Some New Results about the Convergence of Fuzzy Measurable Functions Sequence on Fuzzy Measure on Fuzzy Sets

Noori F. Al-Mayahi¹, Karrar S. Hamzah²

¹Department of Mathematics, College of Science, University of Al-Qadisiya ²Department of Mathematics, College of Computer Science and IT, University of Al-Qadisiya

Abstract: The goal of this paper is to study the Convergence of fuzzy measurable functions sequence on fuzzy sets and get on some new results.

Keywords: Fuzzy measure, exhaustive, order continuous, null additive, autocontinuous from below, accountably weakly null-additive fuzzy measure, null-continuous.

1. Introduction

In measure theory, several types of convergence were introduced for sequence of measurable functions on a measure space and some basic relations among these types were established [3].

In the proof of the theorem (9) we need that μ is countably weakly null-additive because as is well known, sugeno's fuzzy measure loses additivity in general therefore if $\mu(A_n) = 0$ for all

$$n \ge 1 \Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0, \{A_n\} \subset \mathcal{F}$$

Fuzzy measure generalization of measure theory. This generalization obtained by replacing the additivity axiom of measure theory with weak axiom of monotonicity and continuity [1]

The fuzzy measure, defined on σ -field, was introduced by Sugeno [20]. Ralescu and Adams [21] generalized the concepts of fuzzy measure and fuzzy integral to the case that the value of a fuzzy measure can be infinite, and to realize an approach from Subjective.

Jun Li [4] study order continuous and strongly order continuous of monotone set function and convergence of measurable functions sequence

Jun Li, Masami Yasuda, Qingshan Jiang, Hisakichi Suzuki and Zhenyuan Wang [2], Deli Zhang and Caimei Guo [5], studied some Convergence of sequence of measureable functions on Fuzzy measure spaces and generalized convergence theorems" obtained a series of new results.

After that, many authors studied Convergence of sequence of measureable functions on Fuzzy measure spaces and proved some results about it asG. J. Klir [6, 7], Jun Li, Radko Mesiar, Endre Pap and Erich Peter Klement [8], L.Y. Kui[9], L.Y. Kui and L. Baoding [10],

In this paper, we mention the definition of Fuzzy Measure on Fuzzy Set and study three types of convergence of sequence of fuzzy measurable functions defined on fuzzy sets; the concepts of "almost" and

"Pseudo" are introduced also too the

Convergence almost everywhere,

Convergence in fuzzy measure and almost uniformly convergence and get on some new results about them.

Definition (1): [17, 18]

Let Ω be anon empty set, a fuzzy set A in Ω (ora fuzzy subset in Ω) is a function from Ω into I, i.e. $A \in I^{\Omega}$. A(x) is interpreted as the degree of membership of element x in a fuzzy set A for each $x \in \Omega$. a fuzzy set A in Ω is can be represented by the set of pairs:

$$A = \{ (x, A(x)) : x \in \Omega \}$$

Note that every ordinary set is fuzzy set, i.e. $P(\Omega) \subseteq I^{\Omega}$.

Definition (2): [11, 12]

A family \mathcal{F} of fuzzy sets in a set Ω is called a fuzzy σ -field on a set Ω If,

1) $\phi, \Omega \in \mathcal{F}$.

2) If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

3) If $\{A_n\} \subset \mathcal{F}, n = 1, 2, 3, ..., \text{then } \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$

Evidently, an arbitrary σ –field must be fuzzy σ –field. A fuzzy measurable Space is a pair(Ω, \mathcal{F}), where Ω is a set and \mathcal{F} is a fuzzy σ –field on Ω . a fuzzy set A in Ω is called fuzzy measurable (fuzzy measurable with respect to the fuzzy σ –field) if $A \in \mathcal{F}$, i.e. any member of \mathcal{F} is called a fuzzy measurable set.

Definition (3): [13]

Let(Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty]$ is said to be a fuzzy measure on (Ω, \mathcal{F}) if it satisfies the following properties: (1) $\mu(\phi)=0$

(2) If $A, B \in \mathcal{F}$ and $A \subseteq B$, then $\mu(A) \leq \mu(B)$

Definition (4): [14]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be

1. Exhaustive if

 $\mu(A_n) \to 0$ whenever $\{A_n\}$ is infinite sequence of disjoint sets in \mathcal{F}

Volume 6 Issue 10, October 2017

www.ijsr.net

if $\mu(A_n) \to 0$, 2. Order-continuous whenever $A_n \in \mathcal{F}$, $n = 1, 2, \dots$ and $A_n \downarrow \emptyset$.

Definition (5): [14, 15]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be Null-additive, if $\mu(A \cup B) =$ $\mu(A)$ whenever $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$, and $\mu(B) =$ 0.

Definition (6): [1]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be weakly null-additive, if for any $A, B \in \mathcal{F}$,

$$\mu(A) = \mu(B) = \mathbf{0} \Longrightarrow \mu(A \cup B) = \mathbf{0}$$

Remark (70):

The concept of null-null additive stems from a wings textbook which the book[1] derived from, in which it is said to be weak null additive. But we consider that it is more precise and vivid to call it "null-null additive"

Definition (8): [16]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be Countably weakly null-additive, if for any $\{A_n\} \subset \mathcal{F}, \mu(A_n) = 0$

, for all
$$n \ge 1 \Longrightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

Definition (9): [16]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be Null-continuous, if $\mu(\bigcup_{n=1}^{\infty} A_n) = 0$ for every increasing sequence $\{A_n\}$ in \mathcal{F} such that $\mu(A_n) = 0$, for all $n \ge 1$.

