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Abstract: This paper presents the theoretical study on transverse vibration of both end fixed cable with a moving mass. The non-linear 

equation derived using Newton’s force conservation principle is non-dimensionlized and solved with the application of Galerkin’s 

approximation method. The main excitation source of cable vibration is moving mass. The modelled equation is simulated with 

MATLAB, considered up to 4th mode of vibration. The study shows that when the velocity of moving mass increasing, the mid span lateral 

deflection of cable is increased up to certain velocity, then decreased up to zero when the mass reached to the next fixed end. Similarly, the 

maximum transverse deflection is seen in the first mode. Increasing the modal frequency the lateral displacement is decreased. 
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1. Introduction 
 

Cable is the most fundamental member of the cable supported 

structures, e.g. suspension bridges, cable cars, rope ways, 

connector of posts and so on. Cable structures play an 

important role in many engineering field, such as mechanical, 

electrical, civil, ocean and so on. Cable is widely used so, its 

importance and applications are increasing day by day. Cable 

is mainly utilized on tensioned member to support structures 

or transmit the major loads of the structures [1, 2]. Some of the 

applications of cable supported structures are; cable car, cable 

conveyor, suspension bridge, rope way, cable-stayed bridges 

and so on.  

 

The analytical solution of vibrating string was first presented 

by Joseph Lagrange in 1759 on Turin Academy. On the 

vibration suppression on long span bridge is studied by Daihai 

Chen et.al.2013 as Vehicle Bridge coupling vibration 

reduction analysis for long span highway bridge and railway 

Bi-purpose cable-stayed bridge [2]. The experimental study on 

Vortex induced vibration of marine cable using force feedback 

is researched by F.S. Hover et.al in 1996[3]. Hongwei Huang 

et.al have studied as vibration mitigation of stay cable using 

optimally tuned MR damper in 2012[4] and experimentally 

mitigation of vibration using external viscous damper is 

studied by Huang le in 2010[5]. Park young Myung et.al. 

studied on dynamic behavior of cable stayed bridge under 

moving vehicle and train in 2015[6]. An analytical solution for 

vibration of elevator cable with small bending stiffness is 

studied by R. Mirabdollah et.al in 2012[8]. Analysis of 

harmonic vibration of cable stayed footbridge under the 

influence of changes of the cable tension was studied by 

Wojciech Pakos in 2015[9], but they haven’t studied 

considering dimensionless parameters. The investigation on 

nonlinear dynamics behavior of stay cables under rain wind 

induced vibration in consideration of restoring force and the 

columb force was studied by yonggang Xiao et.al.2012 [10], 

where chaos phenomenon is the major interpreted function.  

Here in this paper, it is studied with the interest to investigate 

further on mechanical behavior i.e transverse vibration with 

moving mass on cable. This theoretical analysis on is studied 

using non-dimensional parameters and solved with Galerkin’s 

approach. 

 

2. Mathematical Modulation 
 

2.1 Dynamic of Cable 

 

The schematic diagram of the both end fixed cable with movi

ng mass is modeled as shown in Fig. 1, where, L be the length

 of a tightly stretched cable, P is tensile force on the cable, θ i

s the small deflection angle with x-axis and m is the mass per 

unit length of cable, f(x,t) is the transverse vibrational force in

duced by moving mass. 

 
Figure 1: Schematic Diagram of Both end Fixe Cable with 

Moving Mass 

 
Figure 2: Free body Representation of Cable Forces 

 

In an elementary length dx, the transverse displacement w(x,t) 
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is assumed to be small, then equilibrium force equation i.e the

 modeled dynamic equation of cable with moving mass is fou

nd as equation 1. This equilibrium force equation is derived 

without considering the Coriolis force, internal strain rate (Ke

lvin Voigt) and other air resistivity with using Newton’s secon

d law of motion with equilibrium approach, where net force a

cting on an element is equal to the inertial force acting on the 

element[7]. The free body diagram of the system is as in Fig. 

