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Abstract: Nonlinear partial differential equations governing a disturb model of magneto- hydrodynamic and heat transfer in a channel 

flow have been treated by the weight residual method. The stability or other wise of the disturb system is our target to the effect of a 

variable absorption coefficient of radiation mode of heat transfer. The results from tables, in spite of the unreliability of calculation at 

law Reynolds numbers indicate quite clearly that, effect of a variable absorption coefficient is to increase any tendency towards stability. 

The present stability analysis relates to only a simple case of flow pattern. A Further and useful development would be to consider the 

influence of buoyancy forces and convective heat transfer upon the stability when the channel walls are differentially and non-

uniformly heated. It would also be profitable to seek to reformulate the reduction of the differential eigenvalue problem to an algebraic 

eigenvalue problem by use of an alternative orthogonal function expansion. 
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1. Introduction 
 

It is under stood for some time ago, that the radiative MHD 

is the interaction between the radiation field and the 

magneto hydrodynamic field which itself is concerned with 

the interaction of electrically conducting fluids and 

electromagnetic fields. 

 

It is also most of the heat transfer modes are through 

conduction, convection and radiation. Usually the heat 

transfer by radiation is ignored in comparison with 

conduction and convections, especially when the 

temperature is not particularly high and the density of the 

fluid is not too low. However due to the international 

societies developments and the use of magneto 

hydrodynamic pumps and generator. Additionally they also 

serve to enhance our broad understanding of motions 

involving plasmas and conducting fluid generally. 

Consequently, the thermal radiation becomes an import 

mode of heat transfer; see for example Prof. Eric Fraga [12] 

and Sreedhara Rao [13]. For a wide range of researchers 

have a good article in this subject, such as, Qihua Zhang, Li 

Cao [14].  

 

1.1 Statement of the Problem 

 

This problem is about a mathematical model for the 

interaction between fluid flow , heat transfer and applied 

magnetic field through a horizontal channel. 

 

1.2 Objective of the Project 

 

The mean objective of this project are:  

1) Define a horizontal channel of fluid with a parallel wall. 

2) Apply a magnetic field uniformly across the channel. 

3) The fluid is with heat transfer by conduction, convection 

and radiation. 

4) Formulate as a nonlinear partial differential equations. 

5) Apply a disturbance through the fluid and separate 

mathematically. 

6) Apply the weight residual method to transform algebraic 

system, through which we have the results of the fluid 

stability or otherwise.  

 

1.3 Significance of the Study 

 

We expect that this project is useful for the engineering field 

work and implementation of the heat transfer by conduction, 

convection and radiation specially in mechanic applications. 

Also, we are looking to the systems which arise from the 

mechanical applications and in part, the disturbances of the 

systems and the stability of that. 

 

2. Literature Review 
 

The governing equations for the flow of an electrically 

conduction viscous and heat conducting fluid are well 

established, see for example Shercliff. The equations 

relating to effects of thermal radiation and energy 

conservation, whilst of more recent derivation are now also 

well understood, and may be found in the book by Vincentia 

and Kruger. 

 

The basic steady state flow considered in this paper is that 

described by Helliwell & Mosa [4], in which models with 

both variable and constant absorption coefficient were 

studied. "The flow is parallel to the x-axis down a channel of 

great width in the z direction between walls distance 2h 

apart parallel to the x-plane of a Cartesian coordinate 

system". 'The bounds of the channel normal to the z-axis are 

taken to be electrodes of perfect electrical conductivity 

whilst the walls normal to the y-axis are supposed of a 

general electrical conductivity and perfect thermal 

conductivity". An external magnetic field is applied 

uniformly across the channel in a direction parallel to the y-

axis the temperatures T of the walls are taken to be uniform 

but possibly different. 

 

The velocity and magnetic field are known analytically, see 

[5], while the forms for temperature, radiative flux and 
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radiative density are established numerically having been 

computed for several values of particular physical 

parameters. The same notation employed in [4] is retained 

for the analysis of the present part, unless stated otherwise. 