Definition (10): [19]

Let (Ω, \mathcal{F}) be a fuzzy measurable space. A set function $\mu: \mathcal{F} \to [0, \infty)$ is said to be

Autocontinuous from above (resp.

autocontinuous from below), if $\mu(B_n) \to 0$ implies $\mu(A \cup$ $Bn \rightarrow \mu(A)$ (resp.

 $\mu(A \cap B^c_n) \to \mu(A))$, whenever $A \in \mathcal{F}, \{B_n\} \subset \mathcal{F}, \mu$ is called autocontinuous if it is both autocontinuous from above and autocontinuous from below.

Definition (11): [14]

Let $\mathbb{C}(\Omega)$ be the collection of all real valued functions defined on a set Ω . Let $f, f_n \in \mathbb{C}(\Omega)$, $n \in \mathbb{N}$ and $A \subset \Omega$, we say that

 $\{f_n\}$ converges point wise to f on A, if for every 1 $x \in A$ and for every $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $|f_n(x) - \varepsilon| = 0$ $f(x) < \varepsilon$ for all n > k.

We write $\lim_{n\to\infty} f_n(x) = f(x)$ or $f_n \to f$ on A.

 $\{f_n\}$ Uniformly convergent to f on A, if for every 2- $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $|f_n(x) - f(x)| < \varepsilon$ for all n > k and all $x \in A$.

We write $f_n(x) \xrightarrow{u} f(x)$ on A.

It is clear that every uniformly convergent sequence is point wise convergent, but the convers is not true.

 $\{f_n\}$ is point wise Cauchy sequence on A, if for 3every $x \in A$ and for every $\varepsilon > 0$ there is $k \in \mathbb{Z}^+$ such that $|f_n(x) - f_m(x)| < \varepsilon$ for all n, m > k, we write $f_n p. c$ on A.

• This has meaning only If $f_n: \Omega \to \mathbb{R}$ is finite valued, because \mathbb{R} is complete it is clear that if $\{f_n\}$ is a Cauchy sequence point wise on Ω , there must be on $f: \Omega \to \mathbb{R}$ such that $f_n \to f$ on Ω .

 $\{f_n\}$ is a uniformly Cauchy sequence on A, if for every 4- $\varepsilon > 0$ there is $k \in Z^+$ such that $|f_n(x) - f_m(x)| < \varepsilon$ for all n, m > k and all $x \in A$. We write f_n u.c. on A.

Definition (12): [1, 19]

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, let $f, f_n \in \mathbb{C}(\Omega), n \in$ \mathbb{N} and let $A \in \mathcal{F}$, we say that

- (1) $\{f_n\}$ Converges almost everywhere to f on A, denoted by $f_n \xrightarrow{a.e} f$ on A, if there is a subset $B \subseteq A$ such that
- (b) f_n → f on A, if there is a subset B ⊆ A such that μ(B) = 0 and f_n → f on A/B.
 (2) {f_n} Converges pseudo almost everywhere to f on A, denoted by f_n → f on A, if there is a subset B ⊆ A such that μ(A/B) = μ(A) and f_n → f on A/B.
- (3) $\{f_n\}$ converges almost uniformly to f on A, denoted by $f_n \xrightarrow{a.a.} f$ on A, if there is a sequence $\{A_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ Such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2,
- (4) $\{f_n\}$ converges pseudo almost uniformly to f on A, denoted by $f_n \xrightarrow{p.a.u} f$ on A, if there is a sequence $\{A_n\}$ in \mathcal{F} with u(A/A) = u(A) Such that

$$\lim_{n \to \infty} \mu(A/A_n) = \mu(A)$$
 Such that

$$f_n \rightarrow f \operatorname{On} A/A_n$$
 for any fixed

$$n = 1, 2, ...$$

- (5) $\{f_n\}$ convergence in measure to f on A, denoted by $f_n \xrightarrow{r} f$ on A, if $\lim_{n \to \infty} \mu(\{x \in \Omega : |f_n(x) - f(x)| \ge 0\}$ $\mathcal{E} \cap A = 0$ for each $\mathcal{E} > 0$.
- (6) $\{f_n\}$ convergence pseudo in measure to f on A, denoted by $f_n \xrightarrow{p,\mu} f$ on A, if $\lim_{n \to \infty} \mu(\{x \in \Omega: |f_n(x) - f(x)| < 0\}$ $\mathcal{E} \cap A = \mu A$ for each $\mathcal{E} > 0$

note that, in the above definitions, when $A = \Omega$ we can omit "on A " from the statements.

2. Main Results

Lemma (1): [1]

Let (Ω, \mathcal{F}) be a measurable space. if $\mu: \mathcal{F} \to [0, \infty]$ is a nondecreasing set function, then the following statements are equivalent :

- (1) μ is null additive
- (2) $\mu(A \cup B) = \mu(A)$ Whenever $A, B \in \mathcal{F}$ and $\mu(B) = 0$.
- (3) $\mu(A/B) = \mu(A)$ Whenever $A, B \in \mathcal{F}$ such that $B \subseteq A$ and $\mu(B) = 0$.
- (4) $\mu(A/B) = \mu(A)$ Whenever $A, B \in \mathcal{F}$ and $\mu(B) = 0$.
- (5) $\mu(A\Delta B) = \mu(A)$ Whenever $A, B \in \mathcal{F}$ and $\mu(B) = 0$.

Theorem (2):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is null additive, let

$$f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$$
 and let $A \in \mathcal{F}$, if $f_n \xrightarrow{a.e} f$ on A then $f_n \xrightarrow{p.a.e} f$ on A .