2. 

 
 

For an elementary length dx, 
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The resultant force due to the external mass on vertical 

direction is assumed as; 
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Here, f(x,t) is the resultant force due to external mass, g is the 

acceleration due to gravity. Since transverse vibrating force is 

the force due to moving mass M, which moves with 

longitudinal velocity v and transverse displacement is same as 

cable vibration, then applying the direc delta function to 

determine the effective force applied on cable it becomes, 
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Rearranging the equation (1) using equation (2), (3),(4) and 

(5) we have, 
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Let the cable is simply supported at both ends, the boundary 

conditions are; 

0),0( t , and 0),( tL              (7) 

 

2.2 Non-dimensionalization of Equation  

 

Some of the dimensionless quantities and the boundary 

conditions are as below;  
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Substituting the equation (8) on equation (6) we get;  
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Using the Galerkin’s approach to solve the non-homogeneous 

equation (10), which satisfies the same boundary conditions 

(9) and neglecting the static deflection of the cable the 

dynamic deflection is become as equation 11. The mass of the 

cable in comparison to the external mass is too small, so, static 

deflection here in this paper is not considered. 
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where, i is number of mode, )(i is spaital mode shape 

function (the comparison function) which have same boundary 

condition and characteristics and )(q is the generalized time 

dependent co-ordinate. Using the shape 

function )sin()(  i , the desired roots become as; 
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Substituting equation (12) on equation (10), and normalized 

by multiplying and integrating with orthogonal function 

)....1(sin kjj  , from 0 to L, then using some more 

parameters as (13) 
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where,  is the mass ratio and c is the wave velocity of the 

cable system, the governing equation becomes; 
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The linearlized dimensionless governing equation of motion 

of cable becomes; 

mFqKqM                  (15) 

where, M is mass matrix and  K is stiffness matrix of size 

(n x n)  

 

5. Results and Discussion  
 

In this study, 2[m] length of cable having mass ratio, i.e ratio 

of external moving mass to cable mass is 0.3, is excited with 

the moving mass velocity 0.3[m/s] in parallel to the cable 

length is considered. When the cable vibrates up to 4
th

 mode, 

the multimodal vibration nature in time domain is as shown in 

Fig. 3 below.  
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Figure 3: Multimodal Vibration on Time Domain 

 

When the moving mass velocity on cable is 0.3[m/s], the 

acceleration calculated at mid-point of the cable in time 

domain in different mode is as presented in Fig. 4. The 

maximum acceleration in first mode is about 2e
-3

 [m/s
2
], 

4.89e
-4

 [m/s
2
 ] on 2

nd
 mode, 8e

-5
 [m/s

2
 ] on 3

rd
 mode and 8e

-5
 

[m/s
2
] and 1e10

-5
 [m/s

2
 ] on 4

th
 mode measured at the midpoint 

of the cable. Increasing the mode of the vibration, the lateral 

vibrational acceleration decreased. The initial and final 

excitation acceleration are zero and it fluctuated with different 

modes. 

 
Figure 4:  Lateral Acceleration in Different Modes 

 

Similarly, when cable vibrates due to moving mass velocity of 

0.3[m/s] and the lateral displacement analyzed at mid-point on 

different modes, the displacement vs moving mass position 

plot can be formed as Fig. 5 below. It is found that the 

maximum displacement (0.00358) appears on first mode at 

frequency of 45.48 Hz. This maximum value can be observed 

when the moving mass reached at L/2 and for the higher 

modes; its maximum value can be seen after half of length. It is 

happened due to inertial force of the moving mass and tensile 

force acting on the cable. When the cable vibrates in higher 

modes, it shows that the amplitude is decreasing.  

 
Figure 5: Lateral Displacement under Moving Mass on Diff. 

