
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Using Two Stage Hybrid Algorithm for Solving

Flow-Shop Scheduling Problem

A. M. Kadhem

Department of Statistics, College of Economic & Administration, University of Baghdad, Baghdad, Iraq

Abstract: The permutation flow shop scheduling is well-known combinatorial optimization problems that have been widely used

and many methods have been used to solve this issue because of their widespread use in the business life market. We reject some

hybrid methods in solving these issues by generating a range of issues of different sizes. This paper presents a study on using Ant

Colony Optimization (ACO), Genetic algorithm (GA) and their combinations (ACO+GA and GA+ACO) to tackle the FSSP. The

computation results show that the two-stage algorithms are able to achieve better results in most cases than ACO and GA

individually on the FSSP. The proposed two-stage algorithms and visual layout design system provide an effective tool to solve the

practical FSSP.

Keywords: Permutation flow shop scheduling, Ant Colony Optimization, Genetic algorithm, Two stage Algorithm

1. Introduction

Baker (1974) [1] defines the scheduling as the allocation of

resources over time to perform a collection of tasks. The

resources and tasks may take many forms, for example,

"hospital equipment" as resources and "patients" as tasks,

usually resources are called (machines) and tasks are called

(jobs). A flow shop schedule problem can be stated as

follows: there is a set of (M) different machines these

machines perform tasks of (n) jobs, each of (n) jobs is

processed by (M) machines (M1,M2,...,Mm) in this order.

There are some constraints on jobs and machines, each

machine can handle one job at a time and each job can be

performed by one machine at a time. The scheduling of

manufacturing systems has been the subject of extensive

research since the early 1950s'. Many of the applications in

the operational research field involve this type of problems.

There has been work done on describing different schedule

models and environment, on the classification of models and

on developing a number of solution procedures. Introductory

text books for machine scheduling problems are provided by

Conway, Maxwell and Meller (1967) [2] Baker (1974) [1],

Franch (1982) [3] and Pindo (1995) [4]. Solving a machine

schedule problem means finding the decision that makes us

to determine which job should be sequenced first and on

which machines. The aim is to find a good (near optimal) or

if possible optimal schedule which gives an optimal solution

which enables to minimize the time spent on the problem

which will minimize the cost for the problem [5].

2. Scheduling Problem (Definition and

Classification)

A scheduling problem arises whenever we want to make a

daily routine for any planned work [6]. Recently, the m-

machine scheduling problem is a widely-studied problem in

computer science, see [7] for an excellence survey until

1998, and is concerned with deciding the order for the items

to be serviced such as in the manufacturing process described

below:

When (n) jobs are processed on (m) machines under given

ordering that is given the machine order to process each job,

and is given processing times of each job on each machine.

The problem is to determine the sequence of (n) jobs on each

machine in order to optimize a given objective function, this

objective function is generally any non-decreasing function

of the completion time of each job, which includes: total

elapsed time (make span) to complete the processing of all

jobs, weighted mean completion time, weighted mean

lateness or tardiness under given due date for each job, and

so on. In single stage production system, each job requires

one operation, it involves either a single machine or (m)

machine operating in parallel, and the jobs are processed by

just one machine from several machines that are available

[5]. Note that if there is more than one machine and each job

j consists of a single operation, this problem will be noted as

(parallel machine schedule problem).

3. Flow Shop Scheduling Problem

The flow shop scheduling problem (FSP) is characterized by

a set N of n jobs that must be processed by a set M of m

machines. All m machines are disposed in series and, without

loss of generality, jobs visit machine 1 first, then machine 2

and so on until machine m. Each job needs a given, known in

advance, fixed and non-negative processing time at each

machine. This is denoted as pi,j, for each j2N and i2M. A job

cannot be in process at more than one machine

simultaneously and one machine can only process one job at

a time

A flow shop schedule problem consists of a set of different

machines that perform tasks of jobs. Each of (n) jobs is

processed by (m) machines M1,M2,...,Mm, in this machine

order; there are several constraints on jobs and machines:

 There are no precedence constraints among tasks of

different jobs.

 Each machine can handle only one job at a time.

 Each job can be performed only on one machine at a time.