Proof:

Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n \to f$ on A/B.

Volume 6 Issue 10, October 2017

www.ijsr.net

Since μ is null additive, hence $\mu(A \cup B) = \mu(A)$, whenever $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$ and $\mu(B) = 0$ By using lemma (1), we get on $\mu(A/B) = \mu(A \cup B) = \mu(A)$ Consequently $f_n \xrightarrow{p.a.e} f$ on A. **Theorem (3):** Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is autocontinuous from below, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, if $f_n \xrightarrow{a.e} f$ on A then $f_n \xrightarrow{p.a.e} f$ on A. **Proof:** Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n \to f$ on A/B.

Since µis autocontinuous from below, hence $\lim_{n\to\infty} \mu(A/A_n) = \mu(A), \text{ whenever}$ $A \in \mathcal{F}, A_n \in \mathcal{F}, A_n \subseteq A, n = 1, 2, \text{ ...and } \lim_{n\to\infty} \mu(A_n) = 0$ Take $B = A_n$, $n = 1, 2, \dots$, we have $\mu(B) = \lim_{n\to\infty} \mu(A_n) = 0$ (11)

$$\Rightarrow \mu(A/B) = \lim_{n \to \infty} \mu(A/A_n) = \mu(A)$$

Consequently

 $f_n \xrightarrow{p.a.e} f \text{ on } A.$

Theorem (4):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$ if $f_n \xrightarrow{a.e} f$ on A and $f_n \xrightarrow{p.a.u} f$ on A. Then μ is order continuous and autocontinuous from below

Proof:

Since $f_n \xrightarrow{a.e}{\to} f$ on A and $f_n \xrightarrow{p.a.u}{\to} f$ on A. Since $f_n \xrightarrow{p.a.u}{\to} f$ then there is a sequence $\{A_n\}$ be a sequence of sets in \mathcal{F} With $\lim_{n\to\infty} \mu(A_n) = 0$, i.e. $\mu(A_n) \to 0$, as $n \to \infty$ Therefore $A_n \downarrow \emptyset$ Consequently μ is order continuous To prove μ is autocontinuous from below Let $A \in \mathcal{F}, \{A_n\}$ be a sequence of sets in \mathcal{F} with $A_n \subseteq A$ Through $f_n \xrightarrow{p.a.u}{\to} f$ on A, we have $\lim_{n\to\infty} \mu(A/A_n) = \mu(A)$

Which is μ is autocontinuous from below.

Theorem (5):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let A

 $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$ such that $\lim_{n \to \infty} \mu(A \Delta A_n) = \mu(A)$, whenever $\{A_n\}$ is a sequence of sets in \mathcal{F} with $\lim_{n \to \infty} \mu(A_n) = 0$, if $f_n \xrightarrow{a.u} f$ on A then $f_n \xrightarrow{p.a.u} f$ on A.

Proof:

Since $f_n \xrightarrow{a.u} f$ on A, then there is a sequence $\{A_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...Since $\lim_{n\to\infty} \mu(A \land A) = \mu(A)$ we have

Since $\lim_{n\to\infty} \mu(A \Delta A_n) = \mu(A)$, we have $A \cap A_n \in \mathcal{F}$ and $\mu(A \cap A_n) \le \mu(A_n)$ So we have

$$\lim_{n \to \infty} \mu(A \cap A_n) = 0$$

and therefore, by the condition given in this theorem, we have

 $\lim_{n \to \infty} \mu(A/A_n) = \lim_{n \to \infty} \mu(A\Delta(A \cap A_n)) = \mu(A)$ Consequently $f_n \xrightarrow{p.a.u} f$ on A.

Theorem (6):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$ such that μ is exhaustive, if $f_n \xrightarrow{p.a.u} f$ on Athen $f_n \xrightarrow{a.u} f$ on A.

Proof:

Since $f_n \xrightarrow{p.a.u} f$ on A, then there is a sequence $\{A_n\}$ of sets in \mathcal{F} with $\lim_{n\to\infty} \mu(A/A_n) = \mu(A)$ such that $f_n \to f$ on A/A_n for any fixed n = 1, 2, ...

Since μ is exhaustive, let $\{A_n\}$ is

A pairwise of disjoint sequence in \mathcal{F} , with $\lim_{n\to\infty} \mu(A_n) = 0$

Consequently

 $f_n \xrightarrow{a.u} f \text{ on } A.$

Theorem (7):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$ such that μ is null additive, for any decreasing sequence $\{A_n\}$ of sets in \mathcal{F} for which $\lim_{n\to\infty} \mu(A_n) = 0$, if $f_n \xrightarrow{a.u} f$ on A then $f_n \xrightarrow{p.a.u} f$ on A.

Proof:

Since $f_n \xrightarrow{a.u} f$ on A, then there is a sequence $\{A_n\}$ of sets in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...Since

and

$$u(\bigcap_{n=1}^{\infty} A_{n}) = 0$$

 $A/A_n \uparrow A/(\bigcap^{\sim} A_n)$

 $\mu(\prod_{n=1}^{n} A_n) = 0$ By using lemma (1)continuity of μ , it follows that

$$\lim_{n \to \infty} \mu(A/A_n) = \lim_{n \to \infty} \mu\left(A/(\bigcap_{n=1}^{\infty} A_n)\right) = \mu(A)$$

Consequently

$$f_n \xrightarrow{p.a.u} f$$
 on A .

Theorem (8):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is weakly null additive, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, if $f_n \xrightarrow{a.e} f$ on A then $f_n \xrightarrow{\mu} f$ on A.

