Synthesis and Copolymerization of Several New N-(allyloxy phenyl) tetrachlorophthalimides

Ahlam Marouf Al-Azzawi¹, Hiba Kadhim Yaseen²

¹Department of Chemistry, College of Science, Baghdad University, Baghdad, Iraq

²Ministry of Science and Technology, Baghdad, Iraq

Abstract: Aseries of new copolyimides containing flexible allyloxy segments were synthesized via multisteps. In the first step four N-(hydroxyphenyl) tetra chloro phthalamic acids were prepared via reaction of amino phenols with tetra chloro phthalic anhydride. The obtained amic acids were dehydrated in the second step affording the corresponding N-(hydroxyphenyl) tetra chloro phthalimides. In the third step flexible allyloxy segments were introduced in the prepared imides via introducing the imides in reaction with allylchloride in basic medium producing N-(allyloxy phenyl)tetrachloro phthalimides and these inturn were introduced in the fourth step in free radical chain growth copolymerization with five vinylic monomers including acrylo nitrile, methyl acrylate, methyl meth acrylate and N-substituted acrylamide respectively producing fourteen new copolyimides having different physical properties which may serve different application. In this work both introducing of flexible allyloxy segment and copolymerization are efficient tools that furnish with new copolyimides having better solubility and process ability while maintaining their other excellent properties.

Keywords: copolyimides, allyloxy segment, tetrachlorophthalimides, vinylic monomers

1. Introduction

Aromatic polyimides are a class of polymers that have unique high thermal stability, high chemical resistance beside excellent mechanical and electrical properties (1-3). However most polyimides have four processability and solubility due to high chain rigidity as a result of strong interchain forces (4-6). Thus significant efforts have been made to improve polyimides properties by chemical modifications¹(7-10)</sup> .in this work we design and synthesize several new of copoly tetrachloro phthalimides with improve properties by performing two steps, First through introducing of soft segments flexible ether group (allyloxy group) into tetrachloro phthalimide monomers and second by introducing these monomers in copolymerization with different vinylic monomers.Both of these two steps introducing of soft segment ⁽¹¹⁾ and copolymerization ^(12,13) are efficient methods for improving polymers physical and mechanical properties. The present work reports synthesis of several N-(allyloxy phenyl)tetrachloro phthalimides then introduce them in free radical copolymerization producing new copolyimides with better solubility and processability properties fitted with different applications.

2. Experimental

Employed chemicals were purchased from Merk ,BDH and Fluka companies and used without further purification. FTIR spectra were recorded on a SHIMADZU FTIR 8400 Fourier transform Infrared spectrophotometer as KBr disk. ¹HNMR spectra were recorded on near magnetic resonance Bruker, ultrashield 300 MHz using DMSO-d₆ as solvent and tetramethyl silane as an internal standard. Melting points were determined by using Gallen Kamp capillary melting point apparatus and were uncorrected. Softening points were determined on thermal microscope Riechertthermover.

N-(hydroxy 1) Synthesis of phenyl) tetrachlorophthalamic acids [1-4]

Amino phenol (0.01 mol) dissolved in (30 mL) of dry acetone was added dropwise to (0.01 mol, 2.86 g) of tetrachlrorophthalic anhydride dissolved in (20 mL) of dry acetone with stirring and cooling ⁽¹⁴⁾. The resulted mixture was stirred for 2 h. at room temperature then the formed precipitate was filtered, washed with ether, dried and recrystallized from a suitable solvent. Physical properties of amic acids[1-4] are shown in table-1

2) Synthesis of N-(hydroxy phenyl) tetrachlorophthalimides [5-8]

Tetrachlorophthalamicacid (1 gm) was placed in a wide pyrex tube supplied with a thermometer and immersed in an oil bath ⁽¹⁵⁾. The oil bath was heated gradually until the complete fusion of amic acid then oil bath temperature was kept at ten degrees above melting point of the used amic acid for 2 h.

