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Abstract: To observe the phenomenon of quark confinement it is needed to investigate whether the linear term in QCD potential 

actually exists. For this purpose perturbative techniques were insufficient. But numerical simulations of lattice gauge theory on a 

space time lattice is an important tool for lattice QCD calculations. In this paper we review the Wilson loop techniques for the study of 

quark confinement using the gauge invariance. 
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1. Introduction to Wilson Loops 
 

Quantum Chromodynamics (QCD) is the theory that 

describes the interaction between quarks and gluons. 

Although QCD has been established as the fundamental 

theory of strong interaction, but manifestation of QCD are 

of great complexity .Confinement is up to now not 

satisfactory understood by the theoretical physicist. The 

Wilson loop which corresponds to a phase factor along a 

closed contour is used to set up a criterion for the 

recognition of the quarks in QCD. [1, 2, 3]The aim of our 

study to introduce a brief information about the Wilson 

loop, how it is used and what are the fields of application. 

 

2. Wilson loops  
 

A. Definition of Wilson loop 

The Wilson loop is defined as a mathematical framework 

given by the trace of the path ordered exponential of gauge 

field 𝐴𝜇 , transported along a closed path C. It can be 

formulated as– 

 
𝑊𝐶 = 𝑇𝑟 [ 𝑃 𝑒𝑖  𝐴𝜇  𝑧 𝑑𝑧𝜇

𝐶
]                 (1)  

Where, P represent path ordering operator, and Tr is the 

trace over the matrix. 

 

Wilson loops are phase factor in Abelian and Non Abelian 

gauge theories. Until 1970s all the predictions of Quantum 

Chromodynamics (QCD) were restricted to the perturbative 

regime. In 1974 K.G. Wilson [1] used lattice regularization 

for the study of non perturbative phenomenon of 

confinement of quark. For the lattice formulation they 

introduced a phase factor for the simplest closed contour on 

the lattice is called Wilson loop. Thus Wilson loops play a 

central role in the lattice formulation of gauge theories. 

QCD can be reformulated through the Wilson loops in a 

manifest gauge invariant way. Wilson loop contains the 

holonomy of the gauge connection around a given loop; 

can be used for the study of confinement in QCD via the 

static quark antiquark potential, as well as used for solving 

various matrix models. 

 

The phase factor in gauge theories is associated with the 

parallel transport in external gauge field. In general parallel 

transport is a vector around a closed loop, used to compare 

the phases of a wave function at two different points. 

Parallel transport is supposed to be curved space 

generalization of the concept of keeping the vector constant 

as we move along the path. 

 
Figure 1: Parallel transport between two points 

 
B. Aharonov-Bohm Effect 
Wilson loops are essential phase factor in gauge fields; and 

are observable in quantum theory by Aharonov Bohm 

effect [4]. In quantum mechanics the phase differences can 

be observed rather than the phase itself. The phase 

difference depends on the value of phase factor along 

which the parallel transport is performed. 

 

To observe the phase factor in Aharonov Bohm Effect 

scheme is depicted in figure 2. 

 

 

 
Figure 2: Scheme for Aharonov Bohm experiment 

 

When the coherent beam of electron passes through a 

solenoid; it splits into two parts. Electrons do not pass 

inside the solenoid where the magnetic field is 

concentrated. Nevertheless a phase difference arises 

between the electron beam passing through the slits. The 

phase of the wave function changes along the curve 

because the dependent vector potential is non-zero. 

i.e.𝐴 ≠ 0;Then the wave function is-  

 𝜓 = 𝜓0exp  
ie

ℏc
 Aμ z dzμ                        (2) 

Where 𝜓0= free case wave function, and 𝐴𝜇 is the vector 

formulation of the potential and can be written as – 

 𝐴𝜇  𝑧 = ɸ(𝑧 , t)−A    𝑧, 𝑡                         (3) 
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also, A    𝑧 = 𝐴0 𝑧 + ∇   𝜆                     (4) 

where 𝜆 is arbitrary gauge function of z. 

