Acoustic and Thermodynamic Properties of Binary Mixtures of Ionic Liquid [Bmim][PF₆] and 2-Pyrrolidone from T = (298.15to 323.15)K

N. Bhanu Murthy¹, M. Rangacharyulu², J. Siva Rama Krishna³

^{1, 2, 3}Department of Physics, AcharyaNagarjuna University

Abstract: The density (ρ), ultrasonic velocity (u) and refractive index (n_D) of the binary mixtures of 1-Butyl 3-Methylimidazolium Hexafluoropasphate (Bmim [PF₆]) and 2-pyrrolidone and those of pure liquids were measured using Anton Paar vibrating tube density and sound velocity meter (DSA 5000 M) and Dr. KernchenAbbemat (Anton Paar, Austria)refractometer over the whole composition range as a function of temperature between298.15 and 323.15 K in steps of 5K at atmospheric pressure. From the experimental data, the excess values of molar volumes (V_m^E), isentropic compressibility (k_s^E), acousticimpedance (Z^E), free length (L_f^E), speeds of sound (u^E), and deviations in refractive index (Δn_D) were calculated and fitted to a Redlich–Kister type equation. From the values of V_m^E , k_s^E , L_f^E , we observe that the inversion in the sign from negative to positive indicates decrease of interaction between [Bmim][PF₆] and 2-Pyrrolidonewith the increase of IL concentration. Negative values of deviation in refractive index suggest that the ion-ion interactionsbetween [Bmim+] and [PF_6] ions dominate at higher mole fractions of [Bmim][PF₆] in the mixture.

Keywords: [Bmim][PF₆], 2-Pyrrolidone, Density, ultrasonic velocity, Refractive index, excess/deviation parameters, Redlich–Kister type equation

1. Introduction

The measurement of density, velocity, refractive index and related excess properties are included in the investigation of the physico-chemical behavior of liquid systems andprovides useful information regarding the intermolecular interactions in liquids and their mixtures. This experimental data is useful for industrial objectives, for theoretical and applied thermodynamics.

The nature and strength of molecular interactions can be known by studying the variation of thermo physical properties with several parameterswhich enables to determine the deviation and excess properties of mixtures.

Ionic liquids (ILs) are a group of organic salts formed by the combination of organic cations and inorganic anions. The imidazolium cation with varying heteroatom functionality is contained in most commonly studied ILs. In this study, we have used the ionic liquid formed by 1-butyl-3-methylimidazolium ion (BMIM⁺) as cation and 2-pyrrolidone as an ion. The properties of ionic liquids can be improved by the addition of a co-solvent which causes them to use effectively in various chemical processes. Bmim [PF₆] is a light yellow colored liquid.

Many scientific investigations [1-7] are focusing on the mixtures of ILswith other organic solvents.Because of its high significanceand experimental accessibility [8-12], density has been widely studied among the various physicochemical properties of ILs. Physicochemical properties of ethylene glycolderivatives in the aqueous or non-aqueous solvents have been widelystudied [13-19]. There has been little focus[20-23] on the refractive index of binary mixtures containingionic liquids.Various researchers [24-30] studied the physicochemical properties of mixtures of $[BMIM][PF_6]$ with someorganic solvents have been by

2-pyrrolidone is a colorless liquid which is used as apaint removing agent, solvent for surface treatment for textiles, polymers, and metal coated plastics. It is also used as an intermediate in the production of vinylpyrrolidone and drug piracetam. The structure of2-pyrrolidone is of great interest as it is related to many structural problems in molecular biology. The self-association of 2-pyrrolidone serves as a model for hydrogen bonding in nucleic acid amides.

Pyrrolidin-2-one [31] is aprotic solvent having low volatility, high dipolemoment (3.91 D at 20° C). It is miscible with water and organic solvents. It has been chosen because it is used in industry,applied chemistry, and participation in biological processes [32,33]. Pyrrolidin-2-one is a five member cyclic amide (lactam) possessing high dipole moment due to which the basic structural peptide bond ANHACOA confers theoretically interesting properties as solvent. It adopts cis conformation (n < 9) [31] and is self-associated through hydrogen bonding in pure state [34].

However, the literature reviewindicates that the systematic volumetric, acoustic, optical and spectroscopic properties of binary mixtures of [BMIM][PF₆] with 2-pyrrolidone have not been reported earlier.

2. Experimental

3-Methylimidazolium 1-Butyl hexafluoropasphateis obtained from "IoLiTec Ionic Liquids Technology GmbH, Germany" >99% and Pyrrolidin-2-one of A.R. grade product is obtained from Merck, Germany. The weighing was done on a Sartorius semi-micro balance CP225-D within ± 1 \times 10-5 g.All the solutions were kept tightly sealed to absorption atmospheric minimize of moisture. Measurements were performed immediately after preparation of solutions.

Densities and speeds of sound values of the pure liquids and their mixtures were measured using density and sound analyzer apparatus (Anton Paar DSA 5000M). The uncertainties in the density and speed of sound measurements are 1×10^{-3} Kg/m³ and 0.1m/s respectively. Further, uncertainty in the temperature measurement is $\pm 0.001^{0}$ C.

The refractive indices of pure compounds and mixtures are measured using Dr. KrenchenAbbemat RXA170 refractometer of Anton Paar, Germany.