The fused product was cooled to room temperature and the obtained solid was recrystallized from a suitable solvent. Physical properties of imides [5-8]are shown in table-2

3) Synthesis of N-(allyloxyphenyl)tetrachlorophthimides [9-12]

A mixture of (0.01 mol) of imides [5H-8H] and (0.0015mol) of sodium hydroxide was dissolved in (DMF) (15ml) then(0.01mol) of allyl chloride was added to the flask with stirring.the stirred mixture was refluxed for four hrs.then allowed to cool and poured onto ice water and left at $5C^{\circ}$ over night. The resulted solid was filtered, washed with water, dried then purified by recrystallization from a suitable solvent. Physical properties of compounds [9-12] are shown in table-3.

4) Synthesis of N-(allyloxyphenyl)tetrachlorophthal Imide-CO-acrylonitrile]Copolymers [13-15]

In the screw capped polymerization battle using equimolar amounts of monomers [9-12] and acrylonitrile were

Volume 6 Issue 11, November 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY DOI: 10.21275/ART20177846

dissolved in in (15mL) of THF then (0.0002g) of AIBN was added as initiator⁽¹⁶⁾. The bottle was flushed with nitrogen for few minutes then firmly stoppered and maintained at(75C) for 3hrs. the resulted solution was poured into(25mL) of methanol and the precipitated polymer was filtered ,washed with methanol and dried. Physical properties of copolymers [13-15] are shown in table -4.

5) Synthesis of [N-(allyloxyphenyl)tetrachloro phthalimide-CO-methacrylonitrile] Copolymers[16.17]

The titled copolymers were synthesized by following the same procedure used in preparation of copolymers [13-15] using equimolar amounts of monomers [9-12] and methacrylonitrile dissolved in THF in the presence of AIBN initiator. Physical properties of copolymers [16,17] are shown in table-5.

6) Synthesis of N-(allyloxyphenyl)tetrachloro phthalimide-CO-methyl acrylate] Copolymers [18,19] The titled copolymers were synthesized by following the same procedure used in preparation of copolymers [13-15] using equimolar amounts of monomers[9-12] and methyl acrylate dissolved in THF in the presence of AIBN initiator. Physical properties of copolymers [18,19] are shown in table-6.

7) Synthesis of [N-(allyloxyphenyl)tetrachloro phthalimide-CO-methyl meth crylate] Copolymers [20-22]

The titled copolymers were synthesized by following the same procedure used in preparation of copolymers [13-15] using equimolar amounts of monomers[9-12] and methyl acrylate dissolved in THF in the presence of AIBN initiator. Physical properties of copolymers [20-22] are shown in table-7.

8) Synthesis of [N-(allyloxyphenyl)tetrachloro phthalimide-CO-N-(2-methyl-6-chlorophenyl) acrylamide] Copolymers[23-26]

The titled copolymers were synthesized by following the same procedure used in preparation of copolymers [13-15] using equimolar amounts f monomers[9-12] and N-(2-methyl-6-chlorophenyl) acrylamide dissolved in THF in the presence of AIBN initiator. Physical properties of copolymers [23-26] are shown in table-8.

3. Results and Discussion

In general high chains rigidity in polyimides leads to high glass transition temperature, poor solubility and processability. These properties in turn limit polyimides applications. To overcome this limitation, incorporation of alkoxy segment in polyimides backbone chains or introducing imides themselves in copolymerization with suitable monomers will establish flexibility in polyimides chains besides improving solubility and processability.

Thus in the present work a series of new poly tetrachloro phthalimides with improved properties were synthesized first by introducing alkoxy flexible segment (allyloxy group) in tetrachloro phthalimides monomers and second by introducing the synthesized monomers in copolymerization with suitable monomers since both of these two points are efficient methods for improving polymers physical and mechanical properties leading to wide spectrum of applications.