with z = (x, y, z, t) and 𝑑𝑧𝜇 = (𝑐𝑑𝑡, 𝑑𝑧    )  

  𝐴0 = 0 𝑖. 𝑒. A    𝑧 = ∇   𝜆 

 𝐵  = ∇   × 𝐴 = ∇      × (𝐴0 𝑧 + ∇   𝜆)              (5) 

 Hence the wave function cannot enter in the regime of the 

magnetic field. To compute interference pattern consider 

two wave functions through the path 1 and path 2 are given 

as- 

 𝜓 = 𝜓1,0exp  
ie

ℏ𝑐
 𝐴𝜇  𝑧 𝑑𝑧𝜇

1
                (6) 

 𝜓 = 𝜓2,0exp  
ie

ℏ𝑐
 𝐴𝜇  𝑧 𝑑𝑧𝜇

2
 ⁡             (7)  

The real part of the phase difference depends on  

 =  exp  
ie

ℏ𝑐
 𝐴𝜇  𝑧 𝑑𝑧𝜇 −

ie

ℏ𝑐
 𝐴𝜇  𝑧 𝑑𝑧𝜇

21
            (8)  

 = exp
𝑖𝑒

ℏ𝑐
 𝑑𝑧𝜇
𝐶

𝐴𝜇 (𝑧)                     (9)  

 where C = path 1 – path 2 

Using Stokes theorem the integral changes to  

 =exp
𝑖𝑒

ℏ𝑐
𝜎𝜇𝜐 𝐹𝜇𝜐                             (10) 

where 𝜎𝜇𝜐  is the area element of the enclosed loop, and 𝐹𝜇𝜐  

is field strength tensor. 

 =exp
𝑖𝑒

ℏ𝑐
𝐻𝑆                               (11) 

This shows the real part of the phase difference only 

depends on HS, the magnetic flux through solenoid and 

does not depends on the shape of the path ‘C’. 

 

C. Phase Factor in QED (Abelian Phase Factor) 

An analog of the phase factor was first introduced by H 

Weyl in 1919.[5] In gauge theory, the transformation 

between the possible gauges, form a symmetry group G 

.The elements of the subset S of the group G are called 

group generators of the field represented by 𝑇𝛼  . If these 

generators are commutative; as [𝑇𝑎𝑇𝑏 ] = 0; and gauge 

bosons are not self interacting, Then the field is abelian 

gauge field. In Quantum Electrodynamics (QED) photons 

play the role of mediators are not self interacting ; Also the 

group generators commute with each other i.e. [𝑇𝑎𝑇𝑏 ] = 

i𝑓𝑎𝑏𝑐 𝑇𝑐 = 0 , where 𝑓𝑎𝑏𝑐  is structure constant and vanishes 

in case of QED. Hence QED is an abelian gauge theory 

with symmetry group U (1). For Quantum 

Chromodynamics (QCD) the mediators are quarks. Quarks 

are of self interacting nature, Also the group generators anti 

commute with each other i.e. [𝑇𝑎𝑇𝑏 ]  ≠ 0 here. So, QCD is 

non abelian gauge theory with symmetric group SU(3). 

Abelian phase factor is defined as  

 U(y,x) = exp 𝑖𝑒  𝐴𝜇 (𝑧)𝑑𝑧𝜇
𝛤𝑦𝑥

                 (12)  

Under the gauge transformation 

 𝐴𝜇  𝑧 
𝑔.𝑡 .
   𝐴𝜇  𝑧 +

1

𝑒
𝜕𝜇𝛼 𝑧                   (13) 

The abelian phase factor transforms as- 

U (y, x) 
𝑔 .𝑡 .
   𝑒𝑖𝛼 (𝑦) U (y, x) 𝑒−𝑖𝛼 (𝑥)             (14)  

A wave function at the point x is transformed as- 

 ɸ(x) 
𝑔.𝑡 .
   𝑒𝑖𝛼 (𝑥) ɸ(x)                            (15) 

therefore the phase factor is transformed as the product 

ɸ(y) ɸ†(𝑥) 

