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Abstract: The permutation flow shop scheduling is well-known combinatorial optimization problems that have been widely used 

and many methods have been used to solve this issue because of their widespread use in the business life market. We reject some 

hybrid methods in solving these issues by generating a range of issues of different sizes. This paper presents a study on using Ant 

Colony Optimization  (ACO), Genetic algorithm (GA) and their combinations (ACO+GA and GA+ACO) to tackle the FSSP. The 

computation results show that the two-stage algorithms are able to achieve better results in most cases than ACO and GA 

individually on the FSSP. The proposed two-stage algorithms and visual layout design system provide an effective tool to solve the 

practical FSSP. 
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1. Introduction 
 

Baker (1974) [1] defines the scheduling as the allocation of 

resources over time to perform a collection of tasks. The 

resources and tasks may take many forms, for example, 

"hospital equipment" as resources and "patients" as tasks, 

usually resources are called (machines) and tasks are called 

(jobs). A flow shop schedule problem can be stated as 

follows: there is a set of (M) different machines these 

machines perform tasks of (n) jobs, each of (n) jobs is 

processed by (M) machines (M1,M2,...,Mm) in this order. 

There are some constraints on jobs and machines, each 

machine can handle one job at a time and each job can be 

performed by one machine at a time. The scheduling of 

manufacturing systems has been the subject of extensive 

research since the early 1950s'. Many of the applications in 

the operational research field involve this type of problems. 

There has been work done on describing different schedule 

models and environment, on the classification of models and 

on developing a number of solution procedures. Introductory 

text books for machine scheduling problems are provided by 

Conway, Maxwell and Meller (1967) [2] Baker (1974) [1], 

Franch (1982) [3] and Pindo (1995) [4]. Solving a machine 

schedule problem means finding the decision that makes us 

to determine which job should be sequenced first and on 

which machines. The aim is to find a good (near optimal) or 

if possible optimal schedule which gives an optimal solution 

which enables to minimize the time spent on the problem 

which will minimize the cost for the problem [5]. 

 

2. Scheduling Problem (Definition and 

Classification) 
 

A scheduling problem arises whenever we want to make a 

daily routine for any planned work [6]. Recently, the m-

machine scheduling problem is a widely-studied problem in 

computer science, see [7] for an excellence survey until 

1998, and is concerned with deciding the order for the items 

to be serviced such as in the manufacturing process described 

below: 

 

When (n) jobs are processed on (m) machines under given 

ordering that is given the machine order to process each job, 

and is given processing times of each job on each machine. 

The problem is to determine the sequence of (n) jobs on each 

machine in order to optimize a given objective function, this 

objective function is generally any non-decreasing function 

of the completion time of each job, which includes: total 

elapsed time (make span) to complete the processing of all 

jobs, weighted mean completion time, weighted mean 

lateness or tardiness under given due date for each job, and 

so on. In single stage production system, each job requires 

one operation, it involves either a single machine or (m) 

machine operating in parallel, and the jobs are processed by 

just one machine from several machines that are available 

[5]. Note that if there is more than one machine and each job 

j consists of a single operation, this problem will be noted as 

(parallel machine schedule problem).  

 

3. Flow Shop Scheduling Problem 
 

The flow shop scheduling problem (FSP) is characterized by 

a set N of n jobs that must be processed by a set M of m 

machines. All m machines are disposed in series and, without 

loss of generality, jobs visit machine 1 first, then machine 2 

and so on until machine m. Each job needs a given, known in 

advance, fixed and non-negative processing time at each 

machine. This is denoted as pi,j, for each j2N and i2M. A job 

cannot be in process at more than one machine 

simultaneously and one machine can only process one job at 

a time 

 

A flow shop schedule problem consists of a set of different 

machines that perform tasks of jobs. Each of (n) jobs is 

processed by (m) machines M1,M2,...,Mm, in this machine 

order; there are several constraints on jobs and machines: 

 There are no precedence constraints among tasks of 

different jobs. 

 Each machine can handle only one job at a time. 

 Each job can be performed only on one machine at a time.  

 

The time to process each job "j" on each machine (Mi) is 

called processing time of job "j" on machine (Mi) and is 
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expressed by pi,j , a sequence of processing times Pj=( 

P1j,P2j,...,Pmj)  corresponds to each job "j" and a processing 

time matrix is defined as an Mmatrix with Pj as its column, 

processing of job "j"  on machine Mi is called operation and 

is expressed by  Oi,j. 