The time to process each job "j" on each machine (Mi) is

called processing time of job "j" on machine (Mi) and is

Paper ID: ART20177676 DOI: 10.21275/ART20177676 776

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

expressed by pi,j , a sequence of processing times Pj=(

P1j,P2j,...,Pmj) corresponds to each job "j" and a processing

time matrix is defined as an Mmatrix with Pj as its column,

processing of job "j" on machine Mi is called operation and

is expressed by Oi,j.

4. Permutation Flow Shop Scheduling

Problem

The permutation flow shop represents a particular case of the

flow shop, having as a goal fined an optimal schedule for (n)

jobs on (m) machines. Solving the flow shop problem

consists in scheduling (n) jobs (j=1,…,n), on mj machines

(i=1,…..,m) . A job consists of (m) operation and the
jth

operation of each job must be processed on machine (i), so

one job can start on machine (i) if it is completed on machine

(i-1) and if machine (i) is free, each operation has a known

processing time " pij ". For the permutation flow shop the

sequence of the jobs are the same on every machine , if one

job is at
Jth

 position on machine 1, then this job will be at

the
Jth

 position on each machine. Consequently, for the

permutation flow shop considering the makespan as objective

function to be minimized, solving the problem means

determining the sequence of jobs which gives the smallest

makespan value (Cmax).

In this case, when there is no passing of jobs allowed, that is,

the identity of the job sequence on each machine, the active

schedules correspond to the permutation of (n) jobs and so

their number is to n! . Each schedule in this case is called a

permutation schedule or sequence [6]. Even in the case where

passing is allowed in a flow shop, it is sufficient to consider

that the job sequence on the first two machines M1, M2 are

the same for any normal objective function and moreover the

job sequences on the last two machines Mm-1, Mm are the

same only when the objective function is the makespan.

These facts are stated in the following theorem. Theorem [6]

For the flow shop scheduling problem with any normal

objective function to be minimized, it is sufficient to consider

that the job sequences on the first two machines are the same

and, moreover, the job sequences on the last two machines

are the same only when the objective function is the

makespan.

As objective function for the sequencing problem, we take

the means of the waiting time, competition time, flow time,

lateness and tardiness: TLFCW ,,,, and their maxima:

Wmax, Cmax, Fmax, Lmax, Tmax and also their weighted

means by considering the degree of importance of each job

are considered. Generally, the minimization of the objective

function of the completion time, is called normal objective

function [6], in particular, the maximum of the completion

times, Cmax=max(C1,C2,…,Cn) is called total elapsed time

or makespan.

For calculating the start and completion times of jobs on

machines in permutation flowshops, recursive equations are

used as follows.

Initialize),(jiq  ,the completion time of job i on machine

0,equal to zero. This time indicates the time of availability of

a job in the flowshop, and it is equal to 0 for all jobs in case

of static flowshops.

For j = 1 to m do

tijjiqjqjiq )}1,();,(max{),( (1)

The flowtime of job i, Ci is given by

),(miqCi  (2)

When all jobs are scheduled, the total flow time F ,and the

makespan M are obtained as follows:





n

i

CiF
1

 (3)

and

}.,..,2,1,max{ niCiM 

It is to be noted that),(jq  is equal to 0 for all j, where 

denotes a null schedule.

5. Ant Colony optimization

(ACO) was suggested as a new heuristic method to solve

optimization problems by Dorigo and Gambardella [9]. The

reformed form of the (AS) algorithm and functions is shown

as follows. Each ant generates a complete solution by

choosing the nodes according to a probabilistic state

transition rule. The state transition rule is given in (5.1) is

called a pseudorandom-proportional rule:

, ,k

, ,

() ()
P (i,j) =

() ()
k

i

i j i j

i j i j

j N

t

t

 

 








Where tij is the amount of pheromone in edge ij, ηij = 1/δij

where δij is the cost of edge ij, α and β are parameters that

determine the relative importance of η versus t ,and Nik is

the remaining node set of ant k based on moving from node i

to build a feasible solution [10] .

The parameters α, β are user defined parameters that

determine the degree to which the pheromone is used versus

the heuristic distance in deciding where to move. Setting β =

0 will result in only the pheromone information being used

whereas if α = 0, only the heuristic information will be used

[11].