Proof:

Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset B in \mathcal{F} such that $\mu(B) = 0$ and for any $x \in B \lim_{n \to \infty} f_n(x) = f(x)$ For any $\varepsilon > 0$ Since $\{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A \subseteq B \cup \{x\}$

 $\in \Omega$: $|f_n(x) - f(x)| \ge \varepsilon \} \cap A$ By monotonicity and weakly null additive, we have

Volume 6 Issue 10, October 2017

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/ART20177529

 $\mu(\{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A) \to 0 \text{ as } n \to \infty$ Consequently $f_n \stackrel{\mu}{\to} f \text{ on } A$.

Theorem (9):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, if $f_n \xrightarrow{a.e} f$ on A then

- (1) f_n is a Cauchy *a.e.*
- (2) If g is real -valued measurable function and $f_n \xrightarrow{a.e} g$ then $f = g \ a. e$.
- (3) If g is real –valued measurable function such that f = g a. ethen $f_n \xrightarrow{a.e} g.$
- (4) If $\{g_n\}$ is a sequence of real -valued measurable functions such that $f_n = g_n \ a. e$ for each n then $g_n \xrightarrow{a.e} f$.
- (5) If g, {g_n} is a sequence of real -valued measurable function such that

 $f_n = g_n \ a. e$ for each n and $f = g \ a. e$ then $g_n \xrightarrow{a.e} g$.

Proof:

(1) Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that

 $\mu(B) = 0$ and $f_n(x) \rightarrow f(x)$ for all $x \in A/B \implies f_n(x)$ is Cauchy sequence for all $x \in A/B \implies f_n$ is Cauchy *a.e.*

(2) Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n(x) \rightarrow f(x)$ for all $x \in A/B$ Since $f_n \xrightarrow{a.e} g$ on A, then there is a subset $C \subseteq A$ such that

Since $f_n \to g$ on A, then there is a subset $C \subseteq A$ such that $\mu(C) = 0$ and $f_n(x) \to g(x)$ for all $x \in A/C$ Let $D = B \cup C$ $\to \mu(D) = \mu(B \cup C)$, Whenever $\mu(B) = 0, \mu(C) = 0$ Since μ is countably weakly null-additive, we have $\mu(D) = 0$ for any $x \in A/D$

$$\mu(D) = 0 \text{ for any } x \in A/D$$

$$\Rightarrow \lim_{n \to \infty} f_n(x) = f(x), \lim_{n \to \infty} f_n(x) = g(x)$$

So $f(x) = g(x)$, for all $x \notin D$

$$\Rightarrow f = g a. e.$$

(3) Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n(x) \rightarrow f(x)$ for all $x \in A/B$ Since $f = g \ a.e$ then there is a subset $C \subseteq A$ such that $\mu(C) = 0$ and f(x) = g(x) for all $x \in A/C$ Let $D = B \cup C$

 $\Rightarrow \mu(D) = \mu(B \cup C)$ Since μ is countably weakly null-additive, we have $\mu(D) = 0$ for any $x \in A/D$

$$\Rightarrow \lim_{n \to \infty} f_n(x) = f(x) = g(x)$$

So $\lim_{n \to \infty} f_n(x) = g(x)$ for all $x \notin D$

Consequently

$$f_n \xrightarrow{a.e} g.$$

(4) Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n \rightarrow f$ on A/B

Since $f_n = g_n a.e$ then there is a sequence $\{B_n\}$ such that $\mu(B_n) = 0$ and

 $f_n(x) = g_n(x)$ for all $x \notin B_n$ Let

$$D = B \cup C \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$

$$\Rightarrow \mu(D) = \mu\left((B \cup C) \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ for all $x \notin D$ $\Rightarrow \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} f_n(x) = f(x)$ for all $x \notin D$ $\Rightarrow g_n(x) \to f(x)$ for all $x \notin D$ Consequently $g_n \stackrel{a.e}{\to} f$. (5) Since $f_n \stackrel{a.e}{\to} f$ on *A*, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n(x) \to f(x)$ for all $x \notin B$

Since $f_n = g_n a.e$ for each *n* then there is $B_n \subseteq A$ such that $\mu(B_n) = 0$ for all *n* and $f_n(x) = g_n(x)$ for all $x \notin B_n$ Since f = g a.e, then there is a subset $C \subseteq A$ such that $\mu(C) = 0$ and

f(x) = g(x) for all $x \notin C$ Let

$$D = B \cup C \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$
$$\Rightarrow \mu(D) = \mu\left(B \cup C \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ for all $x \notin D$

 $\therefore \lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} f_n(x) = f(x) = g(x) \text{ for all } x \notin D$ $\Rightarrow g_n(x) \to g(x) \text{ for all } x \notin D$ Consequently $\begin{array}{c} a.e \\ g_n \xrightarrow{a.e} g. \end{array}$

Theorem (10):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive, let $f_n, g_n, f, g \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}, C \in \mathbb{R}$ if $f_n \stackrel{a.e}{\to} f$ and $g_n \stackrel{a.e}{\to} g$ on A then

(1)
$$c. f_n \xrightarrow{a.e} c. f.$$

(2) $f_n + g_n \xrightarrow{a.e} f + g.$
(3) $|f_n| \xrightarrow{a.e} |f|.$
(4) If $f_n = g_n a. e$ for all n , then $f = g a. e.$

Proof:

(1) Since f_n → f , then there is a subset B ⊆ A such that μ(B) = 0 and f_n(x)→ f(x) for all x ∈ A/B then c. f_n(x)→ c. f(x) all x ∈ A/B ⇒ c. f_n → c. f.
(2) Since f_n → f on A, then there is a subset B ⊆ A

(2) Since $f_n \to f$ on A, then there is a subset $B \subseteq A$ such that $\mu(B) = 0$ and $f_n(x) \to f(x)$ for all $x \in A/B$ Since $g_n \to g$ on A, then there is a subset $C \subseteq A$ such that

Since $g_n \to g$ on A, then there is a subset $C \subseteq A$ such that $\mu(C) = 0$ and $g_n(x) \to g(x)$ for all $x \in A/C$ Let $D = B \cup C$

$$\Rightarrow \mu(D) = \mu(B \cup C)$$

Since μ is countably weakly null-additive, we have
$$\mu(D) = 0 \text{ for any } x \in A/D$$
$$\Rightarrow f_n(x) \rightarrow f(x) \text{ and } g_n(x) \rightarrow g(x) \text{ for all } x \notin D$$

So $f_n(x) + g_n(x) \rightarrow f(x) + g(x)$, for all $x \notin D$
$$\implies f_n + g_n \stackrel{a.e}{\rightarrow} f + g.$$

(3) Since $f_n \to f$ on A, then there is a subset $B \subseteq A$

Volume 6 Issue 10, October 2017

<u>www.ijsr.net</u>

such that $\mu(B) = 0$ and $f_n(x) \rightarrow f(x)$ for all $x \in A/B$ $\Rightarrow |f_n(x)| \rightarrow |f(x)|$ for all $x \in A/B$ $\therefore |f_n| \xrightarrow{a.e} |f|.$ Since $f_n \xrightarrow{a.e} f$ on A, then there is a subset $B \subseteq A$ (4)

such that $\mu(B) = 0$ and $f_n(x) \rightarrow f(x)$ for all $x \in A/B$

Since $g_n \xrightarrow{a,c} g$ on A, then there is a subset $C \subseteq A$ such that $\mu(C) = 0$ and

 $g_n(x) \rightarrow g(x)$ for all $x \in A/C$

=

Since $f_n = g_n a. e$ for each *n* then there is a sequence $\{B_n\}$ such that

 $\mu(B_n) = 0$ And $f_n(x) = g_n(x)$ for all $x \notin B_n$ Let

$$D = B \cup C \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$
$$\Rightarrow \mu(D) = \mu \left(B \cup C \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ For all $x \notin D$

 $\therefore f(x) = \lim_{n \to \infty} f_n(x)$ and $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} g_n(x) = g(x)$ For all $x \notin D$ $\Rightarrow f(x) = g(x)$ For all $x \notin D$ Consequently f = g a. e.

Theorem (11):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive, let $f_n, g_n, f, g \in \mathbb{C}(\Omega), n \in$ \mathbb{N} and let $A \in \mathcal{F}, C \in \mathbb{R}$ if $f_n \xrightarrow{a.e} f$ and

- (1) If $f_n \ge 0$ a.e then $f \ge 0$ a.e.
- (2) If $f_n \leq g \ a.e$ for each n then $f \leq g a.e$.

(3) If $|f_n| \le |g| a.e$ then $|f| \leq |g| \ a.e.$

- (4) If $f_n \leq f_{n+1}$ a.e for each n, then $f_n \uparrow f$ a.e. (5) If $f_n \rightarrow f$, $g_n \rightarrow g$ and
- $f_n = g_n a. e, f_n \ge 0 a. e$ Then $f \ge 0 a. e$ and $g \ge 0 a. e$.

Proof:

Since $f_n \xrightarrow{a.e} f$, then there is $B \subseteq \Omega$ such that $\mu(B) = 0$ and $f_n(x) \to f(x)$ for all $x \notin B$

Since $f_n \ge 0$ a. e for each n, then there is $B_n \subseteq \Omega$ (1) such that $\mu(B_n) = 0$ And $f_n(x) \ge 0$ for all $x \notin B_n$ Let

$$D = B \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$
$$\Rightarrow \mu(D) = \mu \left(B \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ for all $x \notin D$

 $\Rightarrow f(x) = \lim_{n \to \infty} f_n(x) \ge 0$ For all $x \notin D$ Therefor

$$f \geq 0 \ a.e.$$

(2)Since $f_n \leq g \ a.e$ $\Rightarrow g - f_n \geq 0 \ a.e$, Since $f_n \xrightarrow{a.e} f$

$$\Rightarrow g - f_n \stackrel{a.e}{\to} g - f$$

By (1) $g - f \ge 0$ a.e
$$\Rightarrow f \le g \ a.e$$

 $\stackrel{(3)}{\rightarrow} |f|$ Since $f_n \to f$, from theorem (10), we have $|f_n|$

Since
$$|f_n| \le |g| a e by (2)$$
, we get on

 $|f| \leq |g| a.e$ (4) Since $f_n \le f_{n+1} a.e$ for each *n*, then there is $A_n \subset \Omega$ such that $\mu(A_n) = 0$ and $f_n(x) \leq f_{n+1}(x)$ for all $x \notin A_n$ Let

$$D = B \cup \left(\bigcup_{n=1}^{\infty} A_n\right)$$
$$\Rightarrow \mu(D) = \mu \left(B \cup \left(\bigcup_{n=1}^{\infty} A_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ For all $x \notin D$

Implies $f_n(x) \uparrow f(x)$ and $f_n(x) \to f(x)$ Hence

$$f_n \uparrow f \ a.e.$$

Since $f_n \xrightarrow{a.e} f, g_n \xrightarrow{a.e} g$ and

 $f_n = g_n a.e$, then by (4) from theorem (10), we get on f = g a.e

Since $f_n \ge 0$ a. e then by (1)

$$\Rightarrow f \ge 0 a. e \text{ and } g \ge 0 a. e$$

Theorem (12):

(5)

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive and continuous from below at A, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, if $f_n \xrightarrow{a.u} f$ then

(1) If
$$f_n \xrightarrow{a.u} g$$
 then $f = g a.e.$

(2) If
$$f = g a. e \operatorname{then} f_n \xrightarrow{u.u} g$$
.