	ρ kgm ⁻³		u	ms-1	n _D		
T/K	Exp.	Lit.	Exp.	Lit.	Exp.	Lit.	
[Bmim]	[[PF ₆]						
298.15	1368.3	1367.88 [35]	1442.58	1442.80[38]	1.409	1.4089 [35]	
303.15	1364.2	1362.98 [36]	1430.94	1430.60[38]	1.407	1.4073 [40]	
308.15	1360.1	1359.33 [35]	1419.45	1419.00[38]	1.406	1.4057 [40]	
313.15	1355.9	1354.58 [36]	1408.04	1407.53[39]	1.405	1.4046 [40]	
318.15	1351.8	1350.87 [35]	1396.72	1396.27[39]	1.404	1.4036 [40]	
323.15	1347.7	1346.72 [37]	1385.36	1385.15[40]	1.402	1.4025 [40]	
2-pyrro	lidone						
298.15	1107	1107.12 [41]	1634	1633.95 [45]	1.485	1.4853 [48]	
303.15	1103	1103.40 [42]	1618	1617.64 [46]	1.483	1.4839 [49]	
308.15	1099	1099.15 [43]	1602	1601.62[47]	1.482	1.4822 [50]	
313.15	1095	1095.00 [42]	1586	1585.44[47]	1.480	1.4805 [50]	
318.15	1091	1091.05 [42]	1570	1570.39[47]	1.478	1.4790 [50]	
323.15	1087	1087.10 [44]	1554	1553.48[47]	1.476	1.4769 [50]	

 Table 1: Experimental and literature values of density, velocity and refractive index

3. Theory

5.

The experimentally measured values of ρ , u and n_D were used to calculate the values of thermodynamic and acoustical parameters such as molar volume (V_m), intermolecular free length (L_f) and isentropic compressibility (k_S). We calculate thermodynamic parameters such as internal pressure (π_i) and free volume (V_f) assuming the specific heats of the binary mixtures as ideal. The experimentally measured values and the derived parameter values are shown in Table 2. The derived excess/deviation parameter values are shown in Table 3

The molar volume was calculated by using the following equation:

$$V_m = \frac{M}{\rho} \tag{1}$$

Where, M is the effective molecular weight (= $x_1M_1 + x_2M_2$), and M_1 , M_2 are the molar masses and x_1 and x_2 are the mole fractions of IL and dimethyl carbonate, respectively), and ρ is the density of the medium.

The excess molar volumes are given by:

$$V_m^E = \frac{x_1 M_1 + x_2 M_2}{\rho} - \left(\frac{x_1 M_1}{\rho_1} + \frac{x_2 M_2}{\rho_2}\right)$$
(3)

where, ρ_1 , ρ_2 and ρ are the densities of IL, dimethyl carbonate and the mixture, respectively.

The isentropic compressibility, k_s , is computed directly from the measured values of speed of sound and density using the Newton–Laplace equation:

$$\mathbf{k}_{s} = -\frac{1}{V_{m}} \left(\frac{\partial V_{m}}{\partial \mathbf{p}} \right)_{s} = \left(\frac{1}{\rho u^{2}} \right) = \left(\frac{V_{m}}{M u^{2}} \right) \quad (4)$$

Excess isentropic compressibility is given by:

$$k_s^E = k_s - (x_1 k_{s1} + x_2 k_{s2}) \quad (5)$$

Where k_{si} is the isentropic compressibility of the binary mixture and k_{s1} , k_{s2} are that of pure components.

The speed of sound (u) and the density of the medium (ρ) using Newton–Laplace equation give the free length as:

$$L_f = \frac{\kappa}{\sqrt{\rho u^2}} \qquad (6)$$

(7)

Where, K is a temperature dependent constant equal to $(93.875 + 0.375T) \times 10^{-8}$.

The excess intermolecular free length is given by: $L_f^E = L_f - (x_1L_{f1} + x_2L_{f2})$

The excess speed of sound, u^E is estimated in binary and ternary mixtures using the following expression:

$$u^{E} = u - (x_{1}u_{1} + x_{2}u_{2}) \qquad (8)$$

4. Analysis of Experimental Data

Table 2: The experimentally measured values and the derived parameter parameters binary mixtures of Bmim [PF₆] with 2-pyrrolidinone.