 

The governing equations, relevant to the present problem for 

unsteady flow in three-dimensions, retaining the Boussinesq 

approximation, may be written as follows. 

The equation of state takes the form 

 








 1

1

1 1 TT
T

pp


. (1) 

The conservation equation for the mass is 

0Vdiv . (2) 

The electromagnetic equations are Maxwell's equations, viz. 

0Bdiv . (3) 

JB e , (4) 

t

B
E




  ; (5) 

And Ohm's lam without hall effect 

 BVEJ  . (6) 

Elimination of the electric field vector E  and the electric 

current density vector J  from (4),(5) and (6), leads to the ( 

so-called ) magnetic vorticity equation 
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Equation (7) may be written in the from 
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Equation (8) together with equations (2) and (3) yield 
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The momentum equation takes the form 
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Take the curl of the momentum equation (10) and make use of equation (4) for J . 

It follows that 

         VcurBBcurcurVgradVcurVcur
t e
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The equation for conservation of energy can be written as 
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 (12) 

Where   is the contribution from viscous dissipation. 

The radiative transfer equation in terms of the radiative flux 

q  and radiative density  are 

,~4 4TqdivC                       (13) 

03  qC  .                           (14) 

The equations governing the present analysis are therefore 

equations (2),(3),(9),(11),(12),(13), and (14), together with 

the from for variable absorption coefficient 
nmK  1  , (15) 

 

3. Formulation of the Linearized Stability 

Equation 
 

As a first study carried out in this paper only two-

dimensional disturbances without z-variation are considered. 

The primary velocity, magnetic field, temperature, radiative 

flux and radiative density are now considered to have 

superimposed on them two-dimensional infinitesimal 

disturbances. Steady state quantities are indicated with a bar 

super-script and are known functions of positions, whilst 

perturbations are denoted by a tilde. Therefore we write 

 ,,,
~

tyxVVV   

 ,,,
~

tyxBBB   

 ,,,
~

tyxTTT                            (16) 

 ,,,~ tyxqqq   

 tyx ,,
~
 , 

Where x, y are the dimensional spatial coordinates and t is 

the time. 

 

Direct substitution of (16) into the relevant equations, 

described earlier, generates the set of equations governing 

the present stability problem. After subtracting the terms 

corresponding to the steady flow and neglecting squares of 

small quantities, the linearized equations are 

0
~
Vdiv .                                 (17) 

0
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Bdiv .                               (18) 
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Where the 
~

 denote contribution from viscous dissipation. 

    ~~44~~~ 3
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nnn knqdivckckn   . (22)
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The system of equations (17) – (20) is the basic set 

previously investigated by Lock  1  in ordinary 

magentohydrodynamics. It can be noted from (17) – (20) 

that certain of these equations are implied by the others and 

that no difficulties result from the fact that there appear to be 

more equations than variables. Stuart  11 , in the case when 

the magnetic field is parallel to velocity, commented 

explicitly upon the matter in relation to the analogous set of 

equations in his analysis. The particular relationships 

between the equations for the present analysis will be 

discussed in detail at a later stage of this development. 

 

Non – dimensional variables are now introduced precisely 

the same as in [4] with the addition of 

,hx  
h

Ut
t                                (24) 

Two-dimensional perturbation are considered of the from 

  )(exp)(),(~ tcikUUuu yx    (25) 

  )(exp)(),(
~

tcikbbb yx    (26) 

)(exp)(
~

tcik    , (27) 

ikexp)( )( tc  , (28) 

The assumed forms of the disturbances imply a spatially 

periodic wave where k is a dimensionless wave number and 

is therefore a real quantity. the complex wave speed is 

ir iccc  . A positive or negative ic  implies growth or 

decay of the disturbance , respectively. 

