
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Modified Long Short-Term Memory Recurrent

Neural Network Architectures

Manish Rana
1
, Shubham Mishra

2

1Professor, Department of Computer Science, TCET, Mumbai University, India

2Student, Department of Computer Science, TCET, Mumbai University, India

Abstract: Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that was designed to model

temporal sequences and their long-range dependencies more accurately than conventional RNNs. In this paper, we explore LSTM RNN

architectures and made some changes for its better performance. LSTM RNNs are more effective than DNNs. Here, we have changed

the gates calculation and also have removed some unnecessary features of standard LSTM architecture. This architecture makes more

effective use of model parameters than the others considered, converges quickly, and outperforms a deep feed forward neural network

having an order of magnitude more parameters.

Keywords: Long Short-Term Memory, LSTM, recurrent neural network, RNN.

1. Introduction

The Deep Neural Network (DNN) is an extremely

expressive model that can learn highly complex vector-to-

vector mappings. The Recurrent Neural Network (RNN) is a

DNN that is adapted to sequence data, and as a result the

RNN is also extremely expressive. RNNs maintain a vector

of activations for each time step, which makes the RNN

extremely deep. Their depth, in turn, makes them difficult to

train due to the exploding and the vanishing gradient

problems [3] [13] [14].

There have been a number of attempts to address the

difficulty of training RNNs. Vanishing gradients were

successfully addressed by Hochreiter & Schmidhuber

(1997), who developed the Long Short-Term Memory

(LSTM) architecture, which is resistant to the vanishing

gradient problem. The LSTM turned out to be easy to use,

causing it to become the standard way of dealing with the

vanishing gradient problem. Other attempts to overcome the

vanishing gradient problem include the use of the powerful

second order optimization algorithms [18] [19] and

regularization of the RNN’s weights that ensures that the

gradient does not vanish [23], giving up on learning the

recurrent weights altogether [15] [16] and a very careful

initialization of RNN’s parameters [25] [26] Unlike the

vanishing gradient problem, the exploding gradient problem

turned out to be relatively easy to address by simply

enforcing a hard constraint over the norm of the gradient

[20] [23].

A criticism of the LSTM architecture is that it is ad-hoc and

that it has a substantial number of components whose

purpose is not immediately apparent. As a result, it is also

not clear that the LSTM is an optimal architecture, and it is

possible that better architectures exist.

Motivated by this criticism, we attempted to determine

whether the LSTM architecture is optimal by means of an

extensive evolutionary architecture search. We found

specific architectures similar to the Gated Recurrent Unit

(GRU) [6] That outperformed the LSTM and the GRU by on

most tasks, although an LSTM variant achieved the best

results whenever dropout was used. In addition, by adding a

bias of 1 to the LSTM’s forgetting gate. We can close the

gap between the LSTM and the better architectures.

2. Long Short-Term Memory

In this section we will briefly explain LSTM architecture.

The figure 1 is the traditional LSTM architecture. Standard

RNNs suffer from both exploding and vanishing gradients

[3] [13]. Both problems are caused by the RNN’s iterative

nature, whose gradient is essentially equal to the recurrent

weight matrix raised to a high power. These iterated matrix

powers cause the gradient to grow or to shrink at a rate that

is exponential in the number of time steps. The exploding

gradients problem is relatively easy to handle by simply

shrinking gradients whose norms exceed a threshold, a

technique known as gradient clipping [20] [23]. While

learning would suffer if the gradient is reduced by a massive

factor too frequently, gradient clipping is extremely effective

whenever the gradient has a small norm the majority of the

time.

Figure 1: LSTM architecture

In the above LSTM architecture the symbols are defined as,

Paper ID: ART20177744 36

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

S (t-1): Previous cell status

h (t-1): Previous cell hidden state

f (t): Forget gate

i (t): Information gate

Si: Sigmoid function

X (t): Current input

X: Vector multiplication, in this paper it is represented by *

notation.

O (t): Output

S (t): Current cell status

h (t): Current cell hidden state

In this LSTM architecture the cell status store cell status.

Based on current input LSTM takes decision that how much

past information is to delete. This action is performed with

the help of Forget gate. Once past information is deleted

then new information is added to the cell using Information

gate. The equations are,

 i (t) = Si (Wxi Xt + Whi ht-1 + bi)

 f (t) = Si (Wxf Xt + Whf ht-1 + bf)

 g = tanh (Wxg Xt + Whght-1 + bg)

 (t) = Si (Wxo Xt + Who ht-1 + bo)

 S (t) = S (t-1) * f (t) + i (t) * g

 h (t) = tanh (S(t)) * O(t)

‘W’ is the weight vector initialized randomly. ‘b’ is the bias

value also initialized randomly. All the weight vectors are

updated after each iteration.