					$\beta_{ad}^*10^{-10}$	_	5		6	
x_1	ρ	u	n_D	$V_m * 10^{-0}$	10	M	Z*10 ³		$R_m * 10^{-6}$	r
	Kg/m ³	m/sec		<i>m[°] mol</i> ¹	$m^2 N^2$	kg mol ⁺	Kg/m ² .s	*10 ¹¹ m	m³/mol	*10 ¹⁰ m
0.0000	1107.00	1624.00	1 4950	76 97	298.	15K 0.0951	10 000 /	2 7022	22.0224	2.0619
0.0000	1169.94	1034.00	1.4850	/0.8/	2 2655	0.0851	18.0884	3.1822	22.0324	2.0018
0.1025	1221.98	1555.98	1.4088	105.72	3 3801	0.1000	19.0137	3 7804	23.1281	2.1342
0.3376	1259 73	1525.52	1 4419	120.91	3 4110	0.1523	19.2174	3 7977	31 9843	2.3346
0.4502	1287.22	1501.82	1.4330	135.73	3.4444	0.1747	19.3318	3.8162	35.2775	2.4121
0.5654	1309.40	1482.66	1.4260	150.95	3.4741	0.1977	19.4140	3.8326	38.6752	2.4872
0.6527	1323.68	1471.08	1.4217	162.46	3.4910	0.2150	19.4723	3.8419	41.2574	2.5414
0.7421	1336.82	1461.43	1.4180	174.18	3.5024	0.2328	19.5367	3.8482	43.8926	2.5944
0.8295	1348.58	1453.79	1.4148	185.56	3.5085	0.2502	19.6055	3.8516	46.4476	2.6438
0.9019	1357.56	1448.53	1.4123	194.95	3.5106	0.2647	19.6647	3.8527	48.5438	2.6830
1.0000	1368.30	1442.58	1.4090	207.69	3.5119	0.2842	19.7388	3.8534	51.3468	2.7336
0.0000	1102.00	1 < 1 0 00	1 4020	77.16	303.	15K	17.0465	2.02((22.0244	2.0(10
0.0000	1103.00	1618.00	1.4830	//.15	3.4631	0.0851	17.8465	3.8266	22.0344	2.0619
0.1025	1217.99	15/9.04	1.4009	90.57	3.4400	0.1055	18.3995	3.8141	25.1209	2.1542
0.2215	1217.00	1542.50	1.4317	121.31	3.4310	0.1292	18 0038	3.8202	20.0013	2.2492
0.3370	1283.09	1489 57	1.4400	136.17	3 5125	0.1323	19 1125	3 8538	35 2582	2.3343
0.5654	1305.26	1470.78	1.4241	151.43	3.5416	0.1977	19.1976	3.8697	38.6470	2.4866
0.6527	1319.53	1459.37	1.4198	162.97	3.5584	0.2150	19.2568	3.8788	41.2217	2.5406
0.7421	1332.68	1449.81	1.4160	174.72	3.5699	0.2328	19.3213	3.8851	43.8486	2.5935
0.8295	1344.45	1442.20	1.4128	186.13	3.5761	0.2502	19.3896	3.8885	46.3953	2.6428
0.9019	1353.44	1436.93	1.4103	195.54	3.5784	0.2647	19.4480	3.8897	48.4848	2.6819
1.0000	1364.20	1430.94	1.4070	208.31	3.5800	0.2842	19.5209	3.8906	51.2792	2.7324
					308.	15K				
0.0000	1099.00	1602.00	1.4820	77.43	3.5455	0.0851	17.6060	3.8718	22.0756	2.0632
0.1025	1160.75	1564.79	1.4660	90.89	3.5184	0.1055	18.1633	3.8570	25.1722	2.1555
0.2215	1213.82	1528.55	1.4509	106.43	3.5260	0.1292	18.5538	3.8612	28.6518	2.2505
0.3376	1251.53	1499.68	1.4392	121.70	3.5527	0.1523	18./689	3.8/38	32.02/3	2.3357
0.4302	12/9.00	1477.08	1.4304	150.00	3.5850	0.1747	18 9798	3.0920	38 7082	2.4130
0.6527	1315.44	1447.46	1.4190	163.48	3.6284	0.2150	19.0405	3.9168	41.2832	2.5419
0.7421	1328.58	1438.06	1.4152	175.26	3.6397	0.2328	19.1057	3.9229	43.9089	2.5947
0.8295	1340.34	1430.55	1.4120	186.70	3.6457	0.2502	19.1743	3.9261	46.4522	2.6439
0.9019	1349.33	1425.35	1.4094	196.14	3.6478	0.2647	19.2328	3.9273	48.5372	2.6828
1.0000	1360.10	1419.45	1.4060	208.94	3.6491	0.2842	19.3059	3.9280	51.3224	2.7332
					313.	15K				
0.0000	1095.00	1586.00	1.4800	77.72	3.6306	0.0851	17.3667	3.9180	22.0777	2.0633
0.1025	1156.70	1550.00	1.4641	91.21	3.5984	0.1055	17.9289	3.9006	25.1719	2.1555
0.2215	1209.73	1514.84	1.4491	106.79	3.6023	0.1292	18.3255	3.9027	28.6504	2.2505
0.3370	1247.45	1460.72	1.4570	122.10	3.6566	0.1323	18.5457	3.9100	35 3198	2.5550
0.4502	1297.03	1446 58	1.4209	157.05	3 6844	0.1977	18.7625	3 9469	38 7165	2.4131
0.6527	1311.28	1435.55	1.4176	164.00	3.7006	0.2150	18.8241	3.9556	41,2972	2.5422
0.7421	1324.41	1426.28	1.4140	175.81	3.7117	0.2328	18.8897	3.9615	43.9299	2.5951
0.8295	1336.16	1418.89	1.4108	187.28	3.7175	0.2502	18.9586	3.9646	46.4812	2.6444
0.9019	1345.14	1413.79	1.4083	196.75	3.7193	0.2647	19.0174	3.9656	48.5735	2.6835
1.0000	1355.90	1408.04	1.4050	209.59	3.7200	0.2842	19.0916	3.9659	51.3695	2.7340
					318.	15K				
0.0000	1091.00	1570.00	1.4780	78.00	3.7186	0.0851	17.1287	3.9652	22.0796	2.0633
0.1025	1152.66	1535.27	1.4622	91.53	3.6807	0.1055	17.6963	3.9450	25.1713	2.1554
0.2215	1205.66	1501.19	1.4473	107.15	3.6805	0.1292	18.0991	3.9448	28.6486	2.2504
0.3370	1243.35	14/3./9	1.4359	122.50	3.7028	0.1525	18.3243	3.9308	32.0257	2.3330
0.4502	12/0.83	1432.17	1.4275	157.40	3 7587	0.1747	18.5474	3 9865	33.3204	2.4131
0.6527	12/3.03	1423 55	1.4163	164 49	3 7746	0.2150	18 6102	3 9950	41 3053	2.4002
0.7421	1320.46	1414.42	1.4127	176.34	3.7855	0.2328	18.6768	4.0007	43.9434	2.5954
0.8295	1332.21	1407.16	1.4096	187.84	3.7909	0.2502	18.7464	4.0035	46.5020	2.6448
0.9019	1341.15	1402.20	1.4072	197.33	3.7923	0.2647	18.8057	4.0043	48.6023	2.6840
1.0000	1351.80	1396.72	1.4040	210.22	3.7920	0.2842	18.8809	4.0042	51.4131	2.7348
					323.	.15K				
0.0000	1087.00	1554.00	1.4760	78.29	3.8095	0.0851	16.8920	4.0134	22.0815	2.0634
0.1025	1148.60	1520.46	1.4603	91.85	3.7660	0.1055	17.4640	3.9904	25.1704	2.1554
0.2215	1201.62	1487.44	1.4455	107.51	3.7614	0.1292	17.8734	3.9880	28.6430	2.2503

