Mean Time to Recruitment for a Multi Grade Manpower System with Single Threshold, Single Source of Depletion When Wastages form a Geometric Process and Inter Decision Time Forms Ordinary Renewal Process, Order Statistics

K. Srividhya¹, S. Sendhamizhselvi²

¹Assistant Professor, Department of Mathematics, National College, Trichy, Tamilnadu, India-620001
²Assistant Professor, PG and Research Department of Mathematics, Government Arts College, Trichy-620022, Tamilnadu, India

Abstract: In this paper, for a marketing organization consisting of multi grades subject to the depletion of manpower (wastages) due to policy decisions with high or low attrition rate, is considered. An important system characteristic namely the mean time to recruitment is obtained for a suitable policy of recruitment when (i) wastages are independent and identically distributed Geometric process and (ii) threshold for each grade has single components with exponential distribution, and (iii) the inter-policy decisions form an ordinary renewal process or order statistics is considered.

Keywords: Geometric process, Two types of policy decisions with high or low attrition rate, Hyper exponential, Mean time to recruitment

1. Introduction

Exits of personal which is in other words known as wastage, is an important aspect in the study of manpower planning. Many models have been discussed using different types of wastages and also different types of distribution for the loss of man powers, the thresholds and inter decision times.Such models are seen in [1] and [2]. In [3],[4],[5] and [6] the authors have obtained the mean time to recruitment in a two grade manpower system based on order statistics by assuming different distribution for thresholds. In [7] for a two grade manpower system with two types of decisions when the wastages form a geometric process is obtained. The problem of time to recruitment is studied by several authors for the organizations consisting of single grade/two grade/third grade. More specifically for a two grade system, in all the earlier work, the threshold for the organization is minimum or maximum or sum of the thresholds for the loss of manpower in each grades, no attempt has been made so far to design a comprehensive recruitment policy for a system with two or three grades. In [10],[11] & [12] a new design for a comprehensive univariate CUM recruitment policy of manpower system is used with n grades in order to bring results proved independently for maximum, minimum model as a special case. In all previous work, the problem of time to recruitment is studied for only an organization consisting of almost three grades. In [11],[12] author has worked on this comprehensive univariate policy when wastages form ordinary renewal process and interdecision time form geometric and order statistics. In this paper an organization with n-grades is considered and the mean time to recruitment are obtained using an appropriate univariate CUM policy of recruitment (i.e.) The organization survives if at least \(r \) (\(1 \leq r \leq n \)) out of n-grades survives in the sense that threshold crossing has not take place in these grades, when wastages form geometric process.

2. Model Description and Assumptions

1) An organization having two grades in which decisions are taken at random epochs in \((0, \infty) \) and at every decision making epoch a random number of persons quit the organization. There is an associated loss of man hours to the organization if a person quits.
2) It is assumed that the loss of man hours is linear and cumulative.
3) The loss of manpower at any decision epoch forms a sequence of independent and identically distributed random variables which form geometric process.
4) The inter-decision times are independent and identically distributed random variables.
5) The loss of manpower process and the process of inter-decision times are statistically independent.
6) The thresholds for the n-grades are independent and identically distributed exponential random variable.

7) Univariate CUM policy of recruitment: “The organization survives if \(r \) (\(1 \leq r \leq n \)) out of n-grades survives in the sense that threshold crossing has not take place in these grades”

3. Notations

\(X_i \): the continuous random variable denoting the amount of depletion caused to the organization due to the exit of persons corresponding to the j^th decision, \(j = 1,2,3 \ldots \) and \(X_i \)'s form a geometric process.
\(G(x) \): distribution function of \(X_1 \) such that \(G(x) = 1 - e^{-cx} \)\(g(x) \): probability density function.
\(G_k(.) \): The distribution function of \(\sum_{i=1}^{k} X_i \)
\(g_k(.) \): its probability density function.
\(U_i; i = 1,2,3 \ldots \) the inter decision time between \((i-1)^{th} \) and \(i^{th} \) decision.
The survival function of the time to recruitment is given by
\[F_T = P(T > t) \] for the organization.