The target of this work was performed by many steps which are summarized in scheme-1

In the first step four N-(hydroxyl phenyl) tetra chloro phthalamic acids [1-4] were synthesize via equimolar amounts ortho, meta and para- amino phenols with tetrachlorophthalic . In the next step amic acids[1-4] were dehydrated by fusion method to produce the corresponding tetrachloro phthalimides [5-8]. The new imides [5-8] were introduced in the third step in nucleophilic substitution reaction with allylchloride in basic medium producing the corresponding N-(allvloxv phenyl) tetra chloro phthalimides[9-12]. By this step a flexible alkoxy segments were introduced in imides structure and the same time this alkoxy segments having carbon-carbon double bonds ready for introducing in chain growth copolymerization.

In the fourth step the newly synthesized N-(allyloxy phenyl) tetra chloro phthalimides monomers [9-12] were introduced in free radical chain growth polymerization using THF as solvent and AIBN as initiator with heating at (75-80) $^{\circ}$ C for 3hrs. producing the new target copolymers[13-26]. Physical properties of amic acids, imides, allyloxy monomers and copolymers are listed in tables (1),(2),(3),(4),(5) and (6).

FTIR spectra of amic acids [1-4] showed clear absorption bands at (3184-3477) cm⁻¹ which were attributed to v(O-H) carboxylic, v(O-H) phenolic and v(N-H) amide. Absorption bands due to v(C=O) carboxyl and v(C=O) amide appeared at (1712-1716) cm⁻¹ and (1650-1660) cm⁻¹ respectively while absorption bands due to v(C-H) aromatic, v(C=C) aromatic and v(C-Cl) appeared at (3020-3089)cm⁻¹, (1596-1620) cm⁻¹ and (1030-1130) cm⁻¹ respectively.¹ H-NMR spectra of compound [1-4] showed signals at(δ =6.73-7.4)ppm belong to aromatic protons and singlet signal at (δ =8.95-9.34)ppm belong to NH amide proton. Signals belong to OH phenolic proton appeared at (δ =9.5-10.4)ppm. Other signals appeared at (δ =10.6-14)ppmbelong to OH carboxyl proton .

FTIR spectra of the new imides [5-8] showed two clear strong absorption bands at (1776-1787)cm⁻¹ and (1704-1731)cm⁻¹ due to asymmetric and symmetric v (C=O) imide. Absorption bands due to v (C=C) aromatic and v (C-N) imide were appeared at (1598-1612)cm⁻¹ and (1365-1367)cm⁻¹, while absorption bands due to v (O-H) phenolic, υ (C-H) aromatic and υ (C-Cl) appeared at (3417-3480)cm ¹(3030-3078)cm⁻¹ (1090-1099)cm⁻¹ respectively. ¹H-NMR spectra of compounds [5-8] showed disappearance of v (O-H) carboxyl, v (N-H) amide signals. Signals of aromatic protons appeared as two doublets at (δ =6.88-7.22) ppm while signal for phenolic(OH) proton appeared at($\delta = 9.89$)ppm⁽¹⁷⁾.

FTIR spectra of compounds [9-12] showed disappearance of v(O-H) absorption bands present in FTIR spectra of phenolic imides[5-8]. The spectra showed also absorption bands at (2921-2927)cm⁻¹ and (2815-2866)cm⁻¹ due to asym. and sym. v(C-H) aliphatic and other absorption bands at (1201-1274) cm⁻¹ and (1000-1037)cm⁻¹due to v(C-O) ether. All these points proved the success of ether formation. Other absorption bands appeared at (1778-1785)cm⁻¹, (1708-1726) cm⁻¹, (1608-1656) cm⁻¹, (1598-1600) cm⁻¹, (1353-1365) cm⁻¹ and (1080-1099) cm⁻¹ which are due to asym. and sym. v(C=O)imide, v(C=C) aliphatic and aromatic , v(C-N) imide and v(C-CI) respectively.

Volume 6 Issue 11, November 2017

www.ijsr.net Licensed Under Creative Commons Attribution CC BY

¹H-NMR spectra of compounds [9-12] showed signls at (δ = 2.55-2.58) ppm belong to aliphatic protons and two doublet signals at (6.9 -7.15) ppm belong to aromatic protons. Details of FTIR spectral data of amic acids, imides, and N-(allyloxy phenyl) tetra chloro phthalimides are listed in tables (7), (8) and (9).