 U(y, x)  𝑔. 𝑡.  ɸ(y) ɸ†(𝑥)                    (16) 

A wave function at the point x transforms like one at the 

point y after multiplication by the phase factor ; 

 U (y, x) ɸ(x) 𝑔. 𝑡.  ɸ(y)                    (17) 

And analogously- 

 ɸ†(𝑦) U (y, x) 𝑔. 𝑡.   ɸ†(𝑥)                  (18) 

 

The phase factor plays the role of a parallel transporter in 

an electromagnetic field, and to compare the phase of a 

wave function at points x and y, we should first make a 

parallel transport along some contour 𝛤𝑦𝑥 .The result is Γ-

dependent except when 𝐴𝜇  𝑧  is a pure gauge (vanishing 

field strength 𝐹𝜇𝜐 (𝑧)).Certain subtleties occur for not 

simply connected spaces (the Aharonov Bohm effect). 

 

D. Non Abelian Gauge Invariance: Yang Mills Theory 
An extension to non abelian gauge group was given by 

Yang and Mills in 1954.[6] Yang Mills theory explain the 

term ‘gauge invariance’ gauging literally means fixing a 

scale. Yang Mills theory describe the behaviour of 

elementary particle using the non abelian lie groups and 

explain the unification of weak and electromagnetic force 

i.e. [U(1)×SU(2)]. Thus Yang Mills theory provide a 

understanding about standard model in particle physics.  

 

In the case of non abelian group SU(N) local gauge 

transformation given as 

 Ψ(x)
𝑔.𝑡 .
  𝜓′ 𝑥 = 𝛺(𝑥)Ψ(x)                (19) 

Here 𝛺 𝑥 ∈ 𝐺 with G being a semisimple lie group which 

is called the gauge group. 

 

The gauge transformation of field Ψ gives the 

transformation of non abelian gauge field  

 𝐴𝜇  𝑥 
𝑔 .𝑡 .
  𝐴𝜇

′   𝑥                          (20)  

 = 𝛺 𝑥 𝐴𝜇  𝑥  𝛺† 𝑥 +
𝑖

𝑔
𝛺(𝑥)𝜕𝜇  𝛺† 𝑥              (21)  

where g is coupling constant. 𝐴𝜇  is defined as- 

 𝐴𝜇= 𝐴𝜇
𝑎𝑇𝑎  =  𝐴𝜇

𝑎𝑇𝑎
𝑁2−1
𝑎=1                   (22) 

 

𝑇𝑎  introduce the generators of the group G( a=1 ... 𝑁2 − 1 ) 

for SU(N),can be normalised such that 

Tr 𝑇𝑎𝑇𝑏  =  𝛿𝑎𝑏                          (23) 

where Tr is the trace over the generators. 

The covariant derivative is given as- 
 Dμ = ∂μ − igAμ x                        (24) 

The QCD action in the matrix form may be given as-  

 𝑆 =  𝑑4𝑥  
1

2𝑔2  𝐹𝜇𝜐 𝐹𝜇𝜐  + Ψ (𝛾𝜇𝐷𝜇 + 𝑚)Ψ           (25) 

Where 𝐹𝜇𝜐 = 𝐷𝜇𝐴𝜐 − 𝐷𝜐𝐴𝜇                    (26)  

 = ∂μ𝐴𝜐 −  ∂μAμ  − ig [𝐴𝜇 , 𝐴𝜐]               (27)  

is the Hermitian matrix of the non abelian field strength. 