In either case in ACO, only the globally best ant that has built

the best solution deposits pheromone in the graph. At the end

of an iteration of the algorithm, once all the ants have built a

solution, pheromone is added to the arcs used by the ant that

found the best tour from the beginning of the trial. This

updating rule is called the global updating rule of pheromone

where 0 <p<1 is a pheromone decay parameter and Δtij

equals to

Paper ID: ART20177676 DOI: 10.21275/ART20177676 777

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ij

1
(,)

cos t =

0

if i j best sequence
best t

othewise




 



In ACO, ants perform step-by-step pheromone updates using

local updating rule of pheromone. These updates are

performed to favor the emergence of other solutions than the

best so far. The updates result in step-by-step reduction of the

pheromone level of the visiting edges by each ant.

The local updating rule of pheromone is performed by

applying the rule:

 is a small fixed value and 0 <ζ<1 is the local evaporation

of pheromone [10]

The ACO structure is shown in the following Algorithm

procedure:

ACO algorithm procedure

1 Set pheromone trails to be small constant

2 While (termination condition not met)

3 Place each ant on initial node (its index

usually)

4 Repeat

5 For each ant do

6 Chose next node by Apply

State Transition Rule

7 End For

8 Until "each ant build one a solution"

9 Chose the best solution

10 Apply Local Update pheromone

11 Apply Global Update

12 End While

6. Genetic Algorithm (GA)

Genetic Algorithms (GA) were originally proposed by John

H. Holland [12]. They are search algorithms that explore a

solution space and mimic the biological evolution process.

Genetic algorithms work with the population of solution each

solution is represented as a string the (GA) technique based

on the mechanism of evolution .The solution space is usually

represented by a population. New structures are generated by

applying simple genetic operators such as (select, cross-over,

and mutation). The members with higher fitness values (i.e.,

better objective function values) in the current population

will have higher probability of being selected as parents,

which is similar to Darwin’s concept of survival of the fittest.

The initial population is randomly generated, which means

that the optimality of the final solution would not be

guaranteed. Therefore, in the initial population, at least one

solution having the minimum makespan (objective function

of our problem) is included applying (select, cross-over and

mutation), to generate new population and save the best

solution in every generation. The best one from saved

solutions becomes GA solution [13], the fitness value of a

solution is a vector representing the function values

(makespan). A parent is generated by selecting the best

solutions from the current population. Then, solutions with

good fitness values in each population are selected and

recombined in each generation to produce a new offspring

after applying the genetic operators for each new offspring

we get a new population. We note that the mutation operation

(for example) is based on the pairwise interchange (swap) of

two jobs in the corresponding sequence. There are several

applications of Genetic Algorithms (GA) have been widely

applied to various fields since 1975. They are applied to

business, scientific, and engineering areas including:

7. Basic Stricture of Genetic Algorithm

The main components of a genetic algorithm are as follows

[14] :

1) Solution Encoding

A chromosomal representation of solutions, (solution

encoding).

For the machine schedule problem, the natural

permutation representation of a solution is a permutation

of the integers 1,…,n, which defines the processing order

of n jobs. Each chromosome is represented by such a

scheduling solution, i.e., the natural permutation

representation of a solution.

2) Initial Population

The creation of an initial population of chromosomes,

(initial population).

In order to approximate an optimal solution as near as

possible, the initial population of chromosomes is

created by scheduling heuristic dispatching rules

(heuristics methods), combined with random methods.

3) Fitness (evaluation)

The measurement of chromosome fitness is based on the

objective function (fitness).When a population is

generated, each chromosome is evaluated and its fitness

is calculated for each chromosome. Finally each

chromosome is assigned its fitness value along of the

population size.

4) Selection

Natural selection of some chromosomes, by selection

methods (according fitness value usually), chromosomes

(parents) are selected from the population for combining

to produce new chromosomes (children), i.e., for

applying genetic operators.

5) Genetic Operators

Genetic Operators (crossover and mutation) applied

to the chromosomes whose role is to create new

members, i.e., children, in the population by

crossing the genes of two chromosomes (crossover

operators) or by modifying the genes of one

chromosome (mutation operators):

a) Crossover:

The role of a crossover operator is to combine

elements from two parent chromosomes to generate

one or more child chromosomes.

b) Mutation:

The role of a mutation operator is to provide and

maintain diversity in a population so that other

operators can continue to work.

Paper ID: ART20177676 DOI: 10.21275/ART20177676 778

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

6) Replacement

Natural selection of the members of the population,

who will survive (replacement), is based on elitism.