 

This study is concentrated on the change of sign of ic  to 

separate the different regimes of fluid behavior  

 

By substitution of the forms (25) - (28 ) into the relevant 

 

Non-dimensional governing equations , the final set then be 

obtained. 

 

Equations (17 ) – (20) yield 
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Where u, b are denoted steady state values. 

 

It can be noted , as remarked earlier , that the number of the 

equations is more than the number of the dependent 

variables which are yxyx bbUU ,,,  However 

elimination of xU  and xb  from the equations ( 29 ) – (31) 

yields an equation which is the derivative of equation (32). 

Hence these equations are not independent and one of 

equations (29) – (31) may be omitted. 

The remaining system of equations ( 29 ) – ( 33 ) can be 

reduced to a pair of differential equations in yU  and yb  

alone. These are equation ( 32 ) together with the following 

equation resulting from the eliminations of xU  and xb  

between ( 29 ),( 30 ) and ( 33 ) : 
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Equations analogous to these have been studied in the 

analysis of the stability of the associated non-radiative 

problems with negligible mR  , by Lock 1  equations (21) 

and (22) . In the case of 0mR  problem has been 

investigated by Sagalokov  2  and Potter and Kutchey  3 . 

The influence of radiation upon the stability is restricted to 

equations (21) , (22) and (23). for two-dimensional 

perturbations these reduce to four equations relating 

yxyxyx QQbbUU ,,,,,,   and   , such that. 
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Where 
)1(

,  and 
)1(Q  are the steady state 

dimensionless temperature , radiative energy density and 

radiative flux , respectively. 

From the equations (35) - (37) xQ  can be eliminated and the 

system reduced to the following set of differential equations 
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Therefore a system of seven differential equations governing 

the present stability problem for radiative flow may be taken 

as equations (24) , (30), (32), (34), (38), (39) and (40). Thus 

, with radiative effects present , additional equation arise. 

Moreover , since the system of equations (29), (30), (32), 

(34) can be solved separately from the system (38) - (40) , 

thermal radiation therefore cannot provide a stabilizing 

influence on the first system. 

In the situation in which perturbations yU and yb  arise the 

stability criteria arise from the homogeneous equation (32) 

and (34) alone which, as remarked, earlier, have been 

analysed by Lock and others. should however yU  and yb be 

identically zero these two equations are automatically 

satisfied. Also equations (29), (30) then show that 

xU and xb must be identically zero as well. 

 

When thermal radiation is a present , should disturbances in 

temperature , radiative energy density occur , equation (38 ) 

- (40 ) enter the analysis. But should velocity and magnetic 

filed not be disturbed , then the final set of equations (38) - 

(40) become homogeneous and supplementary stability 

criteria may arise from their solutions. the variable yQ  may 

be eliminated from them to yield a pair of equations for 

 and  . These are; 
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Equations (41) and (42) are the equations be finally analysed 

for the purpose of the present stability problem. The steady 

state boundary conditions 'see [4]' remain unchanged for the 

present problem. Those relating to the radiative flux and 

energy density become. 
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Using equation (40) , these two boundary conditions (43) 

may be written as : 
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The other two boundary conditions on the temperature 

disturbance take the form 

,0  .1at
                      

 (45) 

 

4. Stability Analysis of a Disturb System Using 

the Weighted Residual Method 
 

Equations (41) and (42) define an eigen value problem. ‘If 

the imaginary part of the eigenvalue c is positive, the flow 

will be unstable’. 

 

An approximate solution to the stability problem may be 

produced using Weighted Residual Method. Finlayson  8  

and Sukanek [9] give examples of Weighted Residual 

Method, applied to other stability problems. The variables 

  and  are expanded in series in terms of complete sets of 

orthogonal trial functions which satisfy the boundary 

conditions (44) and (45) and an approximate formulation 

obtained by appropriate truncation. The coefficients of the 

various terms in the series expansions are chosen by 

adjusting the residual errors resulting from the substitution 

of these truncated expansions into the original differential 

equations to be orthogonal to the trial functions in the 

domain of interest. 