 

E. Non Abelian Phase Factors 
The proper extension of the Abelian formula given in 

equation (12) is -  

 𝑈 𝑦, 𝑥 = 𝑃𝑒𝑥𝑝 [𝑖𝑒  𝐴𝜇  𝑧 𝑑𝑧𝜇
𝛤𝑦𝑥

             (28)  

The symbol P refers for path ordering. If we represent the 

integral over dt such that  

 𝑑𝑧𝜇 = 𝑑𝑡𝑧 𝜇                                     (29) 

 

Then phase factor in equivalent form may be written as-  

U [y, x] = P exp  𝑖𝑒  𝑑𝑡𝑧 𝜇  𝑡 𝐴𝜇  𝑧 𝛤𝑦𝑥
              (30) 

 U [y, x]  [1 + 𝑖𝜏
𝑡=0 𝑑𝑡𝑧 𝜇 (t) 𝐴𝜇  𝑧(𝑡) ]            (31) 

 

Using Eq. (29) Eq. (31) may be written as-  
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 [1 + 𝑖𝑑𝑧𝜇
𝑧∈𝛤𝑦𝑥

 t 𝐴𝜇  𝑧                          (32)  

 

If the contour is discretized, then the non-abelian phase 

factor within the limit 𝑧𝑖−1 → 𝑧𝑖  is approximated by 

U[y, x] = lim𝑀→∞  [1 + 𝑖[𝑧𝑖 − 𝑧𝑖−1]𝜇𝑀
𝑖=1 𝐴𝜇  

[𝑧𝑖+𝑧𝑖−1]

2
 ] 

(33) 

 The non abelian phase factor (28) is an element of the 

gauge group G itself. while 𝐴𝜇belongs to the Lie algebra of 

G.  

 

3.  Definition and Properties 
 

 

A. Derivation of the Wilson Loop  
 

Let us choose a path γ from 𝑥 → 𝑦.The explicit form of the 

finite parallel transport [7] is, 

 Uγ y, x = U y , xn U xn  , xn−1 …… U ( x1, x)      (34) 

 We split the path into infinitesimal segments:  

 
  

Figure 3: Dividing the path γ into infinitesimal segments. 

 

for the infinitesimal segments, parallel transport is-  
𝑈 𝑥1 , 𝑥 ≈ exp⁡[𝑖𝑒𝐴𝜇  𝑥1 − 𝑥 𝜇 ] (35) 

and hence 𝑈𝛾 𝑦, 𝑥  = exp⁡[𝑖𝑒  𝐴𝜇  𝑥 
𝛾

𝐴𝜇𝑑𝑥𝜇 ] (36)  

 𝑈𝛾 𝑦, 𝑥  is not necessarily path independent 

 𝑈𝛾1(𝑦, 𝑥) ≠ 𝑈𝛾2(𝑦, 𝑥) (37)  

 𝑈𝛾 𝑦, 𝑥 = lim𝑛→∞ 𝑈 𝑦 , 𝑥𝑛 𝑈 𝑥𝑛  , 𝑥𝑛−1 ……𝑈 ( 𝑥1 , 𝑥) 

(38)  

 = lim
∆𝑥𝑗→0

 (1 + 𝑖𝑔𝐴𝜇
𝑛
𝑗 =0 (𝑥𝑗 )∆𝑥𝑗

𝜇
 ) (39)  

with ∆𝑥𝑗
𝜇

= 𝑥𝑗 +1
𝜇

− 𝑥𝑗  
𝜇

, 𝑥0 = 𝑥 , 𝑥𝑛+1 = 𝑦. 𝐴𝜇  is a matrix 

and so, [𝐴𝜇  𝑥𝑗  , 𝐴𝜐(𝑥𝑘)] ≠ 0 in general. 

 𝑈𝛾 𝑦, 𝑥 =

1 +
𝑖𝑔  𝐴𝜇 (𝑥𝑘

𝑛
𝑘=0 )∆𝑥𝑘

𝜇
+

 𝑖𝑔 2   𝐴𝜇
𝑗−1
𝑘=0

𝑛
𝑘=0  𝑥𝑗  ∆𝑥𝑘

𝜇
𝐴𝜐𝑥𝑙∆𝑥𝑙

𝜐 + ⋯ + (40)  

 

 Now we introduce 𝑥𝜇   𝑟  to parameterise 𝛾 with different 

segments 𝑟1,𝑟2………..𝑟𝑛 . 