That is to keep the best chromosomes of the current

population and their offspring. They will form a

new population to survive into the next generation.

8. Parameter Selection

Natural convergence of the whole population that is globally

improved at each step of the algorithm. For choosing suitable

values of parameters such as population, size crossover and

mutation.

The performance of a (GA) depends largely on the design of

the above components and the choice of parameters such as

population size, probabilities of genetic operators (i.e.,

crossover and mutation), and number of generations.

The following steps give us the outline of (GA):

Genetic algorithm procedure

1- initialization : create the initial population

 evaluate this population

 save the best element from this

population as a {(GA) solution}

2- While stopping condition is not satisfied do

 select a good solutions (parents) form

current population

 generate new population by genetic

operators (crossover and mutation)

 evaluate this population

 if a new best individual element is found

save it as a {(GA) solution}

3- end while

Figure 1: Taxonomy for machine scheduling problem

9. The Two-Stage Approaches

The ACO and GA present two different ways to solve the

flow shop scheduling FSS, and a combination of two or even

more approaches may give us a better chance to find the

optimal solution. Therefore we propose two two-stage

approaches in this place: ACO +GA, and GA+ACO.

In the first two-stage approach ACO +GA, we apply TS to

improve the randomly generated particles and then use ACO

to make further improvement. In the second two-stage

approach

ACO+GA, we first use ACO to find the best solution and

then use GA to make further improvement.

10. Experimental Result

The presented GA, ACO, and two-stage approaches are

implemented using Matlab 2015. The program was run on a

computer with a CORE I5 CPU 2.6 GHz, 4GB memory. We

generate some problem with different number of product and

different number of machine.

Table 1: Comparison between the algorithms based on best

criteria
m n ACO GA ACO+GA GA+ACO

3

5 243.00 249.00 252.00 243.00

10 422.00 424.00 446.00 421.00

15 623.00 638.00 638.00 623.00

20 848.00 855.00 869.00 848.00

25 1026.00 1026.00 1058.00 1026.00

30 1139.00 1157.00 1176.00 1139.00

35 1331.00 1338.00 1357.00 1325.00

40 1509.00 1525.00 1542.00 1504.00

45 1696.00 1725.00 1727.00 1690.00

50 1833.00 1854.00 1854.00 1827.00

4

5 266.00 266.00 284.00 266.00

10 471.00 476.00 478.00 470.00

15 607.00 623.00 631.00 608.00

20 779.00 793.00 796.00 779.00

25 998.00 1027.00 1012.00 999.00

30 1187.00 1199.00 1202.00 1179.00

35 1403.00 1428.00 1434.00 1398.00

40 1565.00 1571.00 1600.00 1560.00

45 1703.00 1720.00 1748.00 1695.00

50 1871.00 1894.00 1883.00 1867.00

5

5 284.00 284.00 300.00 284.00

10 511.00 503.00 522.00 509.00

15 644.00 646.00 659.00 639.00

20 895.00 901.00 947.00 890.00

25 1087.00 1121.00 1119.00 1085.00

30 1223.00 1252.00 1260.00 1222.00

35 1389.00 1415.00 1416.00 1387.00

40 1571.00 1607.00 1613.00 1566.00

45 1802.00 1848.00 1846.00 1798.00

50 1920.00 1926.00 1944.00 1916.00

Table 1,2,3 above shown the comparative between the

algorithms and instances depending on the performance best,

worst, Std. and time the results shown that the superiority of

the algorithms (GA-ACO and ACO-GA) on the machine 3

for all jobs except jobs (45 and 50). In the machine 4 we can

show that the algorithm ACO has the best value depending

on the time, on jobs (45 and 50) algorithm (GA) show the

best and for all the jobs in the machine (4) the hybrid

algorithm (GA-ACO and ACO-GA) have the best value

depending on the time also. At least, in the machine (5)

depending on the time the algorithms ACO and hybrid have

the same time in the job (5). Also in the same machine we

can see that the algorithm GA has the best time compare

with the (GA-ACO and ACO-GA) and ACO.