0.3376	1239.36	1460.80	1.4341	122.90	3.7811	0.1523	18.1045	3.9984	32.0148	2.3353
0.4502	1266.86	1439.70	1.4256	137.91	3.8083	0.1747	18.2389	4.0127	35.3041	2.4127
0.5654	1289.03	1422.31	1.4187	153.34	3.8348	0.1977	18.3341	4.0267	38.6985	2.4877
0.6527	1303.28	1411.64	1.4145	165.00	3.8505	0.2150	18.3976	4.0349	41.2781	2.5418
0.7421	1316.37	1402.66	1.4109	176.88	3.8612	0.2328	18.4642	4.0405	43.9099	2.5947
0.8295	1328.08	1395.53	1.4078	188.42	3.8663	0.2502	18.5337	4.0432	46.4604	2.6440
0.9019	1337.00	1390.68	1.4053	197.95	3.8674	0.2647	18.5934	4.0437	48.5514	2.6831
1.0000	1347.70	1385.36	1.4020	210.86	3.8662	0.2842	18.6705	4.0431	51.3440	2.7336

Table 3: The excess parameters of binary mixtures of Bmim [PF₆] with 2-pyrrolidone

r.		$k_{S_{10}}^{E} * 10^{-10}$	7 ^E *10 ⁵		An	ΔR_{m^*}	$V^{E}_{m} * 10^{-6}$
~	m/s	$m^2 N^1$	$K_{\sigma}/m^2 s$	$*10^{-11}m$		m^3/mol	m^3mol^{-1}
	111/3		Hg/III .5	298 15K		m /mot	m mot
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	-2.293	-0.0310	0.3785	-0.0173	-0.0034	0.0921	-0.0193
0.2215	-3.298	-0.0317	0.5598	-0.0176	-0.0036	0.0826	-0.1231
0.3376	-8.833	-0.0157	0.5718	-0.0086	-0.0050	0.0545	-0.1298
0.4502	-9.266	0.0032	0.5004	0.0019	-0.0038	0.0492	-0.0293
0.5654	-13.560	0.0181	0.3926	0.0101	-0.0045	0.0693	0.1170
0.6527	-14.197	0.0237	0.3067	0.0132	-0.0043	0.0909	0.2001
0.7421	-13.322	0.0237	0.2234	0.0132	-0.0042	0.1051	0.2219
0.8295	-10.147	0.0185	0.1481	0.0103	-0.0037	0.0988	0.1709
0.9019	-5.412	0.0114	0.0877	0.0063	-0.0020	0.0718	0.0906
1.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				303.15K			
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	-1.017	-0.0345	0.3814	-0.0190	-0.0034	0.0959	-0.0195
0.2215	-1.596	-0.0374	0.5668	-0.0205	-0.0036	0.0900	-0.1231
0.3376	-6.751	-0.0222	0.5819	-0.0121	-0.0051	0.0639	-0.1287
0.4502	-7.339	-0.0032	0.5123	-0.0016	-0.0039	0.0592	-0.0263
0.5654	-11.691	0.0125	0.4044	0.0069	-0.0047	0.0784	0.1219
0.6527	-12.524	0.0190	0.3174	0.0105	-0.0045	0.0986	0.2060
0.7421	-11.902	0.0200	0.2322	0.0110	-0.0044	0.1107	0.2280
0.8295	-9.070	0.0160	0.1542	0.0088	-0.0039	0.1022	0.1762
0.9019	-4.749	0.0099	0.0913	0.0054	-0.0021	0.0736	0.0942
1.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				308.15K			
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	0.167	-0.0377	0.3831	-0.0206	-0.0033	0.0999	-0.0206
0.2215	-0.060	-0.0424	0.5714	-0.0231	-0.0035	0.0988	-0.1255
0.3376	-4.897	-0.0277	0.5890	-0.0150	-0.0050	0.07/1	-0.1314
0.4502	-5.668	-0.0085	0.5206	-0.0045	-0.0038	0.0759	-0.0285
0.5654	-10.073	0.0079	0.4127	0.0044	-0.0045	0.0973	0.1209
0.0527	-11.009	0.0155	0.3249	0.0085	-0.0043	0.11//	0.2059
0.7421	-10.037	0.0173	0.2381	0.0094	-0.0042	0.1285	0.2288
0.8293	-8.070	0.0142	0.1382	0.0077	-0.0038	0.0820	0.0051
1.0000	-4.122	0.0089	0.0933	0.0048	-0.0020	0.0850	0.0931
1.0000	0.000	0.0000	0.0000	313 15K	0.0000	0.0000	0.0000
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	1 352	-0.0413	0.3855	-0.0223	-0.0032	0.0929	-0.0226
0.2215	1.463	-0.0481	0.5768	-0.0259	-0.0034	0.0852	-0.1296
0.3376	-3.078	-0.0340	0.5966	-0.0182	-0.0048	0.0594	-0.1366
0.4502	-4.050	-0.0143	0.5291	-0.0076	-0.0037	0.0564	-0.0335
0.5654	-8.524	0.0033	0.4206	0.0018	-0.0044	0.0781	0.1170
0.6527	-9.688	0.0116	0.3315	0.0063	-0.0043	0.1002	0.2034
0.7421	-9.440	0.0147	0.2429	0.0079	-0.0042	0.1138	0.2275
0.8295	-7.119	0.0127	0.1611	0.0068	-0.0037	0.1059	0.1770
0.9019	-3.531	0.0081	0.0949	0.0044	-0.0020	0.0766	0.0952
1.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				318.15K			
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	2.502	-0.0454	0.3881	-0.0242	-0.0031	0.0860	-0.0234
0.2215	2.934	-0.0543	0.5824	-0.0290	-0.0033	0.0723	-0.1311
0.3376	-1.317	-0.0405	0.6041	-0.0215	-0.0046	0.0421	-0.1396
0.4502	-2 497	-0.0202	0 5371	-0.0107	-0.0035	0.0363	-0.0396