  𝑥𝜇  0 = 0, 𝑥𝜇  1  = 𝑦𝜇 ,r ∈ [0,1] (41) 

 𝑈𝛾 𝑦, 𝑥 =

1 +

𝑖𝑔  𝑑𝑟1
1

0
𝐴𝜇 (𝑥 𝑟1 )

𝑑𝑥 𝜇

𝑑𝑟1
+

 𝑖𝑔 2  𝑑𝑟1
1

0
 𝑑𝑟2

𝑟1

0
𝐴𝜇  𝑥 𝑟1  

𝑑𝑥 𝜇

𝑑𝑟1
𝐴𝜐 𝑥 𝑟2  

𝑑𝑥 𝜐

𝑑𝑟2
+.... (42) 

=

 (𝑖𝑔)𝑛∞
𝑛=0  𝑑𝑟1  𝑑𝑟2

𝑟1

0

1

0
… 𝑑𝑟𝑛

𝑟𝑛−1

0
𝐴𝜇1 𝑥 𝑟1  

𝑑𝑥 𝜇 1

𝑑𝑟1
… . . 𝐴𝜇𝑛  𝑥 𝑟𝑛  

𝑑𝑥 𝜇 𝑛

𝑑𝑟𝑛
 

(43)  

=

 (𝑖𝑔)𝑛∞
𝑛=0  𝑑𝑟1 …… . 𝑑𝑟𝑛𝑟≥𝑟1≥𝑟2…≥𝑟𝑛≥0

𝐴𝜇1 𝑥 𝑟1  
𝑑𝑥 𝜇 1

𝑑𝑟1
… . . 𝐴𝜇𝑛  𝑥 𝑟𝑛  

𝑑𝑥 𝜇𝑛

𝑑𝑟𝑛
 

(44)  

It is observed that the factors are in path order i.e. larger 

values of r’s stand to the left. So we may introduce the path 

ordered product 

 P(𝐴𝜇1 𝑥 𝑟1  … . 𝐴𝜇𝑛  𝑥 𝑟𝑛                        (45)  

So the path ordered exponential expressed as- 

 = P exp [ig 𝑑𝑟
𝑑𝑥 𝜇

𝑑𝑟

1

0
𝐴𝜇 (𝑥(𝑟))]                   (46)  

 =P exp [ ig  𝐴𝜇 (𝑥)
𝛤

𝑑𝑥𝜇 ]                     (47) 

 By construction, under a gauge transformation,  

 𝑈𝛤 𝑦, 𝑥 → 𝛺 𝑦 𝑈𝛤 𝑦, 𝑥 𝛺† 𝑥                  (48) 

 

For a closed loop𝛤, 𝑈𝛤 𝑥, 𝑥  is non trivial. The non abelian 

generalisation of Stokes theorem can be used to relate the 

parallel transport around the loop to flux passing through 

the loop. For an infinitesimal loop  

𝑈𝛤 𝑥, 𝑥 𝜓 =
1

2
𝐹𝜇𝜐 𝜎

𝜇𝜐 𝜓                        (49) 

where 𝜎𝜇𝜐  is the area element encircled by the loop. Under 

a gauge transformation, 

𝑈𝛤 𝑥, 𝑥 → 𝛺 𝑥 𝑈𝛤 𝑥, 𝑥 𝛺† 𝑥              (50)  

 and hence 

 𝑊𝛤(x) = Tr (𝑈𝛤(x, x) = Tr (P exp 𝑖𝑔  𝐴𝜇𝑑𝑥𝜇
𝛤

)      (51) 

 is gauge invariant. This is the non abelian Wilson loop. 

