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Abstract: Long Short-Term Memory (LSTM) is a specific recurrent neural network (RNN) architecture that was designed to model 

temporal sequences and their long-range dependencies more accurately than conventional RNNs. In this paper, we explore LSTM RNN 

architectures and made some changes for its better performance. LSTM RNNs are more effective than DNNs. Here, we have changed 

the gates calculation and also have removed some unnecessary features of standard LSTM architecture. This architecture makes more 

effective use of model parameters than the others considered, converges quickly, and outperforms a deep feed forward neural network 

having an order of magnitude more parameters. 
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1. Introduction 
 

The Deep Neural Network (DNN) is an extremely 

expressive model that can learn highly complex vector-to-

vector mappings. The Recurrent Neural Network (RNN) is a 

DNN that is adapted to sequence data, and as a result the 

RNN is also extremely expressive. RNNs maintain a vector 

of activations for each time step, which makes the RNN 

extremely deep. Their depth, in turn, makes them difficult to 

train due to the exploding and the vanishing gradient 

problems [3] [13] [14]. 

 

There have been a number of attempts to address the 

difficulty of training RNNs. Vanishing gradients were 

successfully addressed by Hochreiter & Schmidhuber 

(1997), who developed the Long Short-Term Memory 

(LSTM) architecture, which is resistant to the vanishing 

gradient problem. The LSTM turned out to be easy to use, 

causing it to become the standard way of dealing with the 

vanishing gradient problem. Other attempts to overcome the 

vanishing gradient problem include the use of the powerful 

second order optimization algorithms [18] [19] and 

regularization of the RNN’s weights that ensures that the 

gradient does not vanish [23], giving up on learning the 

recurrent weights altogether [15] [16] and a very careful 

initialization of RNN’s parameters [25] [26] Unlike the 

vanishing gradient problem, the exploding gradient problem 

turned out to be relatively easy to address by simply 

enforcing a hard constraint over the norm of the gradient 

[20] [23]. 

 

A criticism of the LSTM architecture is that it is ad-hoc and 

that it has a substantial number of components whose 

purpose is not immediately apparent. As a result, it is also 

not clear that the LSTM is an optimal architecture, and it is 

possible that better architectures exist. 

 

Motivated by this criticism, we attempted to determine 

whether the LSTM architecture is optimal by means of an 

extensive evolutionary architecture search. We found 

specific architectures similar to the Gated Recurrent Unit 

(GRU) [6] That outperformed the LSTM and the GRU by on 

most tasks, although an LSTM variant achieved the best 

results whenever dropout was used. In addition, by adding a 

bias of 1 to the LSTM’s forgetting gate. We can close the 

gap between the LSTM and the better architectures. 

 

2. Long Short-Term Memory 
 

In this section we will briefly explain LSTM architecture. 

The figure 1 is the traditional LSTM architecture. Standard 

RNNs suffer from both exploding and vanishing gradients 

[3] [13]. Both problems are caused by the RNN’s iterative 

nature, whose gradient is essentially equal to the recurrent 

weight matrix raised to a high power. These iterated matrix 

powers cause the gradient to grow or to shrink at a rate that 

is exponential in the number of time steps. The exploding 

gradients problem is relatively easy to handle by simply 

shrinking gradients whose norms exceed a threshold, a 

technique known as gradient clipping [20] [23]. While 

learning would suffer if the gradient is reduced by a massive 

factor too frequently, gradient clipping is extremely effective 

whenever the gradient has a small norm the majority of the 

time. 

 

 

 
Figure 1: LSTM architecture 

 

In the above LSTM architecture the symbols are defined as, 
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S (t-1): Previous cell status 

h (t-1): Previous cell hidden state 

f (t): Forget gate 

i (t): Information gate 

Si: Sigmoid function 

X (t): Current input  

X: Vector multiplication, in this paper it is represented by * 

notation. 

O (t): Output 

S (t): Current cell status 

h (t): Current cell hidden state 

 

In this LSTM architecture the cell status store cell status. 