For the \(j \)th grade,
\[Y = \text{the continuous random variable denoting the thresholds for the } j \text{th grade}. \]

\[H(t) = \text{the distribution function of } Y. \]

\[T_j \text{ : Time taken for threshold crossing in the } j \text{th grade, } j=1,2,3,...n. \]

\[T : \text{Time to recruitment of the organization} \]
\[E(T) : \text{mean time to recruitment}. \]

4. Main Result

The survival function of the time to recruitment is given by
\[P(T > t) = \sum_{k=0}^{\infty} P(\text{Exactly } k \text{epoch and the threshold level is not crossed by the total salary in } t \text{ man hours in these } k \text{ decisions in at least } j \text{ grades}) \]
\[\text{i.e } \sum_{k=0}^{\infty} V_k(t) P(\sum_{i=1}^{k} X_i < Y) \]

By the law of total probability
\[P(\sum_{i=1}^{k} X_i < Y) = \int_{0}^{\infty} g_k(x) [1 - H(x)] dx. \]

\[\sum_{i=1}^{k} g_k(x) = \int_{0}^{\infty} g_k(x) \sum_{i=1}^{k} n C_i [1 - e^{-\theta x}]^{n-i} dx. \]

\[\sum_{i=1}^{k} g_k(x) e^{-i\theta x} [1 - e^{-\theta x}]^{n-i} dx. \]

Using binomial expansion
\[\sum_{i=1}^{k} g_k(x) e^{-i\theta x} [1 - (n-i)C_1 e^{-\theta x}] + (n-i)C_2 e^{-(i+2)\theta x} \]

\[\sum_{i=1}^{k} g_k(x) [e^{-i\theta x} - (n-i)C_1 e^{-(i+1)\theta x}] + (n-i)C_2 e^{-(i+2)\theta x} + \ldots + (-1)^{n-i} e^{-n\theta x} dx. \]

From renewal theory
\[V_k(t) = F_k(t) - F_{k+1}(t) \text{ with } F_0(t) = 1 \]

Substituting (3) and (4) in (1) we get,
\[P(T > t) = \sum_{k=0}^{\infty} [F_k(t) - F_{k+1}(t)] \sum_{i=1}^{k} n C_i [\eta_k(i\theta)] \]

\[\ldots + \sum_{k=0}^{n} [F_k(t) - F_{k+1}(t)] \sum_{i=1}^{k} n C_i [\eta_k(i\theta)] \]

Now, we evaluate \(g_k(i\theta) \).

As \(X_i, i=1,2,3,\ldots \text{ form a geometric process with rate } \lambda \),
\[\sum_{i=1}^{k} g_k(x) \text{ with } g(x) = ce^{-cx} \]

\[V(i\theta, k) \text{ where } V(i\theta, k) \]

\[\sum_{i=1}^{k} g_k(i\theta) = \int_{0}^{\infty} e^{-(i\theta)\alpha c} dx. \]

\[\sum_{i=1}^{k} g_k(i\theta) = \int_{0}^{\infty} e^{-(i\theta)\alpha c} \int_{0}^{\infty} e^{(i\theta)\alpha c} dx. \]

\[L(t) = 1 - P(T > t) \]
\[= 1 - \sum_{k=0}^{\infty} [F_k(t) - F_{k+1}(t)] \times \]

\[\sum_{i=1}^{k} C_i [V(i\theta, k) - (n-i)C_1 V((i+1)\theta, k)] + (n-i)C_2 V((i+2)\theta, k) \]

\[\ldots + (-1)^{n-i} V(n\theta, k) \]

Diff. with respect to \(t \)
\[l(t) = \sum_{k=0}^{\infty} [f_k(t) - f_{k+1}(t)] \sum_{i=1}^{k} C_i [V(i\theta, k) - (n-i)C_1 V((i+1)\theta, k)] + (n-i)C_2 V((i+2)\theta, k) \]

\[\ldots + (-1)^{n-i} V(n\theta, k) \]
Taking Laplace Transform on both sides

\[\hat{I}(s) = \sum_{k=0}^{n} [\hat{f}(s) - \hat{f}_{k+1}(s)] \sum_{i=r}^{n} nC_i[V(i\theta, k)]
- (n - i)C_i V((i + 1)\theta, k) + (n - i)C_i V((i + 2)\theta, k)
+ \cdots (-1)^n-i V(n\theta, k) \]

(11)

Case (i)

\{U_i\}_{i=1}^{m}\ form an ordinary renewal process.

The inter decision times are assumed to be independent and identically distributed hyper exponential random variable with probability density function \(f(t) = \frac{p e^{-\lambda_1 t} + q e^{-\lambda_2 t}}{p + q} \), where \(\lambda_1, \lambda_2 \) are high and low attrition rate. \(p, q \) are the proportion of decisions having high and low attrition.