0 5654	-7.046	-0.0014	0.4281	-0.0007	-0.0042	0.0568	0 1057
0.6527	-8.385	0.0081	0.3379	0.0044	-0.0040	0.0791	0.1872
0.7421	-8.327	0.0124	0.2478	0.0066	-0.0040	0.0945	0.2073
0.8295	-6.247	0.0114	0.1643	0.0060	-0.0036	0.0902	0.1559
0.9019	-3.004	0.0075	0.0967	0.0040	-0.0019	0.0659	0.0782
1.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
				323.15K			
0.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1025	3.636	-0.0493	0.3897	-0.0260	-0.0030	0.0905	-0.0233
0.2215	4.385	-0.0606	0.5875	-0.0320	-0.0031	0.0805	-0.1363
0.3376	0.423	-0.0475	0.6121	-0.0250	-0.0044	0.0533	-0.1510
0.4502	-0.963	-0.0267	0.5463	-0.0140	-0.0032	0.0500	-0.0543
0.5654	-5.585	-0.0067	0.4366	-0.0035	-0.0039	0.0727	0.0927
0.6527	-7.097	0.0040	0.3447	0.0021	-0.0038	0.0963	0.1792
0.7421	-7.228	0.0096	0.2523	0.0050	-0.0038	0.1117	0.2064
0.8295	-5.386	0.0098	0.1665	0.0051	-0.0034	0.1055	0.1615
0.9019	-2.486	0.0067	0.0973	0.0035	-0.0018	0.0771	0.0859
1.0000	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table 4: coefficients (A_i) of Redlich–Kister polynomial for excess parameters

		< <i>V</i>		1 2	1	
RKC/Tem	A_0	A_{I}	A_2	A_3	A_4	σ
$V_m^E(*10^{-6} m^3 m)$	$ol^{-1})$					
298.15	0.1363	-2.6211	0.2902	2.8946	0.2406	0.0004410
303.15	0.1516	-2.6553	0.2958	2.9063	0.2415	0.0004441
308.15	0.1447	-2.6759	0.3043	2.9156	0.2431	0.0004458
313.15	0.1264	-2.6957	0.3160	2.9242	0.2446	0.0004483
318.15	0.0938	-2.6056	0.2098	2.9626	0.2466	0.0004496
323.15	0.0352	-2.6294	0.3677	2.9182	0.2492	0.0004633
$\Delta U(m/s)$						
298.15	-46.80	52.40	-17.70	-38.80	40.30	0.94500
303.15	-39.00	54.30	-14.90	-36.10	42.70	0.88100
308.15	-32.20	56.10	-11.50	-33.90	45.30	0.81800
313.15	-25.70	58.20	-7.90	-31.80	47.50	0.75400
318.15	-19.50	60.40	-4.60	-29.60	49.70	0.69100
323.15	-13.40	62.60	-1.30	-27.30	51.60	0.63100
$k_{\rm s}^{E}(*10^{-10}m^{2}N)$	(-1)					
298.15	0.0420	-0.2688	-0.2205	-0.0379	-0.0165	0.0000497
303.15	0.0176	-0.2817	-0.2245	-0.0383	-0.0179	0.0000574
308.15	-0.0026	-0.2946	-0.2261	-0.0414	-0.0230	0.0000482
313.15	-0.0240	-0.3133	-0.2312	-0.0415	-0.0211	0.0000663
318.15	-0.0457	-0.3345	-0.2350	-0.0455	-0.0256	0.0000503
323.15	-0.0699	-0.3554	-0.2370	-0.0457	-0.0261	0.0000468
$Z^{E} * 10^{-5} Kg/m^{2}$.s					
298.15	1.8236	1.8740	1.1306	0.1412	0.0412	0.0000258
303.15	1.8718	1.8719	1.1137	0.1354	0.0381	0.0000304
308.15	1.9057	1.8706	1.0973	0.1307	0.0337	0.0000187
313.15	1.9393	1.8790	1.0759	0.1270	0.0363	0.0000317
318.15	1.9710	1.8882	1.0667	0.1206	0.0324	0.0000158
323.15	2.0075	1.8986	1.0303	0.1139	0.0298	0.0000337
$L_{f}^{E} * 10^{-11} m$						
298.15	0.02371	-0.14863	-0.12200	-0.02298	-0.01169	0.0000107
303.15	0.01007	-0.15415	-0.12400	-0.02234	-0.01139	0.0000336
308.15	-0.00097	-0.15966	-0.12500	-0.02417	-0.01137	0.0000192
313.15	-0.01256	-0.16791	-0.12600	-0.02446	-0.01076	0.0000401
318.15	-0.02398	-0.17827	-0.12800	-0.02421	-0.01123	0.0000462
323.15	-0.03658	-0.18699	-0.12800	-0.02452	-0.01048	0.0000135
Δn					•	•
298.15	-0.0169	0.0025	-0.0248	-0.0120	0.0078	0.000491
303.15	-0.0176	0.0031	-0.0246	-0.0119	0.0076	0.000485
308.15	-0.0169	0.0029	-0.0242	-0.0116	0.0075	0.000476
313.15	-0.0166	0.0033	-0.0240	-0.0114	0.0076	0.000468
318.15	-0.0156	0.0030	-0.0241	-0.0111	0.0079	0.000466
323.15	-0.0146	0.0028	-0.0241	-0.0108	0.0081	0.000465
$\Delta R_m * 10^{-6} m^3 / m$	ol	•	•	•	•	•
298.15	0.2219	-0.3453	1.0110	0.7377	0.1068	0.000205
303.15	0.2611	-0.3317	0.9972	0.7380	0.1076	0.000207
308 15	0 3325	-0 3721	1.0020	0 7394	0.1082	0.000207

Volume 6 Issue 11, November 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

313.15	0.2538	-0.3751	1.0088	0.7395	0.1078	0.000208
318.15	0.1706	-0.3504	0.9870	0.7462	0.1075	0.000208
323.15	0.2296	-0.3914	1.0300	0.7345	0.1085	0.000210