 

The radiative energy density disturbance,  , subject to the 

boundary conditions (44) may be expanded in a set of 

function, see for example Chandrasekhar (10), as follows: 

 

It is well known that a simple Sturm-Liouville problem over 

the domain 1  is associated with a differential equation 

of the form 

,2

2
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d

d
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with appropriate boundary conditions at .1     

 

The solution in terms of a complete set of orthogonal 

functions may be written, 

 ,sincos  rrr

r
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Where a r  and b r  are constants, are r and the relevant set 

of eigenvalues. 

A typical term of equation (7.2 ) is 

 rrrrr ba sincos  . )             (3) 

Fit the boundary condition,  44.6  , to this typical term and 

one may obtain 
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Then, it follows from (3a) and (3b) that 

    .02cos2sin1 12

2

21  rrrr zzzz 
       

(4)  

 

The equation thus yields the set of internal eigen values r . 

Using (3a), the truncated eigen function expansion for  

(expressed as a truncated Fourier series) may be written as 
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,
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r
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Z
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 
  for r = 1 , 2 , … , p 

and r  are the sequence of roots of equation (4). 

The set of solution 

    1cos1sin 1   rrr Z possess the 

orthogonal property, such that 
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(6) 

 

 Where ,,...,1 PS   as may be easily verified. 

 

In a similar way, the temperature disturbance   , subject to 

the boundary condition (45), may be expanded in a Fourier 

series. The truncated expansion is 
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Where rB  and rC  are constants. 
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If the series approximation to   and   , equation (5)and 

(7), are substituted into the left hand sides of the differential 

eigenvalues equations (41) and (42), there remain residuals. 

Then denote by 
'

pR  the residual arising from equation (41), 

and by 
"

pR  that arising from equation (42). 
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An application of Weighted Residual Method requires that 

the constants rA  , rB  and rC  be such as to satisfy the 

equations 

 
Equations (11) and (12) are substituted into equation (13) – 

(15) and the integrals evaluated. It is useful to define the 

following integrals. 
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In this way , the differential eigenvalue problem is reduced 

to an approximate algebraic problem expressed as equations 

(13)-(15) which can now be written in the form. 
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Where 

cyE

Rkic
v



  and sr  is the cronecker delta. 

It should be noted that equations (27) do not contain the 

eignvalue v . 

 

The coefficients rA  can thus be determined from the system 

(27) in term of the coefficients rB  and rC  and inserted in 

to equations (28) , (29). Then the latter two equations thus 

become the governing equations for the problem which is 

reduced to the classical form. for example in the first 

approximation with ,1 rs  Equation (27) yields 
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Equations (28) and (29) become 

 

  
     

   11

31
3

1,1

1,11,1
1,1 B

X

XY
Y









  

  
     

  
   .01,1

1,1

1,11,1
1,1 1

2

1

31
3 









 cviw
X

Xz
Z  

(32) 

The matrix of coefficients of the homogenous equations (31) 

and (32) is 
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 (33) 

Since the stability , or otherwise , of the flow depends upon 

the sign of the imaginary part of 


c  and 

cyE

cRik
v



  ,interest 

is centered on the sign of the real part of v . For the 

particular mode associated with an eigenvalue, if this has 

positive real part, the flow will be stable, but if is negative, 

the flow will be unstable. As already remarked, this simple 

example is, however, just a first approximation to the 

solution to the full problem. 

 

As opposed to the differential eigenvalue problem, which 

possesses an infinite set of eigenvalue, the approximate 

algebraic problem, yields only a finite number of 

characteristic values. The number of eigenvalues depends on 

how many terms are used in the orthogonal functions 

expansions approximating the radiative energy density and 

temperature disturbances. If the real part of any one of these 

Paper ID: ART20177755 DOI: 10.21275/ART20177755 233 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391   

Volume 6 Issue 11, November 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

eignvalues is negative, the flow in large will be unstable. 