Since \(U_i \) are i.i.d random variable,

\[\frac{d}{ds}(\hat{I}(s)) = \sum_{k=0}^{n} \left[k[\hat{f}(s)]^{k-1} \right] \sum_{i=r}^{n} nC_i[V(i\theta, k)] \]

- \((n - i)C_i V((i + 1)\theta, k) + (n - i)C_i V((i + 2)\theta, k) \)
+ \(\cdots (-1)^n-i V(n\theta, k) \)

\[\frac{d}{ds}(\hat{I}(s))_{s=0} = 1 \]

\[\frac{d}{ds}(\hat{f}(s))_{s=0} = \sum_{k=0}^{n} \left[\frac{d}{ds}(\hat{f}(s)) \right] \sum_{i=r}^{n} nC_i[V(i\theta, k)]
- (n - i)C_i V((i + 1)\theta, k)
+ (n - i)C_i V((i + 2)\theta, k)
+ \cdots (-1)^n-i V(n\theta, k) \]

(13)

The mean time to recruitment is

\[E(T) = -\frac{d}{ds}(\hat{I}(s))_{s=0} = \sum_{k=0}^{n} \left[\frac{d}{ds}(\hat{f}(s)) \right] \sum_{i=r}^{n} nC_i[V(i\theta, k)]
- (n - i)C_i V((i + 1)\theta, k)
+ (n - i)C_i V((i + 2)\theta, k)
+ \cdots (-1)^n-i V(n\theta, k) \]

(15)

Case (ii)

Consider the population \(\{U_i\}_{i=1}^{m} \) of independent and identically distributed interdecision times with hyperexponential cumulative distribution \(F(t) = 1 - pe^{-\lambda_1 t} - qe^{-\lambda_2 t} \) and the corresponding density function \(f(t) \). Assume that \(\{U_i\}_{i=1}^{m} \) be a sample of size \(m \) selected from this population. Let \(U_1, U_2, \ldots, U_m \) be the order statistics corresponding to this sample with respective probability density function \(f_{U_1, U_2, \ldots, U_m} \). \(U_j \) is the first order statistics and \(U_m \) is the \(m \)th order statistics such that \(U_1 \leq U_2 \leq \cdots \leq U_m \) and hence not independent.

The probability density function of \(j \)th order statistics is given by [Sheldon M. Ross 2005]

\[f_{U_j}(t) = \frac{m}{A} f(t)[1 - F(t)]^{m-1}, j = 1, 2, 3 \ldots m \]

Therefore the probability density function of \(U_1 \) and \(U_m \) are given by

\[f_{U_1}(t) = \frac{m}{A} f(t)[1 - F(t)]^{m-1} \]

\[f_{U_m}(t) = \frac{m}{A} f(t)[F(t)]^{m-1} \]

Sub Case (i)

\[f(t) = f_{U_1}(t) \]

\[\hat{f}(s) = \hat{f}_{U_1}(s) = \int_{0}^{\infty} e^{-st} mf(t)[1 - F(t)]^{m-1} dt \]

\[\hat{f}(s) = \int_{0}^{\infty} e^{-st} [-d(1 - F(t))] \quad \text{[1 - } \quad \text{]} \]

By using binomial expansion

\[\hat{f}(s) = \int_{0}^{\infty} e^{-st} \left[-d \sum_{r=1}^{m} \left(\frac{m}{r} \right) p^r q^{m-r} e^{-\lambda_1 r \lambda_1 + \lambda_2 m} \right] dt \]

\[= \sum_{r=1}^{m} \left(\frac{m}{r} \right) p^r q^{m-r} \int_{0}^{\infty} e^{-st} \left(\lambda_1 r \lambda_1 + \lambda_2 m \right) dt \]

\[= \sum_{r=1}^{m} \left(\frac{m}{r} \right) p^r q^{m-r} \left(\lambda_1 r \lambda_1 + \lambda_2 m \right) \]

The mean time to recruitment is

\[E(T) = -\frac{d}{ds}(\hat{f}(s))_{s=0} = \sum_{r=1}^{m} \left(\frac{m}{r} \right) p^r q^{m-r} \left(\lambda_1 r \lambda_1 + \lambda_2 m \right) \]

(17)
\[E(T) = \sum_{k=0}^{\infty} \sum_{r_1=0}^{m} \left(\frac{m!}{r_1!} \lambda^{m-r_1} \right) \left[(\lambda h r_1 - \lambda r_1 + \lambda m) \right] \]

Subcase(ii)

\[f(t) = f_{\nu \psi}(t) = mf(t)F(t) \]

\[\hat{f}(s) = \hat{f}_{\nu \psi}(s) = \int_{0}^{\infty} e^{-st} mf(t)F(t) \]

\[E(T) = \sum_{k=0}^{\infty} \sum_{r_1=0}^{m} \left(\frac{m!}{r_1!} \lambda^{m-r_1} \right) \left[(\lambda h r_1 - \lambda r_1 + \lambda m) \right] \]

5. Numerical Illustration

The behavior of the performance measure due to the change in parameter is analyzed numerically for different values of \(n \) and \(r \).