Modes 

 

The lateral displacement with moving mass position observed 

at the midpoint of the cable while vibrate on 1
st

 mode, with 

different velocity at mass ratio  =0.3 can be seen in Fig. 7. It 

shows that, when moving mass speed is reached up to 0.5[m/s], 

lateral displacement is increased then decreased on increasing 

the velocity. In this case the maximum amplitude of cable can 

be seen about 0.4L of the cable. As per the boundary condition 

we applied during simulation increasing the velocity the 

position of moving mass reached near to the end point, so, the 

amplitude is decreased with increasing velocity. 

 

Figure 6: Lateral Deflection of Cable at Various Speed at 

 =0.3 

 

On the same way, when the mass ratio of the cable be changed 

to 1 the lateral displacement vs moving mass position plot can 

be seen in Fig. 8. It shows that the maximum amplitude is 

found when the moving mass reached about 0.7L, while the 

velocity is 0.5[m/s].  

 

After increasing the velocity then 0.5[m/s], its amplitude is 

decreasing at  =1. So, through its inertial force and the 

velocity effects, the maximum deflection appears slightly right 

side of the cable. 

 
Figure 7: Lateral Deflection of Cable at Various Speed at 

 =1.0 

 

For the same system, when mass ratio of the system is changed, 

the lateral displacement with moving mass position can be 

seen in Fig. 8. The maximum lateral displacement (about 

0.0045) can be seen, when the moving mass weight is equal to 

the total weight of cable i.e  =1. We can see the maximum 

displacement, when the mass reached about 0.6L of the cable. 

It is found out that the lower mass ratio, lower the lateral 

displacement.  

 
Figure 8: Lateral Def. of Cable at Various Mass Ratio at 
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3v  [m/s] 

 

Similarly, while the velocity of moving mass on cable is 

changed, the modal frequency and the lateral displacement on 

midpoint of the cable is also changed. The cable of 2[m] length 

is while taken for study on 0.3[m/s] and 0.4[m/s] and 0.5 [m/s], 

the lateral displacement vs frequency plot can be seen in Fig. 

10. Same as previous simulation the mass ratio  is 0.3, cable 

wave velocity is 14.14[m/s] and the measurement is done at 

the midpoint of cable. The figure shows that the vibrating 

frequency and the amplitude is changed on changing the 

velocity of moving mass. 

 
Figure 9: Lateral Displacement on Different Frequencies at 

 =0.3 

 

While the mass ratio is changed, modal frequency is not 

changed. The Fig 11 below shows that the frequency vs lateral 

displacement graph at moving mass velocity 0.3[m/s], cable 

wave velocity 14.14[m/s] on changing the mass ratio. The 

frequency on different mode is not changed but it effects on 

amplitude with changing the mass ratio. In comparison with 

Fig.10 and 11 it is found that modal frequency is not changed 

with changing its mass ratio but changed with moving mass 

velocity. 

 

 
Figure 10: Frequency vs Lateral Displacement on Different 

Mass Ratio ( ) at v 0.3[m/s] 

 

6. Conclusion  
 

When the external mass is not applied on the cable, there is no 

vibration occurred at its zero initial condition. From the 

vibration response plot, some key things on cable Vibration 

are: 

 The amplitude of vibration is maximum in 1
st

 mode and 

increasing the frequency the mode shape of the cable is 

increased. Similarly, the amplitude of vibration is decreased 

in higher mode. 

 While the position of moving mass shifted, the shape and the 

vibration nature of cable is also changed.  

 Similarly, when velocity of moving mass is changed, the 

frequency on cable and the amplitude of vibration is also 

changed. Study shows that the maximum amplitude can be 

seen while the velocity of moving mass be 0.5[m/s], after 

increasing from this value amplitude is decreased. 

 

7. Future Study 
 

Design and analyze the cable structure, and apply to suppress 

the sound and vibration of supporting structures with changing 

the position of moving mass acting as counter load. 
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