(3) If
$$f_n = g_n a \cdot e$$
 for each n then $g_n \xrightarrow{a \cdot u} f$.

(4) If
$$f_n = g_n a. e$$
 for each n and

$$f = g a. e$$
 Then $g_n \xrightarrow{a.a} g$

Proof:

Take

Let

Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets $\{A_n\}$ (1)in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...

Since $f_n \xrightarrow{a.u} g$, then there is sequence of sets $\{B_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(B_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/B_n for any fixed n = 1, 2, ...

Since μ is continuous from below at *A*, we have

$$A = \bigcup_{n=1}^{\infty} A_n , \mu(A) = \lim_{n \to \infty} \mu(A_n)$$

$$B = \bigcup_{n=1}^{\infty} B_n$$

$$\Rightarrow \mu(B) = \lim_{n \to \infty} \mu(B_n)$$

$$\therefore \mu(A) = \mu(B) = 0$$

$$D = (\bigcup_{n=1}^{\infty} A_n) \cup (\bigcup_{n=1}^{\infty} B_{n,i})$$

$$\Rightarrow D = (A \cup B)$$

$$\Rightarrow \mu(D) = \mu(A \cup B)$$

Volume 6 Issue 10, October 2017

www.ijsr.net

Since μ is countably weakly null-additive, we have $\mu(D) = 0$ Forall $x \notin D$, and $f_n(x) \to f(x), f_n(x) \to g(x)$ uniformly for any $x \notin D$ Since $\mu(D) = 0$ for all $x \notin D$ $\Rightarrow f(x) = g(x)$ for any $x \notin D$ $\therefore f = g \ a. e.$ (2) Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets $\{A_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...I.e. $f_n(x) \to f(x)$ uniformly for any $x \in A/A_n$. Since $f = g \ a. e$, then there is subset $B \subseteq A$ such that $\mu(B) = 0$ and f(x) = g(x) for all $x \in A/B$

Let

$$B_n = \emptyset, \text{ For all } n \ge 2$$

$$B_1 = B, B_2 = \emptyset, B_3 = \emptyset, \dots$$

$$\bigcup_{n=1}^{\infty} B_n = B$$

$$\Rightarrow \mu(B) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right)$$

$$\therefore \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = 0$$

Let

$$D_n = \left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} B_n\right)$$

Where $\{D_n\}$ be a sequence of sets in \mathcal{F}

 $\lim_{n \to \infty} \mu(D_n) = \mu\left(\left(\bigcup_{n=1}^{n-1} A_n\right) \cup \left(\bigcup_{n=1}^{n-1} B_{n,i}\right)\right)$

Since μ is continuous from below at *A*, we have

$$A = \bigcup_{n=1}^{\infty} A_n, \mu(A) = \lim_{n \to \infty} \mu(A_n)$$
$$\mu(A) = 0$$
$$\Rightarrow \mu(A) = \mu(\bigcup_{n=1}^{\infty} A_n)$$
$$\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$
$$\Rightarrow \lim_{n \to \infty} \mu(D_n) = \mu(A \cup B)$$

Since μ is countably weakly null-additive, we have $\lim_{n\to\infty} \mu(D_n) = 0$ for any $x \notin D_n$ $f_n(x) \to f(x) = g(x)$ Uniformly for any $x \notin D_n$ Therefore

$$f_n \xrightarrow{a.u} g.$$

(3) Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets $\{A_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...

I.e. $f_n(x) \rightarrow f(x)$ uniformly for any $x \in A/A_n$ Since $f_n = g_n \ a. \ e$ for each n, then there is a sequence $\{B_n\}$ in \mathcal{F} such that

 $\mu(B_n) = 0 \operatorname{And} f_n(x) = g_n(x) \text{ for all } x \in A/B_n$ Let

$$D_n = (\bigcup_{n=1}^{\infty} A_n) \cup (\bigcup_{n=1}^{\infty} B_n)$$

Where $\{D_n\}$ be a sequence of sets in \mathcal{F}

$$\lim_{n \to \infty} \mu(D_n) = \mu\left(\left(\bigcup_{n=1}^{n} A_n\right) \cup \left(\bigcup_{n=1}^{n} B_n\right)\right)$$

Since μ is continuous from below at A , we have

$$A = \bigcup_{n=1}^{\infty} A_n \text{ and } \mu(A) = \lim_{n \to \infty} \mu(A_n)$$
$$\implies \mu(A) = \mu(\bigcup_{n=1}^{\infty} A_n) = 0$$

Since μ is countably weakly null-additive, we have $\mu(B) = 0$ for all n > 1

$$\mu(B_n) = 0, \text{ for all } n \ge 1$$
$$\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = 0$$
$$\lim_{n \to \infty} \mu(D_n) = \mu\left(\left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is countably weakly null-additive, we have $\lim_{n\to\infty} \mu(D_n) = 0$ For any $x \notin D_n$

 $g_n(x) = f_n(x) \rightarrow f(x)$ Uniformly for any $x \notin D_n$ Therefore

$$\Rightarrow g_n \stackrel{a.u}{\rightarrow} f$$

(4) Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets $\{A_n\}$ in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed n = 1, 2, ...