 

4. Permutation Flow Shop Scheduling 

Problem  
 

The permutation flow shop represents a particular case of the 

flow shop, having as a goal fined an optimal schedule for (n) 

jobs on (m) machines. Solving the flow shop problem 

consists in scheduling (n) jobs (j=1,…,n), on mj machines 

(i=1,…..,m) . A job consists of (m) operation and the 
jth 

operation of each job must be processed on machine (i), so 

one job can start on machine (i) if it is completed on machine 

(i-1) and if machine (i) is free, each operation has a known 

processing time " pij ". For the permutation flow shop the 

sequence of the jobs are the same on every machine , if one 

job is at  
Jth

  position on machine 1,  then this job will be at 

the  
Jth

 position on each machine. Consequently, for the 

permutation flow shop considering the makespan as objective 

function to be minimized, solving the problem means 

determining the sequence of jobs which gives the smallest 

makespan value (Cmax). 

 

In this case, when there is no passing of jobs allowed, that is, 

the identity of the job sequence on each machine, the active 

schedules correspond to the permutation of (n) jobs and so 

their number is to n! . Each schedule in this case is called a 

permutation schedule or sequence [6]. Even in the case where 

passing is allowed in a flow shop, it is sufficient to consider 

that the job sequence on the first two machines M1, M2 are 

the same for any normal objective function and moreover the 

job sequences on the last two machines Mm-1, Mm are the 

same only when the objective function is the makespan.  

These facts are stated in the following theorem. Theorem [6] 

 

For the flow shop scheduling problem with any normal 

objective function to be minimized, it is sufficient to consider 

that the job sequences on the first two machines are the same 

and, moreover, the job sequences on the last two machines 

are the same only when the objective function is the 

makespan.  

 

As objective function for the sequencing problem, we take 

the means of the waiting time, competition time, flow time, 

lateness and tardiness: TLFCW ,,,,  and their maxima: 

Wmax, Cmax, Fmax, Lmax, Tmax and also their weighted 

means by considering the degree of importance of each job 

are considered. Generally, the minimization of the objective 

function of the completion time, is called normal objective 

function [6], in particular, the maximum of the completion 

times, Cmax=max(C1,C2,…,Cn) is called total elapsed time 

or makespan. 

 

For calculating the start and completion times of jobs on 

machines in permutation flowshops, recursive equations are 

used as follows.  

 

Initialize ),( jiq  ,the completion time of job i on machine 

0,equal to zero. This time indicates the time of availability of 

a job in the flowshop, and it is equal to 0 for all jobs in case 

of static flowshops.  

 

For j = 1 to m do  

tijjiqjqjiq  )}1,();,(max{),(       (1) 

 

The flowtime of job i, Ci is given by  

),( miqCi                                     (2) 

When all jobs are scheduled, the total flow time F ,and the 

makespan M are obtained as follows: 





n

i

CiF
1

                                        (3) 

and  

 

}.,..,2,1,max{ niCiM   

It is to be noted that ),( jq  is equal to 0 for all j, where   

denotes a null schedule. 

 

5. Ant Colony optimization 
 

(ACO) was suggested as a new heuristic method to solve  

optimization problems by Dorigo and Gambardella [9]. The 

reformed form of the (AS) algorithm and functions is shown 

as follows. Each ant generates a complete solution by 

choosing the nodes according to a probabilistic state 

transition rule. The state transition rule is given in (5.1) is 

called a pseudorandom-proportional rule: 
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Where tij is the amount of pheromone in edge ij, ηij = 1/δij 

where δij is the cost  of edge ij, α and β are parameters that 

determine the relative importance of η versus t ,and  Nik is 

the remaining node set of ant k based on moving from node i 

to build a feasible solution [10] . 

 

The parameters α, β are user defined parameters that 

determine the degree to which the pheromone is used versus 

the heuristic distance in deciding where to move. Setting β = 

0 will result in only the pheromone information being used 

whereas if α = 0, only the heuristic information will be used 

[11]. 

 

In either case in ACO, only the globally best ant that has built 

the best solution deposits pheromone in the graph. At the end 

of an iteration of the algorithm, once all the ants have built a 

solution, pheromone is added to the arcs used by the ant that 

found the best tour from the  beginning of the trial. This 

updating rule is called the global updating rule of pheromone 

 
where 0 <p<1 is a pheromone decay parameter and Δtij 

equals to 
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In ACO, ants perform step-by-step pheromone updates using 

local updating rule of  pheromone. These updates are 

performed to favor the emergence of other solutions than the 

best so far. The updates result in step-by-step reduction of the 

pheromone level of the visiting edges by each ant. 