Synthesis of target copolymers was performed by freeradical chain growth copolymerization of monomers [9-12] with different vinylic monomers including acrylonitrile, meth acrylonitrile , methylacrylate , methylmethacrylate ,and N-substituted acryl amide producing copolymers [13-15] ,[16,17],[18,19] ,[20-22], and [23-26] respectively.it was noticeable that introduction of flexible allyloxy group in to the chain of phthalimide followed by copolymerization gave copolymers with remarkable solubility in polar amidic solvent such as DMF.The prepared copolymers [13-26] showed partial solubility in chloroform and good solubility in DMSO, DMF, and acceptable solubility in hot THF, but they are insoluble in methanol, benzene, acetone, ethanol, diethyl ether and cyclohexane.

FTIR spectra of acrylo and methacrylo nitrile copolymers [13-17] showed clear absorption band at (2235-2243) cm⁻¹ due to v (C=N) and this is an excellent proof for the success of copolymerization reaction. Absorption bands due to asym. and sym. v (C-H) aliphatic appeared at (2920-2981) cm⁻¹ and (2845-1891) cm⁻¹ while bands for asym. and sym. v(C=O) imide appeared at (1776-1785)cm⁻¹ and (1708-1724) cm⁻¹. Details of FTIR spectral data of copolymers [13-17] are listed in table-10

¹H-NMR spectrum of compounds [13-15] showed signals at δ =(2-2.15), 2.7 and 2.8 ppm belong to aliphatic protons, signal at δ =(3.1) ppm belong to (-CHCN) proton and two

doublet signals at δ =(6.8 and 7.35) ppm belong to aromatic protons.

¹H-NMR spectra of compounds [16,17] showed signals at δ =(1.47-1.51) and (1.7-1.76) and2.55 ppm belong to(CH₃)and aliphatic protons, signals at δ =(6.8 and 7.21) ppm belong to aromatic protons.

FTIR spectra of methyl acrylate and methyl methacrylate copolymers [18-22] showed clear absorption bands at (1728-1735) cm⁻¹ and (1149-1164) cm⁻¹ due to v (C=O) ester and v (C-O) ester respectively and this is a good proof for the success of copolymerization. Other FTIR spectral data of copolymers[18-22] are listed in table -11

¹H-NMR spectra of copolymers [18-22] showed signals at δ = (1.55-1.8), 2.7 and 2.9 ppm belong to aliphatic protons. Signlet signal appeared at (δ =3.6)ppm belong to (OCH₃) protons and signals at (δ =6.85-7.4)ppm belong to aromatic protons.

FTIR spectra of copolymers [23-26] showed two important clear absorption bands at (3261-3269) cm⁻¹ and (1660-1662) cm⁻¹ which are attributed to v (N-H) amide and v(C=O) amide respectively and this is an important proof for success of copolymers [23-26] formation.

Other details of FTIR spectral data of copolymers [23-26] are listed in Table 12.

¹H-NMR spectra of copolymers [23-26] showed signals at $(\delta = (1.09-1.72), 2.31, (2.6-2.7)$ and 2.97) ppm belong to aliphatic protons and (CH₃) protons. Other signals appeared at $\delta = (6.65-7.67)$ and $\delta = (9.62-9.97)$ ppm which are belong to aromatic protons and (NH) proton respectively.