6. Discussion

The comparison of experimental and literature values of ρ , n_D and u for pure [Bmim][PF₆], pure2-Pyrrolidone are given in table 1 and the experimental values of binary mixtures are given in table 2 at temperatures from(298.15 to 323.15) K in steps of T = 5 K under atmospheric pressure. In the present study, since 2-pyrrolidone(ε = 28.18 at T = 298.15 K) is a highly dielectric and polar solvent [16], [Bmim][PF₆] is completely miscible in 2-pyrrolidone over the entire range of compositions at all temperatures under study, The values of ρ of the binary mixtures increase gradually with the increase inmole fraction(x_1) of [Bmim][PF₆] in the mixture, at all the investigated temperatures. It can be seen that the values of ρ significantly decrease with the increase of temperature. It canbe clearly seen that at a given temperature, n_D and u values are decreasing with increase in mole fraction of [Bmim][PF_6]. Further, it can also be seen that the values of n_D and u are decreasing as the temperature is increasing. The variations in the values of q, n_D and u with the concentration and temperature suggest that the physical properties of [Bmim][PF_6] can be adjusted to meet the need of applications of [Bmim][PF_6] by adding 2-pyrrolidone or changing temperature [51].

The molar volume (V_m) values, for the for this system are increasing with increasing mole fraction of [Bmim][PF₆] concentration and also with temperature(table 2). The increase in the V_m of a system on mixing the components indicates the dissociation of one component or both the components and formation of solute - solvent bonds.

Figure 1: Variation of excess molar volume with mole fraction of BMIM PF₆

It can be seen from fig.1that the values of V_m^E for this system exhibit an inversion in the sign from negative to positivedeviation, which indicates decrease of interaction between [Bmim][**PF**₆] and 2-Pyrrolidone with the increase of IL concentration. Moreover, the values of V_m^E are negative for rich compositions of 2-Pyrrolidone and positive for rich compositions of [Bmim][**PF**₆] in themixture, at all temperatures under study. The decrement in themagnitude of the negative V_m^E values with [Bmim][**PF**₆] compositionindicates the decrement in the strength of ion - dipole interactions. Further the positive deviations can be attributed to the decrease in packing efficiency between 2-Pyrrolidone and [Bmim][**PF**₆] with increase in the concentration of [Bmim][**PF**₆]. The values of V_m^E are minimum at lower concentration($x_1 = 0.3376$) of [Bmim][**PF**₆] and maximum at higher concentration($x_1 = 0.7421$) of [Bmim][**PF**₆], in the mixture, at all temperatures under study.

Figure 2: variation of deviation in speed of sound with mole fraction of BMIM PF₆

It can be seen that the u^E values for this system are initially showing a positive trend. This can be attributed to weak ion – dipole interactions in the smaller mole fraction range of BMIM PF₆.But with small increase in the mole fraction of BMIM PF₆ the velocity of the mixture was found to be decreasing leading to negative u^E values. This can be attributed to the decrease in the strength of interaction between the component molecules.

Figure 3: Deviation in isentropic compressibility with mole fraction of BMIM PF₆

In figure 3, the k_S^E values for this system are similar to V_m^E . The negative k_S^E values are attributed to the strong attractive interactions due to the solvation of the ions in the mixture. Thenegative values of k_S^E of the [Bmim][**PF**_6] with 2-pyrrolidone imply that solvent molecules around solute are less compressible than the solvent molecules in the bulk solutions. While on further additionof [Bmim][**PF**_6],

 k_{S}^{E} show positive trend. ie.Increase in the compressibility graph atall temperature ranges. This might be due to decrease in attractionof [Bmim][**PF**₆]and2-pyrrolidonemolecules. The inversion of sign from negative to positive is in agreement with variation of V_{m}^{E} over the entire range of compositions.

Figure 4: Variation of excess acoustic impedance with mole fraction of BMIM PF₆

The values of Z^E are positive over the entire range of compositions. Prakash et.al [52] in their study represented that more than one type of interaction may be present in the given system. Dispersion forces make the positive contribution for the excess values while dipole induced

dipole and dipole-dipole interactions make negative contribution. The magnitude of Z^E being positive suggests the dispersion forces between the component molecules.

Figure 5: Variation of excess free length with mole fraction of BMIM PF₆

The values of k_S^E and L_f^E can be examined by considering the following factors which influence several contributions arising from physical, chemical and structural effects [53, 54].

The physical contribution consists of dispersion forces or weak dipole-dipole interactions leading to positive values of k_S^E and L_f^E , whereas the geometric fitting of molecules of two different sizes into each other's structure results in negative k_S^E and L_f^E values. Chemical contributions include breaking up of the molecular association present in the pure liquid, resulting in k_S^E and L_f^E values, and specific interactions such as the formation of new hydrogen bonds (including strong dipole-dipole interactions among component molecules) result in negative k_S^E and L_f^E values.

In fig. 5, the inversion of sign from negative to positive indicates that specific interactions, such as formation of new hydrogen bonds, occur among unlike molecules initially at small mole fraction of BMIM [PF6] but as the concentration of the IL increase, the physical contribution consisting of dispersion forces or weak dipole-dipole interactions prevail leading to positive values of k_S^E and L_f^E .

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Figure 6: Deviation in refractive index with mole fraction of BMIM PF₆

The D/n_D values represent the electronic perturbation due to mixing ofmolecules and are a measure of the quantity of interaction. Theresults presented in Fig. 6 indicate that D/n_D values are positive for these mixtures over entire mole fraction range at all investigated temperatures. In general, the positive deviations in D/n_D values are considered due to presence of significant interactions in themixtures, whereas negative deviations in D/n_D values indicate weak interactions between the components of the mixture[55]. Negative values suggest that the ion-ion interactions between [Bmim+] and [PF_6] in the mixture.