Therefore, in a search for a mode of the eigenvalue of the 

least positive real part. 

 

5. Analysis, Results and Recommendations 
 

Before describing the calculation solution of the algebraic 

eigenvalue problem, as a whole, it is necessary to determine 

the solutions of the steady state variables ,viz.velocity 

,temperature , radiative flux and radiative energy density, as 

well as the internal eigen value . 

 

The value of the physical parameters in this part of the paper 

are the same as those of paper[4],unless it is stated 

otherwise. For variable absorption coefficient n is taken to 

be five, whilst for constant absorption coefficient n is 

identically zero. 

 

The numerical results of the solution of the algebraic 

equation (7.4), for , are dependent upon the wall 

emissivities ,Bouguer number and the temperature ratio of 

the walls. Although it can be solved for any value of these 

parameters in Table 1, the first positive half a dozen of the 

values of  , for different values of ,are listed for 

fixed values of and w. The results are arranged in a 

matrix from, which in its final derivation after elimination of 

the coefficients has complex elements. The complex 

matrix is first reduced to upper Hessenberg form using 

stabilized elementary similarity transformation. The 

eigenvalues then found using the modified LR Algorithm for 

complex Hessenberg matrices. It has been found that the 

output of the calculation used to calculate the integrals to 

within a reasonable accuracy became unstable as r increases, 

due to the oscillatory nature. For the sixth approximation (r= 

6), the convergence of the result fails. However if the 

modulus is examined the solution for the leading 

eigenvalues shows a good agreement between the third, 

fourth and fifth approximations and convergence is 

indicated. However one notes the rapid increase of the 

computing time required as r increases. 

 

Thus it seems that a good compromise between computing 

time precision of results should be obtained by taking r as 

four. This means that a total of eight eigenvalues are 

calculated for each case.The present problem was solved 

numerically by Helliwell [1oc.cit]. In the absence of thermal 

conductivity (  in the present notation) and constant 

absorption coefficient. The results suggested that the thermal 

transfers under consideration are always stable. However, it 

was remarked earlier, [4], that it is very difficult to obtain 

the steady state distributions for extreme values of some of 

the physical parameters. 

 

Thus a direct comparison with the earlier work of Helliwell 

cannot be made. Attention is paid to the sign of the real parts 

of the eigen values. If the least positive real part of an 

eigenvalue is approaching zero, the solution then indicates 

an approach to neutral stability. For given values of k the 

Reynolds number R is justed to determine the neutral 

stability appropriate point to appropriate accuracy. Although 

the computation may be carried out for a wide range of 

values of the physical parameters, a selection of them is 

taken as indicated in the Tables. The results of calculation 

are presented in Tables 1- 8, for both variable and constant 

absorption coefficient. It should be particularly noted that 

the results calculation are not reliable at low Reynolds 

number, because of the difficulties in the convergence 

calculation methods.The main object of the present analysis 

is to examine the effect of the introduction of a variable 

absorption coefficient upon the stability in comparison with 

that of a constant absorption coefficient. The results form 

Tables, in spite of the unreliability of computation at law 

Reynolds numbers indicate quite clearly that, effect of a 

variable absorption coefficient is to increase any tendency 

towards stability. The present stability analysis relates to 

only a simple case of flow pattern. A Further and useful 

development would be to consider the influence of buoyancy 

forces and convective heat transfer upon the stability when 

the channel walls are differentially and non-uniformly 

heated, viz. examine the stability of the complex flow 

configuration studied in the first part of this paper. It would 

also be profitable to seek to reformulate the reduction of the 

differential eigen value problem to an algebraic eigenvalue 

problem by use of an alternative orthogonal function 

expansion. 
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Appendix 

 

Table 1 

The values of the internal eigen values  ; equation 

(7,4),for different values of . 

 
 r 

0.5 1.0 1.5 

1 1.41352 1.36835 1.27346 

2 2.83573 2.75032 2.59616 

3 4.27238 4.15504 3.97808 

4 5.72558 5.58578 5.40766 

5 7.19482 7.04126 6.87185 

6 8.67840 8.51805 8.36084 

e =1.0 w=0.1 

 

Table 2 

The real part of the eigen values, v. 