Comp No.	Compound structure	Color	Vield %	Melting points °C	Recrustallization solvent
1		Gray	78	166-168	Ethanol
2		Bluish green	81	186-187	Ethanol
3		Faint green	76	170-172	Ethanol
4		Yellowish green	88	184-186	Ethanol

Table 1: Physical properties of Compounds [1-4]

Table 2: Physical properties of Compounds [5-8]									
Comp. No.	Compound structure	Color	Yield %	Melting points °C	Recrystallization solvent				
5		Deep gray	80	231-233	Acetone				
6		Deep yellow	95	195 Dec.	Cyclohexane				
7	С	Deep green	88	210-212	Cyclohexane				
8		yellow	93	205 Dec.	Cyclohexane				

Table3: Physical properties of Compounds [9-12]

Comp. No.	Compound structure	Color	Yield %	Melting points °C	Recrystallization solvent
9		Off white	81	182-183	Acetone
10		Faint yellow	70	188-190	Acetone
11		Faint yellow	77	195 Dec.	Dioxane
12		Off white	75	192 Dec.	Dioxane

Table 4: Physical	l properties of	Copolymers	[13-17]
-------------------	-----------------	------------	---------

Polym. No.	Polymer structure	Color	Conversion ratio	Soft. point °C
13	c_1 c_1 c_2 c_1 c_2 c_2 c_1 c_2 c_2 c_1 c_2 c_2 c_1 c_2 c_2 c_2 c_1 c_2	Off White	69	229-238
14		Off white	64	230-246

Volume 6 Issue 11, November 2017

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20177846

15	CI CO H CI CO CH2C M CI CO CH2CH2C M CI CO CH2CH2CH2 CN	Off White	65	238-250
16	CI CI CI CI CI CH ₂ CH ₂ CM ⁿ CI CI CO CH ₂ CH ₂ CM ⁿ CI CI CO CH ₂ CH ₂ CH ₂ CM ⁿ	Dark green	66	220-230
17		Faint green	68	232-241

 Table 5: Physical properties of Copolymers [18-22]

Comp. No.	Polymer structure	Color	Conversion ratio %	Soft. point °C
18		Faint brown	63	237-240
19		Faint brown	62	236-243
20	CI CI CI CI CI CI CI CI CI CI CI CI CI C	Dark green	83	227-235
21	CH3 CH2C CH2C CH2C CH2C CH2C CH2C CH2C C	Dark green	61	234-240
22	СІ СО СІ СО СІ СО СІ СО СІ СО ОСН ₂ СН-СН ₂ СООСН ₃	Faint brown	70	243-253

Volume 6 Issue 11, November 2017 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20177846

	Table 6: Physical properties of C	copolymers	[23-26]	
Comp. No.	Polymer structure	Color	Conversion ratio %	Soft. point °C
23		Brown	72	Gummy
24		Brown	53	286-290
25	CI CO H2CH-CH2 CONHPh	Deep green	62	231-236
26	CI CO CI H CI CO CI H CI CO CH ₂ CH ₂ C M OCH ₂ CH ₂ CH ₂ C M CONHPh	Brown	70	237-250
			[Ph=	H _b C

<u>}</u>1

 Table 7: FTIR spectral data (cm⁻¹) of Compounds[1-4]

Comp. No.	ν (O-H) and ν (N-H)	v(C-H) aromatic	v(C=O) carboxyl	v(C=O) amide	v(C=C) aromatic	v(C-Cl)	Others
1	3267	3040	1712	1650	1620 1610	1030	-
2	3477 3394 3267	3089	1714	1654	1606	1043	-
3	3417 3274 3261	3020	1712	1650	1618	1103	p-sub. 825
4	3379 3184	3037	1716	1660	1596	1089	p-sub. 815

Table	8:	FTIF	l sj	pectral	data	(cm^{-1})) of C	Com	pounds	[5-	-8]
										_	

Comp. No.	v(O-H) phenolic	v(C-H) aromatic	v(C=O) imide	v(C=C) aromatic	v(C-N) imide	v(C-Cl)	Others
5	3421	3078	1787 asy. 1731 sy.	1598	1365	1097	-
6	3417	3060	1778 asy. 1710 sy.	1612 1600	1367	1099	-
7	3419	3030	1776 asy. 1704 sy.	1612 1600	1367	1099	p-sub. 833
8	3480	3060	1780 asy. 1720 sy.	1605	1365	1090	p-sub. 822