7. Acknowledgements

One of the authors (NBM) thanks AcharyaNagarjuna University authorities for providing the UGC-BSR meritorious fellowship.

References

- T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (1999) 2071– 2084.
- [2] P.J. Dyson, D.J. Ellis, D.G. Parker, T. Welton, Arene hydrogenation in a roomtemperature ionic liquid using a ruthenium cluster catalyst, J. Chem. Soc. Chem.Commun. (1999) 25–26.
- [3] J.D. Holbrey, K.R. Seddon, Ionic liquids, Clean Prod. Process. 1 (1999) 223–236.
- [4] N.E. Leadbeater, H.M.J. Torenius, A study of the ionic liquid mediated microwaveheating of organic solvents, Org. Chem. 67 (2002) 3145–3148.
- [5] P. Wasserscheid, W. Keim, Ionic liquids new "solutions" for transition metalcatalysis, Angew. Chem. 39 (2000) 3772–3789.
- [6] J.L. Anderson, J. Ding, T.Welton, D.W. Armstrong, Characterizing ionic liquids on the basis ofmultiple solvation interactions, J. Am. Chem. Soc. 124 (2002) 14247–14254.
- [7] K.R. Seddon, Ionic liquids: a taste of the future, Nat. Mater. 2 (2003) 363–365.
- [8] H. Tokuda, K. Hayamiizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of

anionicspecies, J. Phys. Chem. B 108 (2004) 16593-16600.

- [9] S.V. Dzyuba, R.A. Bartsch, Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imideson physical properties of the ionic liquids, Chem. Phys. Chem. 3 (2002) 161–166.
- [10] J.N. Canongia Lopes, T.C. Cordeiro, J.M.S.S. Esperanca, H.J.R. Guedes, S. Huq, L.P.N. Rebelo, K.R. Seddon, Deviations from ideality in mixtures of two ionic liquids containinga common ion, J. Phys. Chem. B 109 (2005) 3519–3525.
- [11] K.R. Harris, L.A. Woolf, M. Kanakubo, Temperature and pressure dependence of theviscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, J.Chem. Eng. Data 50 (2005) 1777–1782.
- [12] J. Troncoso, C.A. Cerdeirina, Y.A. Sanmamed, L. Romani, L.P.N. Rebelo, Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2], J. Chem. Eng. Data 51(2006) 1856– 1859.
- [13] G. Douheret, A. Pal, Dielectric constants and densities of aqueous mixtures of 2-alkoxyethanols at 25 °C, J. Chem. Eng. Data 33 (1988) 33–40.
- [14] F. Comelli, R. Francesconi, C. Castellari, Excess molar enthalpies of binary mixturescontaining propylene carbonate + some n-alkoxy- and n-alkoxyethoxyethanolsat 288.15, 298.15 and 313.15 K, Thermochim. Acta 354 (2000) 89–97.
- [15] A. Kumar, V.P. Mohandas, P.K. Ghosh, Experimental surface tensions and derived surface properties of binary mixtures of water + alkoxyethanols (C1Em, m = 1, 2,3) and water + ethylene glycol dimethyl ether (C1E1C1) at (298.15, 308.15, and318.15) K, J. Chem. Eng. Data 48 (2003) 1318–1322.
- [16] M.K. Yadav, A. Kumar, 1H NMR studies of aqueous solutions of some nalkoxyethanols(C1Em, m = 1,2,3) or polyethers (C1EmC1, m = 1,2,3,4) at298.15 K, J. Mol. Liq. 121 (2005) 94–98.
- [17] K. Tamura, Excess thermal expansion factors of polar mixtures and aqueoussolutions, J. Therm. Anal. Calorim. 57 (1999) 759–763.

Volume 6 Issue 11, November 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

- [18] M. Nishimoto, S. Tabata, K. Tamura, S. Murakami, Thermodynamic properties of themixture of methoxyethanol and cyclohexane: measurements at the temperatures293.15, 298.15 and 303.15 K above and below UCST, Fluid Phase Equilib. 136(1997) 235–247.
- [19] A. Pal, A. Kumar, Speeds of sound and isentropic compressibilities of somepolyethers with propylene carbonate at 298.15 K, Indian J. Pure Appl. Phys. 37(1999) 810–817.
- [20] M. Deetlefs, K.R. Seddon, M. Shara, Predicting physical properties of ionic liquids, Phys. Chem. Chem. Phys. 8 (2006) 642–649.
- [21]E. Gomez, B. Gonzales, N. Calvar, E. Tojo, A. Dominguez, Physical properties of pure1-ethyl-3methylimidazolium ethylsulfate and its binarymixtures with ethanol andwater at several temperatures, J. Chem. Eng. Data 51 (2006) 2096–2102.
- [22] K. Kim, B. Shin, H. Lee, F. Ziegler, Refractive index and heat capacity of 1-butyl-3-methylimidazolium bromide and 1-butyl-3-methylimidazolium tetrafluoroborate,and vapor pressure of binary systems for 1-butyl-3-methylimidazoliumbromide + trifluoroethanol and 1-butyl-3-methylimidazolium tetrafluoroborate +trifluoroethanol, Fluid Phase Equilib. 218 (2004) 215–220.
- [23] A.B. Pereiro, A. Rodriguez, Thermodynamic properties of ionic liquids in organic solvents from (293.15 to 303.15) K, J. Chem. Eng. Data 52 (2007) 600–608.
- [24] V. Najdanovic-Visak, J.M.S.S. Esperanca, L.P.N. Rebelo, M.N. da Ponte, H.J.R. Guedes, K.R. Seddon, J. Szydlowski, Phase behaviour of room temperature ionic liquid solutions:an unusually large co-solvent effect in (water + ethanol), Phys. Chem.Chem. Phys. 10 (2002) 1701–1703.
- [25] V. Najdanovic-Visak, J.M.S.S. Esperanca, L.P.N. Rebelo, M.N. da Ponte, H.J.R. Guedes,K.R. Seddon, H.C. de Sousa, J. Szydlowski, Pressure, isotope, andWater Co-solvent effectsin liquid–liquid equilibria of (ionic liquid + alcohol) systems, J. Phys. Chem. B107 (2003) 12797–12807.
- [26] D.S.H. Wong, J.P. Chen, J.M. Chang, C.H. Chou, Phase equilibria of water and ionicliquids [emim][PF6] and [bmim][PF6], Fluid Phase Equilib. 194 (2002) 1089– 1095.
- [27] J.L. Anthony, E.J. Maginn, J.F. Brennecke, Solution thermodynamics of imidazolium based ionic liquids and water, J. Phys. Chem. B 105 (2001) 10942–10949.
- [28] A. Pal, R. Gaba, T. Singh, A. Kumar, Excess thermodynamic properties of binarymixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate)with alkoxyalkanols at several temperatures, J. Mol. Liq. 154 (2010) 41–46.
- [29] T. Singh, A. Kumar, Volumetric behavior of 1-butyl-3methylimidazoliumhexaflurophosphate with ethylene glycol derivatives: application of Prigogine–Flory– Patterson theory, J. Mol. Liq. 153 (2010) 117–123.
- [30] A. Pal, B. Kumar, Volumetric, acoustic and spectroscopic studies for binary mixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) withalkoxyalkanols at T = (288.15 to 318.15) K, J. Mol. Liq. 163 (2011) 128–134.
- [31] J.A. Walmsley, J. Phys. Chem. 82 (1978) 2031–2035.