 

The local updating rule of pheromone is performed by  

applying the rule:             

 

 is a small fixed value and 0 <ζ<1 is the  local evaporation 

of pheromone [10] 

 

The ACO structure is shown in the following Algorithm 

procedure: 

ACO algorithm procedure 

1      Set pheromone trails to be small constant    

2      While (termination condition not met) 

3                Place each ant on initial node  (its index 

usually) 

4                 Repeat 

5                            For each ant do 

6                                      Chose next node by Apply 

State Transition Rule 

7          End For 

8                Until "each ant build one a solution" 

9                   Chose the best solution 

10                 Apply Local Update pheromone 

11                 Apply Global Update 

12    End While 

 

6. Genetic Algorithm (GA) 
 

Genetic Algorithms (GA) were originally proposed by John 

H. Holland [12]. They are search algorithms that explore a 

solution space and mimic the biological evolution process.  

 

Genetic algorithms work with the population of solution each 

solution is represented as a string the (GA) technique based 

on the mechanism of evolution .The solution space is usually 

represented by a population. New structures are generated by 

applying simple genetic operators such as (select, cross-over, 

and mutation). The members with higher fitness values (i.e., 

better objective function values) in the  current population 

will have higher probability of being selected as parents, 

which is similar to Darwin’s concept of survival of the fittest. 

The initial population is randomly generated, which  means 

that the optimality of the final solution would not be 

guaranteed. Therefore, in the initial  population, at least one 

solution having the minimum makespan (objective function 

of our problem) is included applying (select, cross-over and 

mutation), to generate new population and save the best 

solution in every generation. The best one from saved 

solutions becomes GA solution [13], the fitness value  of a 

solution is a vector representing the function values 

(makespan). A parent is generated by selecting the best 

solutions from the  current population. Then, solutions with 

good fitness values in each population are selected  and 

recombined in each generation to produce a new offspring 

after applying the genetic operators for each new offspring 

we get a new population. We note that the mutation operation 

(for example) is based on the pairwise interchange (swap) of 

two jobs in the corresponding sequence. There are several 

applications of Genetic Algorithms (GA) have been widely 

applied to various fields since 1975. They are applied to 

business, scientific, and engineering areas including:  

 

7. Basic Stricture of Genetic Algorithm  
 

The main components of a genetic algorithm are as follows 

[14] : 

 

1) Solution Encoding   

A chromosomal representation of solutions, (solution 

encoding).  

For the machine schedule problem, the natural 

permutation representation of a solution is a permutation 

of the integers 1,…,n, which defines the processing order 

of n jobs. Each chromosome is represented by such a 

scheduling solution, i.e., the natural permutation   

representation of a solution.  

2) Initial Population  

The creation of an initial population of chromosomes,  

(initial population). 

In order to approximate an optimal solution as near as 

possible, the initial population of chromosomes is 

created by scheduling heuristic dispatching rules 

(heuristics methods), combined with random methods. 

3) Fitness (evaluation ) 

The measurement of chromosome fitness is based on the 

objective function (fitness).When a population is 

generated, each chromosome is evaluated and its fitness 

is calculated for each chromosome. Finally each 

chromosome is assigned its fitness value along of the 

population size. 

4) Selection  

Natural selection of some chromosomes, by selection 

methods (according fitness value usually), chromosomes 

(parents) are selected from the population for combining 

to produce new chromosomes (children), i.e., for 

applying genetic operators. 

5) Genetic Operators  

Genetic Operators (crossover and mutation) applied 

to the chromosomes whose role is to create new 

members, i.e., children, in the population by 

crossing the genes of two chromosomes (crossover 

operators) or by modifying the genes of one 

chromosome (mutation operators): 

a) Crossover:  

The role of a crossover operator is to combine 

elements from two parent chromosomes to generate 

one or more child chromosomes.  

b) Mutation: 

The role of a mutation operator is to provide and 

maintain diversity in a population so that other 

operators can continue to work. 
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6) Replacement  

Natural selection of the members of the population, 

who will survive (replacement), is based on elitism. 

That is to keep the best chromosomes of the current 

population and their offspring. They will form a 

new population to survive into the next   generation. 

 

8. Parameter Selection       
 

Natural convergence of the whole population that is globally 

improved at each step of the algorithm. For choosing suitable 

values of parameters such as population, size crossover and 

mutation.  

 

The performance of a (GA) depends largely on the design of 

the above components and the choice of parameters such as 

population size, probabilities of genetic operators (i.e., 

crossover and mutation), and number of generations. 