Volume 6 Issue 11, November 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20177846

Table 9: FTIR spectral data (cm ⁻¹) of compounds [9-12]										
Comp.	ν(C-H)	ν(C-H)	ν (C=O)	ν (C=C)	v(C-N)	$\mathcal{W}(\mathbf{C},\mathbf{O})$				
No.	aromatic	aliphatic	imide	aromatic	imide	V(C-0)	V(C-CI)			
0	3033	2921	1778	1612	1353	1274	1000			
9		2815	1778	1600	1555	1016	1099			
10	2087	2923	1782	1608	1265	1261	1080			
10	3087		1712	1598	1305	1000				
11	2020	2927	1785	1645	1262	1271	1005			
11	5020	2852	1726	1600	1505	1037	1095			
12	2078	2925	1784	1656	1265	1201	1085			
12	3078	2866	1724	1598	1505	1018	1085			

Table 10: FTIR spectral data (cm⁻¹) of copolymers[13-17]

				\ / I	- L				
Polym .	v(C-H)	v(C-H)	v(C≡N)	v(C=O)	v(C=C)	v(C-N)	v(C-O)	υ(C-Cl)	
INO.	aromatic	anphatic		milde	aromatic	milde	ether		
13	3093	2920 2870	2243	1776 1710	1562	1369	1205 1018	1099	
14	3070	2921	2242	1784	1500	1265	1236	1080	
		2945	2243	1708	1596	1305	1014		
15	3040	2937	22/2	1785	1600	1265	1199	1095	
15		2873	2243	1724	1000	1303	1016		
16	3001	2950	2225	1780	1517	1260	1276	1101	
		2891	2255	1710	1317	1309	1018	1101	
17	3010	2981	2225	1784	1506	1265	1234	1095	
		2890	2233	1708	1390	1305	1015		

Table 11: FTIR spectral data (cm⁻¹) of copolymers[18-22]

Polym	ν(C-H)	ν(C-H)	ν(C=O)	v(C=O)	$\nu(C=C)$	v(C-N)	N(C 0)	$v(\mathbf{C},\mathbf{C})$
no.	aromatic	aliphatic	ester	imide	aromatic	imide	V(C-0)	0(C-CI)
18	3080	2954	1720	1784	1506	1365	1164	1059
		2850	1750	1708	1390			1058
19	3068	2952	1721	1787	1502	1299	1164	1037
		2850	1751	1731	1302	1300	1104	
20	3095	2952	1735	1774	1559	1260	1140	
				1722	1558	1309	1149	-
21	3040	2950	1720	1782	1506	1265	1140	1059
		2842	1750	1720	1390	1305	1149	1056
22	2995	2950	1729	1785	1602	1367	1140	1097
		2839	1728	1728	1002		1149	

 Table 12: FTIR spectral data (cm⁻¹) of copolymers [23-26]

Comp.	ν(N-H)	v(C-H)	v(C-H)	v(C=O)	v(C=O)	$\nu(C=C)$	v(C-N)	v(C-O)	v(C, C)
No.	amide	aromatic	aliphatic	imide	amide	aromatic	imide	ester	0(C-CI)
22	2267	3056	2918	1776	1660	1581	1371	1263	1087
23	3207	5050	2866	1712	1000	1561	1371	1022	1087
24	2262	2070	2960	1780	1662	1591	1260	1261	1087
24	3203	3070	2842	1712	1002	1381	1309	1018	
25	2260	2022	2970	1782	1662	1591	1265	1199	1002
25	5209	5055	2866	1722	1002	1381	1303	1024	1095
26	2261	2078	2970	1785	1660	1591	1272	1201	1087
20	3201	3078	2885	1728	1000	1381	13/3	1020	1087

References

- [1] Mutar A.M. and Mutashar, M. O. 2014. Synthesis, characterization, thermal properties and flame retardance of aromatic polyimides containing halogen and phosphorus components. Asian J. Chem., 26:564-568.
- [2] Koywneu F. B., Koyuneu S. and Ozdemir E. 2010. A novel donor-acceptor polymeric electrochromic material containing carbazole and 2,8-naphthalimide as subunit. Electro Chem. Acta, 55:4935-4940.
- [3] Ugur M.H., Toker R.D., Apohan N. K. anf Gungor A. 2014. Preparation and characterization of novel

thermoset polyimide and polyimide-peodoped with $LiCF_3SO_3$. Express Polym. Lett., 8(2):123-132.