Based on current input LSTM takes decision that how much 

past information is to delete. This action is performed with 

the help of Forget gate. Once past information is deleted 

then new information is added to the cell using Information 

gate. The equations are, 

 i (t)  = Si ( Wxi Xt + Whi ht-1 + bi) 

 f (t)  = Si ( Wxf Xt + Whf ht-1 + bf) 

 g = tanh ( Wxg Xt + Whght-1 + bg) 

 (t)  = Si ( Wxo Xt + Who ht-1 + bo) 

 S (t)  = S (t-1) * f (t) + i (t) * g 

 h (t)  = tanh (S(t)) * O(t) 

 

‘W’ is the weight vector initialized randomly. ‘b’ is the bias 

value also initialized randomly. All the weight vectors are 

updated after each iteration. 

 

LSTM architecture learn more and more by training and 

work good for both long term as well as for short term 

memory. 

 

3. Methodology 
 

To work on this architecture we are creating input data in the 

program. The created dataset will be in a range defined by 

the standard for LSTM architecture. For better performance 

of the architecture we made two changes in the standard 

architecture which helps the LSTM to work even more 

efficiently.  

 

Firstly, In standard architecture amount of past information 

to delete and new information to add was decided separately 

hence was missed out some use full information. In the new 

architecture the amount of information to delete is calculated 

based on the amount of new information required to add. 

Hence in the new Architecture initially information gate will 

calculate new information to add and based on information 

gate output forget gate will calculate amount of information 

to forget. 

 

Secondly, Due to the use of ‘tanh’ function while calculating 

h(t) some use full information was lost hence we decided to 

remove this ‘tanh’ function. After removing ‘tanh’ from the 

h(t) equation the architecture become more accurate and 

error rate has been reduced. The new modified architecture 

is, 

 

 
Figure 2: Modified LSTM architecture 

 

After modification new equations are highlighted as, 

 i (t)  = Si ( Wxi Xt + Whi ht-1 + bi) 

 f (t)  = (1 – i ) 

 g = tanh ( Wxg Xt + Whght-1 + bg) 

 (t)  = Si ( Wxo Xt + Who ht-1 + bo) 

 S (t)  = S (t-1) * f (t) + i (t) * g 

 h (t)  = S(t) * O(t) 

 

Modified algorithm/architecture will not only work more 

accurately but also will reduce total execution time. 

 

4. Result and Discussion 
 

We have implemented LSTM in python language and 

executed for multiple changes but this modified version of 

architecture gives us maximum accuracy. We also worked 

on the multiple modified architectures by changing 

normalization functions, changing equations and 

reconnecting different gates with different gates but all the 

architecture performed poorly compared to the standard 

architecture. 

 

Standard LSTM is executed for a set of data for 0 to 99 

iterations and the result is shown as the screen shot of the 

output. This screen short only was showing last part of the 

output with final loss at the end of the output. 

 

 
Figure 3: Standard LSTM Output 

 

In figure 3 after last iteration the final loss is 6.31438e
-07

. 

This loss is less than all the other loss of diffrent architecture 

except figure 2 modified LSTM architecture’s loss. 

  

Now, modified LSTM when execucate for the same data 

input the result is  shown as the screen shot of the output. 

This screen short only was showing last part of the output. 
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Figure 4: Modified LSTM Output 

 

In figure 4 after last iteration the final loss is 1.6971403e
-07

. 

Modified LSTM’s final loss is less than that of the standard 

LSTM architecture final loss. 

 

Table 1: Loss Difference 
 Standard LSTM Modified LSTM 

Loss 6.31438e-07 1.6971403e-07 

 

5.  Conclusion 
 

Standard LSTM architecture works better then the RNN by 

handling the vanishing gradient problem. The LSTM 

architecture is not perfect. To make it more accurate we 

experimented on it by changing its architecture and hence 

come up with a new LSTM architecture which works better 

than that of the standard architecture. Thus, modifying 

standard LSTM architecture by changing the forget gate 

structure and removing unnecessary normalization function 

improved the LSTM performance. 
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