Synthesized and Characterized of $\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$ Nanoparticles using Sol–Gel Auto Combustion Method

Tariq A. Al-Dhahir¹, Bassam T. Al-Azraq²

¹²Department of physics, College of Education for Pure Science -Ibn Al-Haitham, Baghdad University, Iraq

Abstract: $\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$ with (x=0.0 , 0.25, 0.35, 0.45, 0.55, 0.65,0 and 0.75) spinel ferrite nanoparticles have been synthesized via sol – gel auto combustion method. The result powder was calcined at temperature of 850°C for 3 hours. Structural and electrical properties of $\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$ were investigated using x – ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x – ray spectroscopy (EDS) and LCR meter. XRD pattern of $\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$ provides information about single-phase formation of spinal structure with cubic symmetry. SEM technique demonstrated that nanoparticles with grain size found to be in nanometer range. Particle size, lattice constant and porosity decrease with increasing Cr content, while bulk density. Both $\varepsilon'$ and $\varepsilon''$ decrease when there is increasing in the frequency, from another side they are increasing when Cr content increased

Keywords: Sol – Gel, $\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$, Structural and Dielectric Properties

1. Introduction

The prepared Nano – ferrites show a significant change in the structural, electrical and magnetic properties in contrast to their bulk counterparts due to their high surface - volume ratio of grains [1]. Ferrites constitute a special branch of ferromagnetic. In the recent years, interest in the Nano-ferrites has increasing, due to their high magnetic properties and widely employing in several applications. Ferrites are using in the electronic devices, integrated circuits and magnetic resonance imaging (MRI) [2,3]. Nano – phase spinal ferrite particles have attracted a considerable attention owing to their technological importance in the industrial applications [4]. Spinal ferrite can be represented by the chemical formula MFe2O4, where M is the bivalent metal such as (Mg, Zn, Mn, Co, Cu … etc.), with radius lying between (0.6 – 1)Å and that gives stable crystal structures. $\text{Fe}^{3+}$ indicates to the trivalent iron cation. The unit cell of spinal ferrite has a symmetry of 8 structural formulas with $\text{O}_2$ anions which lead to form a face-centered cubic among $\text{O}_2$ anions. Cations distributed in two groups of sites are A and B, A - sites, cation surrounded by (4) neighboring oxygen anions, A - sites called tetrahedral - sites, While in B - sites, the cation surrounded by 6 oxygen anions, called octahedral – sites[5,6]. There is no previous literature of Cr substitution Zn ferrite, anyway, there are a similar studies of Cr effects on the structural, electrical and magnetic properties of a different compounds reported by [7-9]. Nano – ferrite can be prepare by many techniques; one of them is the low coast sol - gel auto combustion method, which used in this study. The sol – gel auto combustion method characterized by its easy, short time and required no high temperatures in the preparation process [10].

2. Experimental Details

$\text{Cr}_x\text{Cu}_{0.25}\text{Zn}_{0.75-x}\text{Fe}_2\text{O}_4$ with (x= 0.0, 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75) have been synthesized by sol – gel auto combustion method. The hydrated nitrates $\text{Fe} (\text{NO}_3)_3$, 9H2O, $\text{Cr} (\text{NO}_3)_3$, 9H2O, Cu (NO3)2, 2H2O and Zn (NO3)2, 6H2O were used as a precursor materials dissolved in 100 mL of distilled water. Hydrated citric acid (C6H8O7) was used as a fuel of chemical reaction dissolved in 100 mL of distilled water with molar ratio of these nitrates and citric acid becomes 1:0.5. Drops of ammonia was added to set (PH) about of (7). The solution was stirred using magnetic stirrer. Condensation reaction occurs between the adjacent metal nitrates and the molecules of citrates to get a sol at room temperature. Solution was evaporated at 80°C for 1h with continuous stirring until the sol turned into a gel. The gel was then heated at 180°C for auto combustion to take place. The dried gel was burnt spontaneously to form as a powder. The resulting powder was crushed using an agate mortar to obtain the Nano-ferrite. The Nano – powder was calcined at 850°C for 3h. 2.5 g of the powder was pressed using a hydraulic pressing with (1 ton) applied pressure for 3 min. Stainless steel mold with 1.5 cm diameter was used to preparing pellets. Pellets were sintered initially at 900°C and finally at 1200°C both final and initial sintering for 3h.