F = 0.0025 B0 =1000 =0.5 

w = 0.1 M=1.0 K=0.0 

e = 1.0 Y= =0.001 

 
R 

K 

10 103 105 

2.0 0.9021 28.4463 28.0784 

1.6 0.5955 26.9106 26.6383 

1.2 0.3445 25.5836 25.5183 

0.8 0.1564 24.1925 24.7182 

0.4 0.0396 20.7119 24.2379 

 

Variable Absorption Coefficient Always Stable. 

 

Table 3 

The real part of the eigen values, v. 

F=0.0025 B0 =10 =0.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

R 

K 

0.1 10 

2.0 0.0001 8.2462 

1.6 0.0001 6.2511 

1.2 0.00004 4.6297 

0.8 0.00002 3.4359 

0.4 0.000004 2.7066 

Variable Absorption Coefficient 

It seems that there is a tendency towards instability at low 

values of K and R. The computation becomes unstable 

however at these low values. 

 

Table 4 

The real part of the eigenvalues, v. 

F=0.01 B0 =1000 =0.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

 

 

R K 10 103 105 

2.0 9.8099 28.5887 26.3475 

1.6 6.9167 27.1427 24.9071 

1.2 4.3788 26.0098 23.7871 

0.8 2.2224 25.1730 22.9871 

0.4 0.6151 24.4936 22.5071 

Variable Absorption Coefficient Always stable. 

 

Table 5 

The real part of the eigen values, v. 

F=0.0025 B0 =10 =0.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

R 

K 

1 10 

2.0 + 0.0246 -23.5159 

1.6 - 0.0597 - 46.5593 

1.2 + 0.1576 -81.4367 

0.8 + 0.3336 -114.8629 

0.4 + 0.5183 -139.1288 

Constant Absorption Coefficient 

There is an indication of stability at low values of Reynolds 

number. The computation becomes unstable however at 

these low values. 

 

Table 6 

The real part of the eigen values, v. 

F=0.01 B0 =10 =0.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

R 

K 

1 10 

2.0 + 0.6330 - 223.2128 

1.6 - 0.5521 - 325.1491 

1.2 -7.0433 - 461.3715 

0.8 - 22.2400 - 593.5934 

0.4 - 32.8725 - 690.4365 

Constant Absorption Coefficient 

There is an indication of stability at low values of Reynolds 

number. The computation becomes unstable however at 

these low values. 

 

Table 7 

The real part of the eigen values, v. 

F=0.01 B0 =10 =1.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

R 

k 

1 10 

2.0 + 0.3202 12.6306 

1.6 - 27.3751 313.9828 

1.2 -227.6479 2291.0284 

0.8 - 408.6000 4094.6538 

0.4 - 603.1960 6007.2109 

Constant Absorption Coefficient 

There is an indication of stability at low values of Reynolds 

number. The computation becomes unstable however at 

these low values. 
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Table 8 

The real part of the eigen values, v. 

F=0.25 B0 =10 =0.5 

w=0.1 M =1.0 K=0.0 

e=1.0 Y= =0.001 

R 
k 

1 10 

2.0 - 36.0376 -393.6033 

1.6 - 890.7216 -9411.2733 

1.2 -539.5492 -11863.8890 

0.8 - 598.0973 -5904.9493 

0.4 - 626.6697 -6147.6863 

Constant Absorption Coefficient 

 

It is always unstable, but there is an indication of decreasing 

stability at smaller values of Reynolds number. The 

computation becomes unstable however at these low values. 
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