 

B. Properties of Wilson Loop  

 Hermiticity –It implies that the Hermitian conjugate of a 

Wilson line gives the same line in opposite direction. [8] 

Let 𝛾 is a Wilson line from a to b along the direction y 

then-  𝛾𝑥
†[𝑎, b]  =  𝛾−𝑥[𝑏 , a] (52) 

 Causality - If we first have a Wilson line from a to b 

then a line along the same direction y from b to c, we can 

glue them together into the Wilson line from a to c- 

 𝛾𝑦 [b,c]  𝛾𝑦 [𝑎, b] = 𝛾𝑦[𝑎,c] (53)  

 Unitarity- If we have a Wilson line from a to b and then 

a line back from b to a in the opposite direction, they will 

give 1.  𝛾𝑦 [𝑎, b]  𝛾𝑦[𝑎 , b]  =  1 (54) 

 

Lattice gauge theory 

 

4. Introduction to Lattice Gauge Theory 
 

The lattice is defined as a set of points of d-dimensional 

Euclidean space with co-ordinates 

 𝑥𝜇 = 𝑛𝜇𝑎                                  (55) 

 

Where 𝑛𝜇 = 𝑛1, 𝑛2 …𝑛𝑑are integer number and a is the 

dimensional constant, which equals the distance between 

the neighbouring sites and is called the lattice spacing. Link 

is represented by l ={x, μ} connects two neighbouring site 

x and x+a𝜇  where 𝜇  is a unit vector along the μ direction. 

Similarly a plaquette p={x; μ, υ} is the combination of 

links in the direction μ and υ. The set of four links which 

bound the plaquette p is denoted by ∂p. When the size of 

the lattice is taken infinitely large and its sites 

infinitesimally close to each other, the continuum gauge 

theory becomes applicable. 

 

 
Figure 4: Representation of Link (left) and Plaquette(right) 
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A. Wilson loop on a lattice 

Consider a rectangular Wilson loop [9] of size R×T. The 

Wilson loop average for T >> R is related to the interaction 

energy of the static (i.e. infinitely heavy) quarks, separated 

by a distance R, by the formula- 

W(R, T)  ∝  𝑒−𝐸0 𝑅 𝑇  (for T >>  𝑅)            (56) 

 

It can be proved in the axial gauge 𝐴4=0 where 𝑈4 𝑥 = 1 

so that only the vertical segment contribute to U(R×T). 

 
Figure 5: Rectangular Wilson Loop 

 

Denoting-  𝜓𝑗𝑘  𝑡 ≡ [𝑃𝑒𝑖  𝑑𝑧1𝐴1 𝑧1,…𝑡 
𝑅

0 ]𝑗𝑘   

We have- W(R×T) = 
1

𝑁
𝑡𝑟 𝜓(0)𝜓†(𝑇)           (57)  

Inserting a sum over a complete set of intermediate states- 

   𝑛   𝑛    𝑛 = 1                             (58)  

We obtain- 

W(R×T) 

=  
1

𝑁
 𝜓𝑗𝑘  0   𝑛   𝑛 𝜓𝑘𝑗

† (𝑇)   𝑛  =  
1

𝑁𝑛   𝜓𝑗𝑘 (0) 𝑛  
2
𝑒−𝐸𝑛𝑇  

(59)  

where 𝐸𝑛  is the energy of the state   𝑛   .As T→∞ only the 

ground state with lowest energy survive in the sum over 

states and finally we get 

W(R × T) → 𝑒−𝐸0(𝑅)𝑇                  (60) 

 

Since nothing in the derivation relies on the lattice, it holds 

for a rectangular loop in the continuum theory as well.  

 

B. Area Law and Confinement 
The leading order in β corresponding to filling a minimal 

surface 

W C =   𝑊 𝜕𝑝  𝐴𝑚𝑖𝑛 (𝑐)                 (61)  

where 𝑊 𝜕𝑝  is plaquette average and is given by 

equation W 𝜕𝑝 =
𝛽

2𝑁2 for SU N with N ≥ 3 

 =  
𝛽

4
for SU(2 )                            (62) 

The exponential dependence of the Wilson loop average on 

the area of the minimal surface as in equation (61) is called 

the area law. It is assumed that if an area law holds for 

loops of large area in the pure SU(3) gauge theory then 

quarks are confined .In other words there are no physical 
  𝑖𝑛    or   𝑜𝑢𝑡   quark states.This is the essence of Wilson’s 

confinement criterion. The argument is that physical 

amplitudes do not have quark singularities when the 

Wilson criterion is satisfied. 