3. Results and Discussion

The title of the paper is centered 17.8 mm (0.67") below the top of the page in 24 point font. Right below the title (separated by single line spacing) are the names of the authors. The font size for the authors is 11pt. Author affiliations shall be in 9 pt.

3.1 X-ray diffraction analysis

The x – ray diffraction pattern of the Cr Cu Zn ferrite with (x= 0.0, 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75) are explained in figure (1). XRD technique provided information about formation of single-phase cubic spinal structure. All the Bragg's peaks of XRD pattern are broad and do not contain any extra peaks other than the cubic spinal phase, as reported in the literature [11].
3.1.1 Particle size

Particle size was calculated using Debye – sherrer formula [12]:

\[ D = \frac{0.89 \lambda}{\beta \cos \theta} \]  

Where \( D \) is the particle size, 0.9 is the symmetry constant, \( \lambda \) is the wavelength of incident x-ray beam and \( \theta \) is Bragg's angle. The calculated particle sizes are in the range of 27 – 32 nm and exhibit gradual decrease with increasing \( \text{Cr}^{3+} \).

3.1.2 The lattice constant

The lattice constant (\( a \)) for each sample is calculated by the following relationship [13]:

\[ d_{hkl}^2 = \frac{a^2}{\cos^2 \theta} \]  

Where \( d_{hkl} \) is the interplanar distance for hkl planes. Lattice constant was found to decrease with increasing of Cr content from (8.41 Å) to (8.2835 Å). The decrement of particle size and lattice constant due to the ionic radius of Cr (0.63 Å), which is smaller than of Zn (0.83 Å) as reported in the literature [14,15].

3.1.3 X-Ray and bulk densities

The x-ray density \( \rho_{x-ray} \) of the synthesized samples was calculated using next formula [16]:

\[ \rho_{x-ray} = \frac{8M}{N \alpha^2} \]  

Where \( M \) is the molecular weight of the composition, \( a \) is the lattice constant and \( N \) is the Avogadro's number (6.02*10^23 atom/mole). Bulk density \( \rho_b \) of the prepared samples was measured using the following equation:

\[ \rho_b = \frac{m}{V} \]  

Where \( m \) is the mass of pellets and \( V \) is the volume of pellet which was measured using Archimedes principle; Both \( \rho_{x-ray} \) and \( \rho_b \) increase with increasing Cr content due to the difference in the ionic radii which leads to decreasing pellet volume of the sample. \( \rho_{x-ray} \) in the table (1) is larger than \( \rho_b \) that's may be due to the presence of some unavoidable voids during sintering, the same results are reported by [17,18].

3.1.4 Porosity

Porosity of each sample was found to decrease with increasing Cr content according to the following formula [19]:

\[ P = \left[ 1 - \frac{\rho_b}{\rho_{x-ray}} \right] \times 100\% \]  

Where \( \rho_b, \rho_{x-ray} \) are the bulk and x-ray densities respectively. The decrement in the porosity due to decreasing particle size.

Figure 1: The XRD pattern of Cr_xCu_{0.25}Zn_{0.75-x}Fe_2O_4 samples

Table 1: The values of lattice constant, x-ray density, bulk density and particle size versus Cr concentration.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lattice constant (Å)</th>
<th>X-ray density ( \rho_{x-ray} ) (g/cm^3)</th>
<th>Bulk density ( \rho_b ) (g/cm^3)</th>
<th>Porosity P (%)</th>
<th>Particle size ( D ) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>8.41</td>
<td>5.351</td>
<td>1.654</td>
<td>69</td>
<td>32</td>
</tr>
<tr>
<td>A2</td>
<td>8.39</td>
<td>5.335</td>
<td>1.927</td>
<td>63.8</td>
<td>30.2</td>
</tr>
<tr>
<td>A3</td>
<td>8.32836</td>
<td>5.424</td>
<td>2.0625</td>
<td>61.97</td>
<td>29</td>
</tr>
<tr>
<td>A4</td>
<td>8.334</td>
<td>5.382</td>
<td>2.8638</td>
<td>46.789</td>
<td>28.42</td>
</tr>
<tr>
<td>A5</td>
<td>8.3016</td>
<td>5.414</td>
<td>3.354</td>
<td>38</td>
<td>27.63</td>
</tr>
<tr>
<td>A6</td>
<td>8.305</td>
<td>5.376</td>
<td>3.4664</td>
<td>35.52</td>
<td>27.2</td>
</tr>
<tr>
<td>A7</td>
<td>8.2835</td>
<td>5.387</td>
<td>4.075</td>
<td>24.355</td>
<td>31</td>
</tr>
</tbody>
</table>

3.2 Scanning electron microscopy (SEM) analysis

Surface morphological properties of Cr_{0.75}Cu_{0.25}Fe_2O_4 were studied using scanning electron microscopy (SEM). Figure (2) shows that SEM micrograph of Cr_{0.75}Cu_{0.25}Fe_2O_4 (A7) sample, this micrograph reveals that the distribution of particle size is uniformed and the particle size in the nanometer range, which is about of 36 nm for (A7) sample.