Case(i) \(n=3, r=1 \)

From equation (16) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \left(\frac{p \lambda_1 + q \lambda_2}{\lambda h} \right) \left[3V(\theta, k) + 9V(2\theta, k) + 7V(3\theta, k) \right] \]

Case(ii) \(n=3, r=2 \)

From equation (16) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \left(\frac{p \lambda_1 + q \lambda_2}{\lambda h} \right) \left[3V(2\theta, k) - 2V(3\theta, k) \right] \]

Case(iii) \(n=3, r=3 \)

From equation (16) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \left(\frac{p \lambda_1 + q \lambda_2}{\lambda h} \right) \left[V(3\theta, k) \right] \]

Case(iv) \(n=3, r=1 \)

From equation (16) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \sum_{r_1=0}^{m} \left(\frac{m!}{r_1!} \lambda^{m-r_1} \right) \left[(\lambda h r_1 - \lambda r_1 + \lambda m) \right] \]

Case(v) \(n=3, r=2 \)

From equation (18) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \sum_{r_1=0}^{m} \left(\frac{m!}{r_1!} \lambda^{m-r_1} \right) \left[(\lambda h r_1 - \lambda r_1 + \lambda m) \right] \]

Case(vi) \(n=3, r=3 \)

From equation (18) the mean time for recruitment is given by

\[E(T) = \sum_{k=0}^{\infty} \sum_{r_1=0}^{m} \left(\frac{m!}{r_1!} \lambda^{m-r_1} \right) \left[(\lambda h r_1 - \lambda r_1 + \lambda m) \right] \]

Case(vii) \(n=3, r=1 \)

From equation (20) the mean time for recruitment is given by
\[E(T) = \sum_{m=0}^{\infty} \left\{ 3V(\theta,k) + 9V(2\theta,k) + 7V(3\theta,k) \right\} \times \sum_{r_1=0}^{m} \sum_{r_2=0}^{m-r_1} \frac{m!}{r_1! r_2! (m - r_1 - r_2)!} \times p^{r_1} q^{r_2-m-r_1} \left(\lambda_k r_2 - \lambda_1 r_2 - \lambda_0 r_1 + \lambda_m m \right) \]

Case (viii) n=3, r=2:
From equation (20) the mean time for recruitment is given by

\[E(T) = \sum_{m=0}^{\infty} \left\{ 3V(2\theta,k) - 2V(3\theta,k) \right\} \times \sum_{r_1=0}^{m} \sum_{r_2=0}^{m-r_1} \frac{m!}{r_1! r_2! (m - r_1 - r_2)!} \times p^{r_1} q^{r_2-m-r_1} \left(\lambda_k r_2 - \lambda_0 r_2 - \lambda_1 r_1 + \lambda_m m \right) \]

Case (ix) n=3, r=3:
From equation (20) the mean time for recruitment is given by

\[E(T) = \sum_{m=0}^{\infty} \left\{ V(3\theta,k) \right\} \times \sum_{r_1=0}^{m} \sum_{r_2=0}^{m-r_1} \frac{m!}{r_1! r_2! (m - r_1 - r_2)!} \times p^{r_1} q^{r_2-m-r_1} \left(\lambda_k r_2 - \lambda_0 r_2 - \lambda_1 r_1 + \lambda_m m \right) \]

6. Conclusion

From the present work, we can study about two and three grade manpower system. This work also can be extended in two sources of depletion. The influence of the hypothetical parameter on the performance measure can be studied numerically with the help of MATLAB.

References

[9] S.Dhivyakumari, V. Vasudevan and A. Srinivasan, Stochastic models for the time to recruitment in a two grade manpower system using same geometric process for the inter decision times, proceedings of mathematical and computational models, PSS college of technology (ICMCM), Narosa publishing House, pp. 276-283, Dec-2011.

Author Profile

K. Sridhivya, Assistant Professor, PG & Research Department of Mathematics, National College, Trichy was born on 07.05.1975. Obtained UG in 1995, PG in 1997 from Holy Cross College, Trichy. M. Phil in 2002 from St.Joseph College, Trichy and cleared SET Exam in 2012. She has totally 13 years of experience. She is a member of AICTE.

Dr. S. Sendhamizhselvi, Assistant Professor, PG & Research Department of Mathematics, Govt. Arts College, Trichy 22 has obtained M.Sc., degree in 1989 from Bharathidasan University. M.Phil. in 1999 from Madurai Kamaraj University & Ph.D. in 2009 from Bharathidasan University. She worked in various designations in J.J. College of Engineering and Technology for 10 years and as a Head of the Department for Humanities & Science for 5 years in Oxford Engineering College. At present she is working as an Assistant Professor of Mathematics in Govt. Arts College since 2011. She has more than 15 years of experience in Teaching and 10 years of Research Experience. She has presented more than 15 research papers in National and International conferences. She has organized National Level Symposium & Seminar. She has produced 9 M.Phil. candidates and she is guiding 3 M.Phil., & 3 Ph.D. candidates. She is a life member of AICTE.