Paper ID: ART20177676 DOI: 10.21275/ART20177676 779

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 2: comparison between the algorithms based on worst

criteria
m n ACO GA ACO+GA GA+ACO

3

5 243.00 252.00 282.00 243.00

10 425.00 447.00 457.00 424.00

15 625.00 648.00 667.00 623.00

20 848.00 889.00 889.00 853.00

25 1030.00 1041.00 1078.00 1027.00

30 1146.00 1182.00 1245.00 1146.00

35 1337.00 1382.00 1375.00 1328.00

40 1519.00 1571.00 1584.00 1517.00

45 1701.00 1752.00 1779.00 1697.00

50 1835.00 1914.00 1894.00 1839.00

4

5 266.00 284.00 303.00 266.00

10 474.00 502.00 507.00 474.00

15 616.00 642.00 643.00 616.00

20 789.00 818.00 824.00 791.00

25 1010.00 1051.00 1060.00 1010.00

30 1191.00 1229.00 1270.00 1191.00

35 1417.00 1481.00 1464.00 1410.00

40 1577.00 1612.00 1648.00 1566.00

45 1709.00 1766.00 1800.00 1714.00

50 1882.00 1940.00 1967.00 1878.00

 5 284.00 300.00 317.00 284.00

5

10 516.00 534.00 573.00 511.00

15 647.00 687.00 705.00 644.00

20 910.00 949.00 989.00 908.00

25 1100.00 1146.00 1148.00 1097.00

30 1238.00 1276.00 1294.00 1232.00

35 1398.00 1447.00 1451.00 1393.00

40 1584.00 1634.00 1660.00 1585.00

45 1817.00 1928.00 1891.00 1814.00

50 1930.00 2008.00 1975.00 1925.00

11. Conclusions

In this paper, we proposed to use GA, ACO and their

combinations to solve the flow shop scheduling problem

(FLP) with size constraints on a continual planar site. The

computational results of the experiments suggest that

GA+ACO give us the better result than GA and ACO and

ACO+GA. It is possible to demonstrate the possibility of

obtaining good results for solving complex problems, thereby

integrating the advantages of two techniques and thus raising

the exploration within the search space, and also raising the

convergence of it to obtain universal optimization at a

reasonable time

Table 3: Comparison between the algorithms based on time

and standard deviation
m n ACO GA ACO+GA GA+ACO

STD T(s) STD T(s) STD T(s) STD T(s)