- [32] S.K. Mehta, G. Ram, K.K. Bhasin, J. Chem. Thermodyn. 37 (2005) 791–801.
- [33] B. Garcia, R. Alcalde, J.M. Leal, J.S. Matos, J. Phys. Chem. 101 (1997) 7991–7997.
- [34] J.A. Walmsley, E.J. Jacob, H.B. Thompson, J. Phys. Chem. 80 (1976) 2745–2753.
- [35] A. Pal, R. Gaba, T. Singh, A. Kumar, Excess thermodynamic properties of binary mixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) with alkoxyalkanols at several temperatures, J. Mol. Liq. 154 (2010) 41–46.
- [36] A. Pal, B. Kumar, Volumetric, acoustic and spectroscopic studies for binary mixtures of ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) withalkoxyalkanols at T = (288.15 to 318.15) K, J. Mol. Liq. 163 (2011) 128–134.
- [37] G.R. Chaudhary, S. Bansal, S.K. Mehta, A.S. Ahluwalia, Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3methylimidazoliumhexafluorophosphate in tritons, J. Chem. Thermodyn. 50 (2012) 63–70.
- [38] A.B. Pereiro, J.L. Legido, A. Rodriguez, Physical properties of ionic liquids based on 1-alkyl-3methylimidazolium cation and hexafluorophosphate as anion and temperaturedependence, J. Chem. Thermodyn. 39 (2007) 1168–1175.
- [39] M.T. Zafarani-Moattar, H. Shekaari, Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanolat T = (298.15 to 318.15) K, J. Chem. Eng. Data 50 (2005) 1694–1699.
- [40] A.N. Soriano, B.T. Doma Jr., M. Li, Measurements of the density and refractive index for 1-n-butyl-3methylimidazolium-based ionic liquids, J. Chem. Thermodyn. 41(2009) 301–307.
- [41] F.J. Hoyuelos, B. Garcia, R. Alcalde, S. Ibeas, J.M. Leal, J. Chem. Soc. Faraday Trans. 92 (2) (1996) 219– 225.
- [42] B. Garcla, C. Herrera, J.M. Leal, J. Chem. Eng. Data 36 (1991) 269–274.
- [43] S.F. Al-Azzawi, A.M. Awwad, A.H. Al-Dujaili, M.K. Al-Noori, J. Chem. Eng. Data 35 (1990) 463–466.
- [44] P.L. Pirila-Honkanen, P. Roustesuo, Thermochim. Acta 156 (1989) 129–136.
- [45] D. Papamatthaiakis, F. Aroni, V. Havredaki, J. Chem. Thermodyn. 40 (2008)
- [46] S.K. Mehta, G. Ram, A.K. Sharma, Fluid Phase Equilib. 220 (2004) 153–160.
- [47] S. GovardhanaRao, T. Madhu Mohan, T. Vijaya Krishna, B. SubbaRao; "Volumetric properties of 1butyl-3-methylimidazolium tetrafluoroborate and 2pyrrolidone from T = (298.15 to 323.15) K at atmospheric pressure"
- [48] Y. Uosaki, K. Sogo, T. Kunimine, T. Moriyoshi, J. Chem. Thermodyn. 22 (1990)257–262.
- [49] P.L. Pirila-Honkanen, P. Roustesuo, Thermochim. Acta 184 (1991) 65–71.
- [50] R.L. Blumenshine, P.G. Sears, J. Chem. Eng. Data 11 (1966) 141–143.
- [51] D. Sharma, S. Bhagour, V.K. Sharma, J. Chem. Eng. Data 57 (2012) 3488–3497.
- [52] Prakash S, Prasad N, Sngh R and Prakash D, Acustica 34 (1975) 121.

Volume 6 Issue 11, November 2017

<u>www.ijsr.net</u>

- [53] Iloukhani, H., Ghorbani, R.: Volumetric properties of N,N-dimethylformamide with 1,2-alkanediols at20 °C.
 J. Solution Chem. 27, 141–149 (1998)
- [54] Assarson, P., Eirich, F.R.: Properties of amides in aqueous solution. 1. Viscosity and density changes ofamide–water systems. An analysis of volume deficiencies of mixtures based on molecular size differences.J. Phys. Chem. 72, 2710–2719 (1968)
- [55] A. Pineiro, P. Brocos, A. Amigo, M. Pintos, R. Bravo, Phys. Chem. Liq. 38 (2000)251–260.