman No.1 filter paper, cotton linter, microcrystalline cellulose, bacterial cellulose, algal cellulose and cellulose containing substrates such as dyed cellulose, α-cellulose and pretreated lignocellulose.
Screening and isolation of cellulose producing bacteria:
Cellulase producing bacteria have been isolated from wide variety of sources such as composting heaps, decaying plant material from forestry or agriculture waste, faces of ruminants such as buffalow, caow, goat, and oragamic compund etc. screening for cellulase production can be done by enrichment of growth on microcrystalline cellulose. screening for bacterial cellulase activity in microbial isolates is typically performed on CMC media followed by using congo red.

The isolation and identification of cellulase has been limited in past to culturable microorganisms. However recent advances in molecular techniques, such as creation of metagenomic libraries will widen the pool of cellulolytic enzymes available for biofuel research.

Novel cellulase producing bacteria:
Isolation, screening and selection have favored the discovery of several novel cellulase producing bacteria from wide variety of environments. Due to vast diversity among bacteria the identification of novel cellulases remains a currently explored route to the improvement of biorefining industries. Recently, the bacterial strain B39, previously isolated from poultry manure compost in Taichung Taiwan, was identified through 16S Rrna gene sequencing and phylogenetic analysis to be a novel cellulose degrading Paenibacillus sp. Strain.

More recently, a thermostable cellulase was found in newly isolated Bacillus subtilis DR isolated from hot spring.

Table 1: Cellulase producing bacterial strain

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Enzyme</th>
<th>Property altered</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruminococcus albus</td>
<td>Endoglucanase</td>
<td>Type of products released</td>
<td>Site directed mutagenesis</td>
<td>Rignall TR. Baker Appl biochem botechnol . 2005</td>
</tr>
<tr>
<td>Acetivibrio cellulolytieus</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>Nonsense mutation</td>
<td>Lim WJ, Hong SY.An jam. Appl biochem botechnol 2005</td>
</tr>
<tr>
<td>Branchemella</td>
<td>Endoglucanase</td>
<td>Processse</td>
<td>Site directed mutation</td>
<td>Escover–Kousen JM,Wilson D. 2004</td>
</tr>
<tr>
<td>Acinetobacter anitratus</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>Site directed mutation</td>
<td>Mhadevan SA, wi SG.Lee DS.2008</td>
</tr>
<tr>
<td>Geobacillus pallidius</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>DNA sufflig</td>
<td>Kim YS. Jung HC.2000</td>
</tr>
<tr>
<td>Bacillus subtilis ko</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>epPCR</td>
<td>Kim YS. Lee SS. 2004</td>
</tr>
</tbody>
</table>

Table 2: Table of bacterial strain and cellulases or related enzyme from these microorganism which have been improved

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Enzyme</th>
<th>Property altered</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetothermus cellulolyties</td>
<td>Endoglucanase</td>
<td>Type of products released</td>
<td>Site directed mutagenesis</td>
<td>Rignall TR. Baker Appl biochem botechnol . 2005</td>
</tr>
<tr>
<td>Acidothermus cellulolyties</td>
<td>Endoglucanase</td>
<td>Product inhibition</td>
<td>Site directed mutagenesis</td>
<td>Baker jo. Mc Carley JR.Appl biochem botechnol 2005</td>
</tr>
<tr>
<td>Pectobacterium chrysanthami</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>Nonsense mutation</td>
<td>Lim WJ, Hong SY.An jam. Appl biochem botechnol 2005</td>
</tr>
<tr>
<td>Thermobifida fusca</td>
<td>Processse endoglucanase</td>
<td>Activity</td>
<td>Site directed mutation</td>
<td>Escover–Kousen JM,Wilson D. 2004</td>
</tr>
<tr>
<td>Thermotoga maritima</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>Site directed mutation</td>
<td>Mhadevan SA, wi SG.Lee DS.2008</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>Endoglucanase</td>
<td>Activity</td>
<td>DNA sufflig</td>
<td>Kim YS. Jung HC.2000</td>
</tr>
<tr>
<td>Agrobacterium sp.</td>
<td>Mutated α-glucosidase</td>
<td>Activity</td>
<td>epPCR</td>
<td>Kim YS. Lee SS. 2004</td>
</tr>
</tbody>
</table>

Cellulase Production Using The Submerged Fermentation (SmF) and Solid State Fermentation (SSF) or Cultivation (SSC):

Fermentation is the technique of biological conversion of complex substrates into simple compounds by various microorganisms. It has been widely used for the production of cellulase for their wide uses in industry. Over the years, fermentation techniques have gained immense importance due to their economic and environmental advantages. Two broad fermentation techniques have emerged as a result of this rapid development:

Submerged Fermentation (SmF) and Solid State Fermentation (SSF).