LSTM architecture learn more and more by training and

work good for both long term as well as for short term

memory.

3. Methodology

To work on this architecture we are creating input data in the

program. The created dataset will be in a range defined by

the standard for LSTM architecture. For better performance

of the architecture we made two changes in the standard

architecture which helps the LSTM to work even more

efficiently.

Firstly, In standard architecture amount of past information

to delete and new information to add was decided separately

hence was missed out some use full information. In the new

architecture the amount of information to delete is calculated

based on the amount of new information required to add.

Hence in the new Architecture initially information gate will

calculate new information to add and based on information

gate output forget gate will calculate amount of information

to forget.

Secondly, Due to the use of ‘tanh’ function while calculating

h(t) some use full information was lost hence we decided to

remove this ‘tanh’ function. After removing ‘tanh’ from the

h(t) equation the architecture become more accurate and

error rate has been reduced. The new modified architecture

is,

Figure 2: Modified LSTM architecture

After modification new equations are highlighted as,

 i (t) = Si (Wxi Xt + Whi ht-1 + bi)

 f (t) = (1 – i)

 g = tanh (Wxg Xt + Whght-1 + bg)

 (t) = Si (Wxo Xt + Who ht-1 + bo)

 S (t) = S (t-1) * f (t) + i (t) * g

 h (t) = S(t) * O(t)

Modified algorithm/architecture will not only work more

accurately but also will reduce total execution time.

4. Result and Discussion

We have implemented LSTM in python language and

executed for multiple changes but this modified version of

architecture gives us maximum accuracy. We also worked

on the multiple modified architectures by changing

normalization functions, changing equations and

reconnecting different gates with different gates but all the

architecture performed poorly compared to the standard

architecture.

Standard LSTM is executed for a set of data for 0 to 99

iterations and the result is shown as the screen shot of the

output. This screen short only was showing last part of the

output with final loss at the end of the output.

Figure 3: Standard LSTM Output

In figure 3 after last iteration the final loss is 6.31438e
-07

.

This loss is less than all the other loss of diffrent architecture

except figure 2 modified LSTM architecture’s loss.

Now, modified LSTM when execucate for the same data

input the result is shown as the screen shot of the output.

This screen short only was showing last part of the output.

Paper ID: ART20177744 37

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Modified LSTM Output

In figure 4 after last iteration the final loss is 1.6971403e
-07

.

Modified LSTM’s final loss is less than that of the standard

LSTM architecture final loss.

Table 1: Loss Difference
 Standard LSTM Modified LSTM

Loss 6.31438e-07 1.6971403e-07

5. Conclusion

Standard LSTM architecture works better then the RNN by

handling the vanishing gradient problem. The LSTM

architecture is not perfect. To make it more accurate we

experimented on it by changing its architecture and hence

come up with a new LSTM architecture which works better

than that of the standard architecture. Thus, modifying

standard LSTM architecture by changing the forget gate

structure and removing unnecessary normalization function

improved the LSTM performance.

References

[1] Amit, Daniel J. Modeling brain function: The world of

attractor neural networks. Cambridge University Press,

1992.

[2] Bayer, Justin, Wierstra, Daan, Togelius, Julian, and

Schmidhuber, J¨urgen. Evolving memory cell structures

for sequence learning. In Artificial Neural Networks–

ICANN 2009, pp. 755–764. Springer, 2009.

[3] Bengio, Yoshua, Simard, Patrice, and Frasconi, Paolo.

Learning long-term dependencies with gradient descent

is difficult. Neural Networks, IEEE Transactions on, 5

(2):157–166, 1994.

[4] Bergstra, James, Breuleux, Olivier, Bastien, Fr´ed´eric,

Lamblin, Pascal, Pascanu, Razvan, Desjardins,

Guillaume, Turian, Joseph, Warde Farley, David, and

Bengio, Yoshua. Theano: a CPU and GPU math

expression compiler. In Proceedings of the Python for

Scientific Computing Conference (SciPy), June 2010.

[5] Boulanger-Lewandowski, Nicolas, Bengio, Yoshua, and

Vincent, Pascal. Modeling temporal dependencies in

high-dimensional sequences: Application to polyphonic

music generation and the transcription. The arXiv

preprint arXiv:1206.6392, 2012.