- [4] Chhabra P. and Choudhary V. 2009. Synthesis and characterization of sulfonated naphthalenic polyimides based on 4,4'_diaminodiphenylether_2,2'_disulfonic acid dand bis [4-(4-aminophenoxy) phenylhexafluoro prpane] for fuel cell aplications. Eur. Polym. J., 45:1467-1475.
- [5] Hiran B. L., Boriwal R., Bapana S. and Pallwal S. N. 2010. Synthesis and characterization of polymers of substituted maleimide derivatives. J. Univ. Chem. Tech. Metall., 45(2): 127-132.
- [6] Mallakpour S. and Zadehnazari A. 2013. Synthesis of novel nanostructures chiral poly (amide-imide)s

Volume 6 Issue 11, November 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

containing dopamine and natural amino acids. J. Chem. Sci., 125(1):203-211.

- [7] Cakir M., Karatas S., Menceloglu Y., Apohan N. K. and Gungar A. 2008. Phosphorus containing sulfonated polyimides for proton exchange membranes. Macromo. Chem. Phys., 209:919-929.
- [8] Lee T., Park S. S., Jung Y., Han S., Han D., Kim I. and Ha C. S. 2009. Preperation and characterization of polyimide/mesoporous silica hybrid nanocomposites based on water-soluble poly (amic acid) ammonium salt. Eur. Polym. J., 45:19-29.
- [9] Ramesh S., Sivasamy A. and Kim J. H. 2012. Synthesis and characterization of maleimide functionalized polystyrene-SiO₂/TiO₂ hybrid nanocomposites by solgel process. Nano. Res. Lett., 7:350-363.
- [10] Grabchev I., Bosch P., Mckenna M. and Nedelcheva A. 2007. Synthesis and spectral properties of new green fluorescent poly (propylene imine) dendrimers modified with 1,8-naphthalimide as sensors for metal cations. Polymer, 48:6755-6764.
- [11] Sarkar A., Hankhambe P. N., Avadhani C. V. and Wadgaonkar P. P. 2007. Synthesis and characterization of poly (amide imide)s containing pendant flexible alkoxy chains. Eur. Polym. J., 43:3646-3654.
- [12] Liu C., Xu X. and Huang J. 2004. Spontaneous copolymerization of N-butyl maleimide and ethyl α -phenyl acrylate with high alternating tendency. J. Appl. Polym. Sci., 94:335-360.
- [13] Hiran B. L. and Pallsal S. N. 2011. Synthesis, characterization and thermal stability of maleimide polymers with modified monomers. Int. J. Pure Appl. Chem., 6(3):287-295.
- [14] Al-Azzawi A. M. and Hassan A. S. 2015. Synthesis and antimicrobial activity screening of new Schiff bases and their acetyl oxadiazolederivatives bearing succinimide moiety. Int. J. Res. Pharm. Chem., 5(4):639-648.
- [15] Al-Azzawi A. M. and Hassan A. S. 2014. Synthesis and antimicrobial activity of new succunimides bearing different hetrocycles. Int. J. Res. Pharm. Chem., 4(4):755-762.
- [16] Al-Azzawi A. M. and Yaseen H. K. 2016. Synthesis, characterization and polymerization of new maleimides containing pendent 1,3,4-oxadiazole moiety. J. Chem. Pharm. Res., 8(8): 241-247.
- [17] Silverstein R. M., Bassier G. C. and Morill T. C. 1981. Spectrometric identification of organic compounds. 4th ed. John Wiley and Sons, New York, U.S.A.