 

The following steps give us the outline of (GA): 

 

Genetic  algorithm procedure 

1- initialization : create the initial population  

                      evaluate this population  

                     save the best element from this 

population as a {(GA) solution}             

2- While stopping condition is not satisfied do  

          select a good solutions (parents) form 

current population 

          generate new population by genetic 

operators (crossover and mutation)  

           evaluate this population 

          if a new  best individual element is found 

save it as a {(GA) solution} 

3- end while 

 

 
Figure 1: Taxonomy for machine scheduling problem 

 

9. The Two-Stage Approaches 
 

The ACO and GA present two different ways to solve the 

flow shop scheduling FSS, and a combination of two or even 

more approaches may give us a better chance to find the 

optimal solution.  Therefore we propose two two-stage 

approaches in this place: ACO +GA, and GA+ACO. 

 

In the first two-stage approach ACO +GA, we apply TS to 

improve the randomly generated particles and then use ACO 

to make further improvement. In the second two-stage 

approach 

 

ACO+GA, we first use ACO to find the best solution and 

then use GA to make further improvement. 

 

10. Experimental Result  
 

The presented GA, ACO, and two-stage approaches are 

implemented using Matlab 2015. The program was run on a 

computer with a CORE I5 CPU 2.6 GHz, 4GB memory. We 

generate some problem with different number of product and 

different number of machine. 

 

Table 1: Comparison between the algorithms based on best 

criteria 
m n ACO GA ACO+GA GA+ACO 

 

 

 

 

3 

5 243.00 249.00 252.00 243.00 

10 422.00 424.00 446.00 421.00 

15 623.00 638.00 638.00 623.00 

20 848.00 855.00 869.00 848.00 

25 1026.00 1026.00 1058.00 1026.00 

30 1139.00 1157.00 1176.00 1139.00 

35 1331.00 1338.00 1357.00 1325.00 

40 1509.00 1525.00 1542.00 1504.00 

45 1696.00 1725.00 1727.00 1690.00 

50 1833.00 1854.00 1854.00 1827.00 

 

 

 

 

4 

5 266.00 266.00 284.00 266.00 

10 471.00 476.00 478.00 470.00 

15 607.00 623.00 631.00 608.00 

20 779.00 793.00 796.00 779.00 

25 998.00 1027.00 1012.00 999.00 

30 1187.00 1199.00 1202.00 1179.00 

35 1403.00 1428.00 1434.00 1398.00 

40 1565.00 1571.00 1600.00 1560.00 

45 1703.00 1720.00 1748.00 1695.00 

50 1871.00 1894.00 1883.00 1867.00 

 

 

 

 

5 

5 284.00 284.00 300.00 284.00 

10 511.00 503.00 522.00 509.00 

15 644.00 646.00 659.00 639.00 

20 895.00 901.00 947.00 890.00 

25 1087.00 1121.00 1119.00 1085.00 

30 1223.00 1252.00 1260.00 1222.00 

35 1389.00 1415.00 1416.00 1387.00 

40 1571.00 1607.00 1613.00 1566.00 

45 1802.00 1848.00 1846.00 1798.00 

50 1920.00 1926.00 1944.00 1916.00 

 

Table 1,2,3 above shown the comparative between the 

algorithms and instances depending on the performance best, 

worst, Std. and time  the results shown that the superiority of 

the algorithms (GA-ACO and ACO-GA) on the machine 3 

for all jobs except jobs (45 and 50).  In the machine 4 we can 

show that the algorithm ACO has the best value depending 

on the time, on jobs (45 and 50) algorithm (GA) show the 

best and for all the jobs in the machine (4) the hybrid  

algorithm (GA-ACO and ACO-GA) have the best value 

depending on the time also. At least, in the machine (5) 

depending on the time the algorithms ACO and hybrid have 

the same time in the job (5). Also in the same machine we 

can see that the algorithm GA  has the best time compare 

with the  (GA-ACO and ACO-GA) and ACO. 
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Table 2: comparison between the algorithms based on worst 

criteria 
m n ACO GA ACO+GA GA+ACO 

 

 

 

 

3 

5 243.00 252.00 282.00 243.00 

10 425.00 447.00 457.00 424.00 

15 625.00 648.00 667.00 623.00 

20 848.00 889.00 889.00 853.00 

25 1030.00 1041.00 1078.00 1027.00 

30 1146.00 1182.00 1245.00 1146.00 

35 1337.00 1382.00 1375.00 1328.00 

40 1519.00 1571.00 1584.00 1517.00 

45 1701.00 1752.00 1779.00 1697.00 

50 1835.00 1914.00 1894.00 1839.00 

 

 

 

 