[6] Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre,

Caglar, Bougares, Fethi, Schwenk, Holger, and Bengio,

Yoshua. Learning phrase representations using rnn

encoderdecoder for statistical machine translation.

arXiv preprint arXiv:1406.1078, 2014.

[7] Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun,

and Bengio, Yoshua. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

[8] Collobert, Ronan, Kavukcuoglu, Koray, and Farabet,

Cl´ement. Torch7: A matlab-like environment for

machine learning. In BigLearn, NIPS Workshop,

number EPFL-CONF-192376, 2011.

[9] Gers, Felix A, Schmidhuber, J¨urgen, and Cummins,

Fred. Learning to forget: Continual prediction with lstm.

Neural computation, 12(10):2451–2471, 2000.

[10] Graves, Alex. Generating sequences with recurrent

neural networks. arXiv preprint arXiv:1308.0850, 2013.

[11] Greff, Klaus, Srivastava, Rupesh Kumar, Koutn´ık, Jan,

Steunebrink, Bas R, and Schmidhuber, J¨urgen. Lstm: A

search space odyssey. arXiv preprint arXiv:1503.04069,

2015.

[12] Hinton, Geoffrey E and Shallice, Tim. Lesioning an

attractor network: investigations of acquired dyslexia.

Psychological review, 98(1):74, 1991.

[13] Hochreiter, Sepp. Untersuchungen zu dynamischen

neuronalen netzen. Master’s thesis, Institut fur

Informatik, Technische Universitat, Munchen, 1991.
[14] Hochreiter, Sepp and Schmidhuber, J¨urgen. Long

shortterm memory. Neural computation, 9(8):1735–

1780, 1997.

[15] Jaeger, Herbert. The echo state approach to analysing

and training recurrent neural networks-with an erratum

note. Bonn, Germany: German National Research

Center for Information Technology GMD Technical

Report, 148:34, 2001.

[16] Jaeger, Herbert and Haas, Harald. The Harnessing

nonlinearity: Predicting chaotic systems and saving

energy in wireless communication. Science,

304(5667):78–80, 2004.

[17] Marcus, Mitchell P, Marcinkiewicz, Mary Ann, and

Santorini, Beatrice. Building a large annotated corpus of

english: The penn treebank. Computational linguistics,

19(2):313–330, 1993.

[18] Martens, James. Deep learning via the hessian free

optimization. In Proceedings of the 27
th

 International

Conference on Machine Learning (ICML-10), pp. 735–

742, 2010.

[19] Martens, James Sutskever and Ilya. Learning recurrent

neural networks with hessian-free optimization. In

Proceedings of the 28th International Conference on

Machine Learning (ICML-11), pp. 1033–1040, 2011.

[20] Mikolov, Tom´aˇs. Statistical Language Models based

on Neural Networks. PhD thesis, PhD thesis, Brno

University of Technology, 2012. -, 2012.

[21] Mikolov, Tomas, Karafi´at, Martin, Burget, Lukas,

Cernock` y, Jan, and Khudanpur, Sanjeev. Recurrent

neural network based language model. In

INTERSPEECH 2010, 11
th

 Annual Conference of the

International Speech Communication Association,

Makuhari, Chiba, Japan, September 26-30, 2010, pp.

1045–1048, 2010.

[22] Mikolov, Tomas, Joulin, Armand, Chopra, Sumit,

Mathieu, Michael, and Ranzato, Marc’Aurelio.

Learning longer memory in recurrent neural networks.

arXiv preprint arXiv:1412.7753, 2014.

Paper ID: ART20177744 38

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[23] Pascanu, Razvan, Mikolov, Tomas, and Bengio,

Yoshua. On the difficulty of training recurrent neural

networks. arXiv preprint arXiv:1211.5063, 2012.

[24] Plaut, David C. Semantic and associative priming in a

distributed attractor network. In Proceedings of the 17
th

annual conference of the cognitive science society,

volume 17, pp. 37–42. Pittsburgh, PA, 1995.

[25] Sutskever, Ilya, Martens, James, Dahl, George, and

Hinton, Geoffrey. On the importance of initialization

and momentum in deep learning. In Proceedings of the

30
th

 International Conference on Machine Learning

(ICML- 13), pp. 1139–1147, 2013.

[26] Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc VV.

Sequence to sequence learning with neural networks. In

Advances in Neural Information Processing Systems,

pp. 3104–3112, 2014.

[27] Zaremba, Wojciech and Sutskever, Ilya. Learning to

execute. arXiv preprint arXiv:1410.4615, 2014.

[28] Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol.

Recurrent neural network regularization. arXiv preprint

arXiv:1409.2329, 2014.

Paper ID: ART20177744 39

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