Figure 2: (a) The change of porosity, x-ray density and bulk densities with Cr content. (b) The change in lattice constant with varying Cr content.

Figure 3: SEM morphology of Cr_{0.75}Cu_{0.25}Fe_2O_4 powder
3.3 Energy dispersive x - ray spectroscopy

The elemental analysis of (A7) sample has been carried out using (EDS). It revealed from figure (3) that the concentration of iron, chromium and copper is according to the stoichiometric calculations.

![Figure 4: Elemental analysis of Cr0.75Cu0.25Fe2O4 powder using EDS technique](image)

3.4 Dielectric properties of the prepared samples

Dielectric properties of the synthesized samples were studied using LCR meter, both dielectric constant \( \varepsilon' \) and dielectric loss factor \( \varepsilon'' \) were calculated using the equations 5,6 respectively. These dielectric properties were measured as a function with frequency at room temperature. At low frequency (less than 5 kHz), \( \varepsilon' \) and \( \varepsilon'' \) began with a high value then decrease gradually with increasing frequency. This decrement can discussed by mechanisms of polarization. There are four mechanisms of polarization are space charge, atomic / ionic, electronic and orientational polarization. The space charge dipoles have a high mass, so at high frequency (above 5kHz) these dipoles could not rotate with the external A.C electrical field , then these dipoles don’t take a part of polarization , therefore the value of \( \varepsilon' \) and \( \varepsilon'' \) decrease gradually with increasing frequency. Figure (5 – a,b) explaining the decrement in \( \varepsilon' \), \( \varepsilon'' \) with frequency (5 kHz – 1MHz). In the other side, both \( \varepsilon' \) and \( \varepsilon'' \) increase with increasing Cr content as in figure (5 – c,d) due to the increase of the number of charge carriers and interfacial polarization effects, as reported by [20].

\[
\varepsilon' = \frac{Cd}{\varepsilon_0 A} \quad (6)
\]

Where \( \varepsilon' \) is the dielectric constant, \( C \) the capacitance (Farad), \( d \) thickness of the sample, \( A \) surface area of the sample and \( \varepsilon_0 \) is permittivity and equal to 8.85*10^{-12} N.m^2/C^2[21].

\[
\varepsilon'' = \varepsilon' \tan \delta \quad (6)
\]

Where \( \varepsilon'' \) is the dielectric loss factor and \( \tan \delta \) is the dissipation factor [22].

![Figure 5: (a) And (b) represent the decrement in the dielectric constant and dielectric loss factor respectively when the frequency increased. (c) and (d) show the increment in the dielectric constant and dielectric loss factor respectively with increasing Cr content.](image)

4. Conclusions

Cr substituted Zn into Cr_{x}Cu_{0.25}Zn_{0.75-x}Fe_{2}O_{4} with (x = 0.0, 0.25, 0.35, 0.45, 0.55, 0.65 and 0.75) were prepared using sol – gel auto combustion method. The structural characterization of powder using XRD, SEM and EDS confirmed the formation of nanosize particles with single-phase spinal structure. Particle size and lattice constant decreases when Cr concentration increased that's due to the ionic radius of Cr^{3+} smaller than of Zn. Both bulk and x – r densities increase with increasing Cr content. Porosity decreases when Cr content increased this is due to the decrement in the particle size. Both dielectric constant and dielectric loss factor decrease when the frequency increased, whereas they increase with increasing Cr content.

References


Volume 6 Issue 11, November 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY
nanocrystals", MSc, Alzhara University, Tehran, Iran, 1-8 (2012).


[10] Ramkrishna H Kadam.: Influence of Cr$^{3+}$ substitution on the electrical and magnetic properties of Ni$_{0.4}$Cu$_{0.4}$Fe$_2$O$_4$ nanoparticles. International Nano Letters. 2:28 (2012)