 

C. Linear Potential 

A justification for the Wilson criterion is based on the 

relationship (56) between the Wilson loop average and the 

potential energy of interaction between static quarks. When 

the area law 

W C 
𝑙𝑎𝑟𝑔𝑒  𝐶
     𝑒−𝐾𝐴min ⁡⁡⁡                            (63) 

 

holds for large loops, the potential energy is a linear 

function of the distance between the quarks  

E(R)=Kr                                 (64) 

The coefficient 𝐾 is called the string tension because the 

gluon field between quarks contracts to a tube or string, 

having energy proportional to its length. The value of 𝐾 is 

the energy of the string per unit length. The string is 

stretched with the distance between quarks and prevents 

them from moving apart to macroscopic distances 

.Equation (61) then gives  

 𝐾 =
1

𝑎2 𝑙𝑛
2𝑁2

𝛽
=

1

𝑎2 ln⁡(2𝑁𝑔2)           (65)  

for the string tension to the leading order of the strong 

coupling expansion. The next orders of the strong coupling 

expansion result in corrections in 𝛽 to this formula. 

Confinement holds in the lattice gauge theory to any order 

of the strong coupling expansion. 

 

D. Asymptotic Scaling 

 

Equation (64) establishes the relationship between lattice 

spacing a and the coupling 𝑔2.Let K equals its 

experimental value 

K =  400MeV 2 ≈ 𝐺𝑒𝑉 𝑓𝑚                      (66) 

 

The renormalizability prescribes that variations of a, which 

plays the role of a lattice cut-off, and of the bare charge 

𝑔2should be made simultaneously in order that 𝐾 does not 

change. Given eq. (65), this procedure calls for a→ ∞ as 

𝑔2 → ∞.i.e. the lattice spacing is large in the strong 

coupling limit, compared with 1fm.Such a coarse lattice 

cannot describe the continuum limit and in particular the 

rotational symmetry. In order to pass to the continuum, the 

lattice spacing a should be decreased. Equation (65) shows 

that ‘a’ decreases with decreasing 𝑔2.However this formula 

ceases to be applicable in the intermediate region of 𝑔2~1 

and, therefore, a ~1𝑓𝑚.To further decrease ‘a’, we further 

decrease 𝑔2.While no analytic formulas are available at 

intermediate values of 𝑔2.The expected relation between a 

and 𝑔2 is predicted by the known two-loop Gell-Mann Low 

function of QCD. For pure SU(3) Yang Mills, eq.(65) is 

replaced at small 𝑔2  by- 

 𝐾 = const.
1

𝑎2  
8𝜋2

11 𝑔2 

102

121
 e

−
8π2

11g2          (67) 

where the two loop Gell-Mann Low function is used. The 

exponential dependence of 𝐾 on 1 𝑔2  is called asymptotic 

scaling. Asymptotic scaling sets in for some value of 1 𝑔2 . 

The strong coupling formula (67) holds for small 1 𝑔2 .The 

asymptotic–scaling formula (65) sets in for large 
1

𝑔2 .Both formulas are not applicable in the intermediate 

region 1
𝑔2 ~1.For such values of 𝑔2, where asymptotic 

scaling holds, the lattice gauge theory has a continuum 

limit. 

 
Figure 6: String tension versus1

g2 . 
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The knowledge of the two asymptotic behaviours says 

nothing about the behavior of 𝑎2𝐾 in the intermediate 

region of 𝑔2~1.There can be either a smooth transition 

between these two regimes or a phase transition. 

 

5. Conclusion 
 

Wilson loop is a non abelian path ordered phase factor. The 

QCD studies have been done using the gauge invariance of 

the Wilson loop. Continuum gauge theory provides the 

linear relationship between quarks potential and the 

distance between them. This linear relationship indicates 

the confined nature of quarks. The proportionality constant 

of this relation (string tension) shows strong coupling in 

large lattice spacing region and the asymptotic scaling in 

small spacing region. But the intermediate region does not 

show any analytic relationship. Confinement holds in the 

lattice gauge theory for any order of the strong coupling 

region.  
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