Solid-State Fermentation (SSF) / Solid-State Cultivation (SSC):
SSF utilizes solid substrates, like bran, bagasse, paddy straw, other agricultural waste and paper pulp [Subramaniyan R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int J Sci Nature.2012;3(3):480-486.]. The main advantage of using these substrates is that nutrient-rich waste materials can be easily recycled as cheaper substrates. SSF is best suited for fermentation techniques involving fungi and microorganisms that require less moisture content. However, it cannot be used in fermentation processes involving organisms that require high water activity, such as bacteria [Babu KR, Satyanarayana T. Production of bacterial enzymes by solid state fermentation. J Sci Ind Res. 1996;55:464-467.].
Submerged Fermentation (SmF)/Liquid Fermentation (LF): SmF utilizes free flowing liquid substrates, such as molasses and broth [Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: A comparative study. Int J Sci Nature.2012;3(3):480-486.]. This fermentation technique is best suited for microorganisms such as bacteria that require high moisture content. An additional advantage of this technique is that purification of products is easier.

A Comparison between SmF and SSC Method

Cellulases are produced using the submerged fermentation (SmF) method traditionally, in which the cultivation of microorganisms occurs in an aqueous solution containing nutrients. An alternative to this traditional SmF method is the solid state cultivation (SSC) method, which involves the growth of microorganisms on solid materials in the absence of free liquids [Cannel E, Young MM. “Solid-State cultivation systems.” Process Biochemistry. 1980; June/July: 2–7.]. Since SSC involves relatively little liquid when compared with SmF, downstream processing from SSC is theoretically simpler and less expensive. During the past ten years, a renewed interest in SSC has developed due, in part, to the recognition that many microorganisms, including genetically modified organisms (GMO), may produce their products more effectively by SSC [Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid state cultivation for the production of industrial enzymes. Current Science. 1999;77:149-162.].

Table 3: Comparison of Characteristics of SmF and SSC Methods

<table>
<thead>
<tr>
<th>Factor</th>
<th>SmF</th>
<th>SSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>High volume of water consumed and effluents discarded</td>
<td>Limited consumption of water and no effluent</td>
</tr>
<tr>
<td>Mechanical agitation scale up</td>
<td>Good homogenization of industrial equipment available</td>
<td>Static condition preferred New design equipment needed</td>
</tr>
<tr>
<td>Energy</td>
<td>High energy consuming</td>
<td>Low energy consuming</td>
</tr>
</tbody>
</table>

Table 4: Fermentative production of cellulase by bacteria

<table>
<thead>
<tr>
<th>Name of bacteria</th>
<th>temperature</th>
<th>Type of substrate used</th>
<th>pH</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
</table>

2. Conclusion

Cellulases were produced by SmF and SSF using various bacterial strains. Development of an economical process for cellulase production is hindered because of the high costs of substrate (pure cellulose) and of some chemicals, such as protease peptone, and also because of low yields of cellulases per unit of cellulose. To overcome these bottlenecks, cheap source of cellulose; lignocelluloses, agricultural wastes are used in SSF. The microorganisms which appear to be most promising at present are pseudomonas sp. However, it is of interest to examine pseudomonas sp. to improve cellulase production which is a known good producer of cellulases. Many researches have been conducted on enzymatic hydrolysis of various lignocellulosylotic substrates like Pumpkin oil cake, Saw dust, Pine apple waste, Orange waste, Palm oil mill effluent, pea shrub biomass, Sugarcane bagasse, Rice bran, Rice straw, wheat bran, vinegar waste, Cassava waste, Corn straw, wheat straw, rice husk, soybean, , corn cob, green grass, dried grass, Millet, Oats straw, Oil palm biomass, Banana stalk, mulch, Radicle waste.

3. Acknowledgements

Thankful to Mr. Jahir Aalam Khan (research scientist) at MRD Lifescience Pvt. Ltd., Gomatinagar, Lucknow.

References

Patel MA, Ou MS, Ingram LO, Shanmugam KT. Simultaneous Saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog. 2005;21:1453-1460

Lah NT, Rahman NB, Nama MB. Cellulase activity and glucose production by Bacillus Cereus monoculture and co-culture utilizing palm kernel cake (PKC) under solid...