3

5 0.00 0.34 1.41 0.81 10.78 0.22 0.00 0.18

10 1.14 0.36 9.40 0.70 4.45 0.40 1.30 0.29

15 0.89 0.61 5.05 0.84 12.14 0.66 0.00 0.45

20 0.00 0.88 14.87 0.97 10.95 0.92 2.24 0.63

25 2.05 1.21 5.57 1.11 7.97 1.24 0.45 0.83

30 3.03 1.52 10.05 1.24 27.04 1.59 2.77 1.04

35 2.83 1.93 17.46 1.38 6.91 2.01 1.30 1.28

40 4.10 2.35 16.99 1.52 16.62 2.42 5.22 1.53

45 1.95 2.76 11.33 1.67 22.29 2.85 2.74 1.79

50 0.71 3.17 22.26 1.80 15.32 3.25 5.20 2.05

4

5 0.00 0.53 7.36 2.08 8.35 0.64 0.00 0.56

10 1.52 1.23 10.68 2.44 10.45 1.48 1.58 1.08

15 3.94 2.28 6.91 3.14 5.02 2.34 3.46 1.69

20 4.16 2.95 9.89 3.46 11.12 3.52 4.93 2.29

25 4.85 4.60 9.15 4.10 18.19 4.65 3.96 3.14

30 1.79 5.92 11.24 4.71 28.78 6.12 5.59 3.97

35 4.97 7.27 21.52 5.16 14.64 7.53 5.22 4.67

40 4.85 8.62 16.98 5.79 21.68 9.07 3.00 5.74

45 2.28 10.07 17.74 6.30 19.32 10.59 7.44 6.53

50 4.92 11.88 19.23 6.77 30.83 12.06 4.51 7.60

5

5 0.00 0.59 6.83 2.03 7.65 0.64 0.00 0.59

10 2.17 1.03 12.12 2.08 20.19 1.10 0.89 0.91

15 1.41 2.30 16.36 3.02 17.94 2.16 2.24 1.54

20 5.94 3.59 18.51 3.75 17.43 3.51 7.01 2.47

25 5.37 4.60 9.37 4.23 11.94 4.70 5.17 3.17

30 5.85 5.73 9.42 5.04 14.60 6.20 3.63 4.01

35 4.44 7.07 12.18 5.34 13.96 7.42 2.51 4.69

40 5.07 8.93 10.69 6.06 17.47 9.23 6.91 5.78

45 6.02 7.27 31.94 4.80 18.22 6.85 6.63 4.45

50 4.42 3.45 32.87 2.03 12.24 3.55 3.74 2.22

Figure 2: Comparison between algorithms when m=3

Figure 3: Comparison between algorithms when m=4

Figure 4: Comparison between algorithms when m=5

Paper ID: ART20177676 DOI: 10.21275/ART20177676 780

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 11, November 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Baker, K.R "Introduction to Sequencing and Scheduling

" Wiley New York, (1974)

[2] Belman R., Eesogbue A.O., Nabeshima I.,

"Mathematical Aspects of Scheduling and Application",

pergamon press, Oxford, New York, Toronto, Sydney,

Paris, (1982)

[3] Al-Samarii N. A.A., "Signatures verification using

neural network", M.Sc. thesis, College of Engineering,

University of Al-Mustansiriyah, April -2004

[4] Chen B., Potts C., and Woeginger G.J., "A Review of

Machine Scheduling: Complexity Algorithms and

Approximability", handbook of combinatorial

optimization. (1998).

[5] Chen C.L., Vempati V.S., and Aljaber N. , " An

application of genetic algorithms for flow shop

problems" European Journal of operation research , 80

389-396, (1995).

[6] Conway R.W., Maxwell W.L., and Miller L.W. "Theory

of Scheduling” Addison Wesley, Reading, MA.

(1967)

[7] Cook S.A. "The Complexity of The Theorem-Proving

procedure", proc. 3rd annual ACM Symp. Theory

compute, 151-158 (1971).

[8] Crauwels, H. "A comparative study of local search

methods for one machine sequence problem". Ph.D.

thesis Katholieke University, Heverlee. Belgium

(1998).

[9] Dorigo M., and Gambardlla, L.M., "Ant algorithms for

discrete optimization", Massachusetts Institute of

technology, artificial life 5: 137-172 (1999).

[10] Franch, S. "Sequencing and Scheduling an Introduction

to Mathematics of Job Shop" , John Wiley & Sons,

New York (1982).

[11] Gupta J.N.D., Hennig K., Werner F., "Local search

heuristics for two-stage flow shop problems with

secondary criterion ", Ball stat university, Muncie,

IN43,306, USA. Pergamon computer and operation

research 29, 123-149,(2002).

[12] Holland J. H. "Adaptation in Natural and Artificial

Systems". Ann Arbor, University of Michigan Press,

1975.

[13] Johnson S.M., "Optimal Two and Three Stage

Production Schedule with Setup Time Included",

Nav.Res.Log.Quart.1No1 (1954)

[14] Keivan G. and Fahimeh M., "ACS - TS: train

scheduling using Ant Colony system", Journal of

applied mathematics and design sciences. Article ID

(95060) 1-28, (2006).

[15] Lee J.K. and Kim Y.D., "Search heuristic for resource

constrained project scheduling", Journal of the

operation research society 47, 678-689 (1996).

[16] Lenstra J.K., Rinnooy Kan A.H.G., Bruck B.,

“Complexity of machine scheduling problems", Annals

of discrete math. 1, 343-362, (1977).

[17] Liu N., Mohamed A. Abdelrahman, and Srini

Ramaswamy," A Genetic Algorithm for the Single

Machine Total Weighted Tardiness Problem",

Tennessee Technological University, Cookeville, TN

38505, USA, 2003

[18] Pindo, M. "Scheduling Theory Algorithms and System"

prentice hell, Inc., Englewood cliffs, New Jersey,

(1995).

[19] Reeves C.R.," A Genetic algorithm for flow shop

sequencing ", computer and operation research, 22, 5-

13 (1995).

[20] Ventresca M., and Ombuki B.M.. "Ant Colony

Optimization for Job Shop Scheduling Problem" ,

Brock university Canada, L25, 3A1, (2004).

Paper ID: ART20177676 DOI: 10.21275/ART20177676 781

../IJSR%20Website/www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