4 

5 266.00 284.00 303.00 266.00 

10 474.00 502.00 507.00 474.00 

15 616.00 642.00 643.00 616.00 

20 789.00 818.00 824.00 791.00 

25 1010.00 1051.00 1060.00 1010.00 

30 1191.00 1229.00 1270.00 1191.00 

35 1417.00 1481.00 1464.00 1410.00 

40 1577.00 1612.00 1648.00 1566.00 

45 1709.00 1766.00 1800.00 1714.00 

50 1882.00 1940.00 1967.00 1878.00 

 5 284.00 300.00 317.00 284.00 

 

 

 

5 

10 516.00 534.00 573.00 511.00 

15 647.00 687.00 705.00 644.00 

20 910.00 949.00 989.00 908.00 

25 1100.00 1146.00 1148.00 1097.00 

30 1238.00 1276.00 1294.00 1232.00 

35 1398.00 1447.00 1451.00 1393.00 

40 1584.00 1634.00 1660.00 1585.00 

45 1817.00 1928.00 1891.00 1814.00 

50 1930.00 2008.00 1975.00 1925.00 

 

11. Conclusions 
 

In this paper, we proposed to use GA, ACO and their 

combinations to solve the flow shop scheduling  problem 

(FLP) with size constraints on a continual planar site. The 

computational results of the experiments suggest that 

GA+ACO give us the better result than GA and ACO and 

ACO+GA. It is possible to demonstrate the possibility of 

obtaining good results for solving complex problems, thereby 

integrating the advantages of two techniques and thus raising 

the exploration within the search space, and also raising the 

convergence of it to obtain universal optimization at a 

reasonable time 

 

Table 3: Comparison between the algorithms based on time 

and standard deviation 
m n ACO GA ACO+GA GA+ACO 

STD T(s) STD T(s) STD T(s) STD T(s) 

 

 

 

 

3 

5 0.00 0.34 1.41 0.81 10.78 0.22 0.00 0.18 

10 1.14 0.36 9.40 0.70 4.45 0.40 1.30 0.29 

15 0.89 0.61 5.05 0.84 12.14 0.66 0.00 0.45 

20 0.00 0.88 14.87 0.97 10.95 0.92 2.24 0.63 

25 2.05 1.21 5.57 1.11 7.97 1.24 0.45 0.83 

30 3.03 1.52 10.05 1.24 27.04 1.59 2.77 1.04 

35 2.83 1.93 17.46 1.38 6.91 2.01 1.30 1.28 

40 4.10 2.35 16.99 1.52 16.62 2.42 5.22 1.53 

45 1.95 2.76 11.33 1.67 22.29 2.85 2.74 1.79 

50 0.71 3.17 22.26 1.80 15.32 3.25 5.20 2.05 

 

 

 

 

4 

5 0.00 0.53 7.36 2.08 8.35 0.64 0.00 0.56 

10 1.52 1.23 10.68 2.44 10.45 1.48 1.58 1.08 

15 3.94 2.28 6.91 3.14 5.02 2.34 3.46 1.69 

20 4.16 2.95 9.89 3.46 11.12 3.52 4.93 2.29 

25 4.85 4.60 9.15 4.10 18.19 4.65 3.96 3.14 

30 1.79 5.92 11.24 4.71 28.78 6.12 5.59 3.97 

35 4.97 7.27 21.52 5.16 14.64 7.53 5.22 4.67 

40 4.85 8.62 16.98 5.79 21.68 9.07 3.00 5.74 

45 2.28 10.07 17.74 6.30 19.32 10.59 7.44 6.53 

50 4.92 11.88 19.23 6.77 30.83 12.06 4.51 7.60 

 

 

 

 

5 

5 0.00 0.59 6.83 2.03 7.65 0.64 0.00 0.59 

10 2.17 1.03 12.12 2.08 20.19 1.10 0.89 0.91 

15 1.41 2.30 16.36 3.02 17.94 2.16 2.24 1.54 

20 5.94 3.59 18.51 3.75 17.43 3.51 7.01 2.47 

25 5.37 4.60 9.37 4.23 11.94 4.70 5.17 3.17 

30 5.85 5.73 9.42 5.04 14.60 6.20 3.63 4.01 

35 4.44 7.07 12.18 5.34 13.96 7.42 2.51 4.69 

40 5.07 8.93 10.69 6.06 17.47 9.23 6.91 5.78 

45 6.02 7.27 31.94 4.80 18.22 6.85 6.63 4.45 

50 4.42 3.45 32.87 2.03 12.24 3.55 3.74 2.22 

 

 
Figure 2: Comparison between  algorithms when m=3 

 
Figure 3: Comparison between algorithms when m=4 

 

 
Figure 4: Comparison between algorithms when m=5 
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