I.e. $f_n(x) \to f(x)$ uniformly for any $x \in A/A_n$ Since $f_n = g_n \ a. e$ for each n, then there is a sequence $\{B_n\}$ in \mathcal{F} such that $\mu(B_n) = 0$ For each n and

 $f_n(x) = g_n(x)$ for all $x \in A/B_n$

l:

Since f = g a. e, then there is $C \subseteq A$ such that $\mu(C) = 0$ and f(x) = g(x) For all $x \in A/C$

Let
$$C_n = \emptyset$$
, for all $n \ge 2$
 $C_1 = C, C_2 = \emptyset, C_3 = \emptyset, ...$
 $\bigcup_{\substack{n=1\\\infty}}^{\infty} C_n = C$
 $\Rightarrow \mu(\bigcup_{\substack{n=1\\\infty}}^{\infty} C_n) = \mu(C)$
 $\therefore \mu(\bigcup_{n=1}^{\infty} C_n) = 0$

Let

$$D_n = (\bigcup_{n=1}^{\infty} A_n) \cup (\bigcup_{n=1}^{\infty} C_n) \cup (\bigcup_{n=1}^{\infty} B_n)$$

Where $\{D_n\}$ be a sequence of sets in \mathcal{F}

$$\lim_{n \to \infty} \mathbf{u}(\mathbf{D}_n) = \mathbf{u}\left((\bigcap_{n=1}^{\infty} |\mathbf{A}_n) \cup (\bigcap_{n=1}^{\infty} |\mathbf{C}_n) \cup (\bigcap_{n=1}^{\infty} |\mathbf{C}_n)\right)$$

$$\lim_{n \to \infty} \mu(D_n) = \mu\left(\left(\bigcup_{n=1}^{n} A_n\right) \cup \left(\bigcup_{n=1}^{n} C_n\right) \cup \left(\bigcup_{n=1}^{n} B_n\right)\right)$$

Since μ is continuous from below at A we have

$$\bigcup_{n=1}^{\infty} A_n = A, \mu(A) = \lim_{n \to \infty} \mu(A_n)$$
$$\implies \mu(\bigcup_{n=1}^{\infty} A_n) = \mu(A)$$

Volume 6 Issue 10, October 2017

<u>www.ijsr.net</u>

$$\therefore \mu(\bigcup_{n=1} A_n) = 0$$

ω

Also µcountably weakly null-additive, this mean

$$\mu(B_n) = 0, \text{ for all } n \ge 1$$
$$\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} B_n\right) = 0$$
$$\therefore \lim_{n \to \infty} \mu(D_n) = \mu\left(A \cup C \cup (\bigcup_{n=1}^{\infty} B_n)\right)$$
Since is uccurtably workly well additive

Since is µcountably weakly null-additive $\Rightarrow \lim_{n \to \infty} \mu(D_n) = 0$ For any $x \notin D_n$, and $g_n(x) = f_n(x) \rightarrow f(x) = g(x)$ Uniformly for any $x \notin D_n$

Therefore

 $n \rightarrow \infty$

 $g_n(x) \rightarrow g(x)$ Uniformly for any $x \notin D_n$ $\Rightarrow g_n \xrightarrow{a.u} g.$

Theorem (13):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive and continuous from below at *A*, let $f_n, g_n, f, g \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}, C \in \mathbb{R}$ if $f_n \xrightarrow{a.u} f \text{ and } a$

$$a \to f \text{ and } g_n \to g \text{ then}$$

(1) $c. f_n \to c. f.$
(2) $f_n + g_n \to f + g$
(3) $|f_n| \to |f|.$

Proof:

Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets $\{A_n\}$ (1)in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed $n = 1, 2, \dots$

I.e. $f_n(x) \to f(x)$ uniformly for any $x \in A/A_n$ $\Rightarrow c. f_n \xrightarrow{a.e} c. f$.

Since $f_n \xrightarrow{a.u} f$, then there is a sequence of sets (2) $\{A_n\}$ in \mathcal{F} with

 $\lim_{n\to\infty} \mu(A_n) = 0$ Such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed $n = 1, 2, \dots$

I.e. $f_n(x) \rightarrow f_{a,u}(x)$ uniformly for any $x \in A/A_n$

Since $g_n \xrightarrow{d} g$, then there is a of sets $\{B_n\}$ in \mathcal{F} withlim_{$n\to\infty$} $\mu(B_n) = 0$ such that $g_n \xrightarrow{u} g$ on A/B_n for any fixed n = 1, 2, ...

I.e. $g_n(x) \to g(x)$ uniformly for any $x \in A/B_n$ Let

$$D_n = (\bigcup_{n=1}^{\infty} A_n) \cup (\bigcup_{n=1}^{\infty} B_n)$$

Where $\{D_n\}$ be a sequence of sets in \mathcal{F}

$$\Rightarrow \lim_{n \to \infty} \mu(D_n) = \mu\left(\left(\bigcup_{n=1}^{\infty} A_n\right) \cup \left(\bigcup_{n=1}^{\infty} B_n\right)\right)$$

Since μ is continuous from below at A, we have

$$\bigcup_{n=1}^{\infty} A_n = A, \mu(A) = \lim_{n \to \infty} \mu(A_n)$$
$$\therefore \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$$

$$\mu(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} \mu(B_n) = 0$$
$$\implies \lim_{n \to \infty} \mu(D_n) = \mu\left(A \cup (\bigcup_{n=1}^{\infty} B_n)\right)$$

Since is µcountably weakly null-additive

 $\Rightarrow \lim_{n \to \infty} \mu(D_n) = 0$ For any $x \notin D_n$

And $f_n(x) \to f(x), g_n(x) \to g(x)$ uniformly for all $x \notin D_n$

So
$$f_n(x) + g_n(x) \rightarrow f(x) + g(x)$$
 uniformly for all $x \notin D_n$
$$\implies f_n + g_n \xrightarrow{a.u} f + g.$$

Since $f_n \xrightarrow{a.a.} f$, then there is a sequence of sets $\{A_n\}$ (3)in \mathcal{F} with $\lim_{n\to\infty} \mu(A_n) = 0$ such that $f_n \xrightarrow{u} f$ on A/A_n for any fixed $n = 1, 2, \dots$ $I \circ f(x)$ $\rightarrow f(x)$ uniformly for any $x \in A/A$

So
$$|f_n(x)| \to |f(x)|$$
 uniformly for any $x \in A/A_n$
 $\therefore |f_n(x)| \to |f(x)|$ uniformly for any $x \in A/A_n$
 $\therefore |f_n| \to |f|.$

Theorem (14):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space, let $f, f_n \in \mathbb{C}(\Omega), n \in$ \mathbb{N} and let $A \in \mathcal{F}$ such that μ is countably weakly null-additive and continuous from below at A, if $f_n \xrightarrow{\mu} f$ then

(1) If
$$f_n \xrightarrow{\mu} g$$
 then $f = g_{\mu} a. e.$

If $f = g \ a. e \ \text{then} f_n \xrightarrow{r} g$. (2)

(3) If
$$f_n = g_n \ a. e$$
 for all *n*then $g_n \xrightarrow{\mu} f.$

Proof:

1) Given any
$$\varepsilon > 0$$
, define
 $B = \{x \in \Omega: |f(x) - g(x)| \ge \varepsilon\} \cap A$
 $B_n = \{x \in \Omega: |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\} \cap A$
 $C_n = \{x \in \Omega: |f_n(x) - g(x)| \ge \frac{\varepsilon}{2}\} \cap A$

Since

$$|f(x) - g(x)| \le |f_n(x) - f(x)| + |f_n(x) - g(x)|$$

This implies that

$$B \subseteq B_n \cup C_n \Rightarrow \mu(B) \le \mu(B_n \cup C_n)$$

Since $f \stackrel{\mu}{\to} f \stackrel{\mu}{\to} q$

Since
$$f_n \to f_n$$
, $f_n \to g$
 $\Rightarrow \mu(B_n) \to 0, \mu(C_n) \to 0 \text{ as } n \to \infty$
Since μ is countably weakly null-additive, we have

$$\mu(B_n \cup C_n) \to 0 \text{ as } n \to \infty$$

Therefore $\mu(B) \to 0 \text{ as } n \to \infty$

$$N(f-g) = \{x \in \Omega: (f-g)(x) \neq 0\}$$
$$= \bigcup_{n=1}^{\infty} \{x \in \Omega: |f(x) - g(x)| \ge \frac{1}{n}\} \cap \mathbf{A}$$
$$\Rightarrow \mu(N(f-g)) = 0 \Rightarrow f = g \ a.e.$$

(2) Since $f = g a. e \Rightarrow$ there exists $B \in F$ with $\mu(B) = 0$ and $f(x) \neq g(x)$ for all $x \in B$ for any $\varepsilon > 0$, we have

$$\{x \in \Omega: |f_n(x) - g(x)| \ge \varepsilon\} \cap A \subset B \cup (\{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A) \therefore \mu(\{x \in \Omega: |f_n(x) - g(x)| \ge \varepsilon\} \cap A) \le \mu(B \cup (\{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A) Since f_n \to f$$
 then
 $\mu(\{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A) = 0, \mu(B) = 0$
 Since μ is countably weakly null-additive, we have
 $\Rightarrow \mu(\{x \in \Omega: |f_n(x) - g(x)| \ge \varepsilon\} \cap A) \to 0$ as $n \to \infty$
 $\Rightarrow f_n \to g.$

(3) Since $f_n = g_n$ a.e for all *n*, then there exists $A_n \in F$ with $\mu(A_n) = 0$ and $f_n(x) \neq g_n(x)$ for all $x \in A_n$

Volume 6 Issue 10, October 2017

DOI: 10.21275/ART20177529

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1833

Since μ is continuous from below at A, we have

$$A = \bigcup_{n=1}^{\infty} A_n, \mu(A) = \lim_{n \to \infty} \mu(A_n)$$
$$\implies \mu(A) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right)$$

Since μ is countably weakly null-additive

 $\Rightarrow \mu(A) = 0$, for any $\varepsilon > 0$, we have

$$C = (\{x \in \Omega: |g_n(x) - f(x)| \ge \varepsilon\} \cap B)$$

$$C_n = (\{x \in \Omega: |f_n(x) - f(x)| \ge \frac{\varepsilon}{2}\} \cap B)$$

$$D_n = (\{x \in \Omega: |g_n(x) - f_n(x)| \ge \frac{\varepsilon}{2}\} \cap B)$$

Since

$$|g_n(x) - f(x)| \le |f_n(x) - f(x)| + |g_n(x) - f_n(x)|$$

$$\Rightarrow C \le C_n \cup D_n \Rightarrow \mu(C) \le \mu(C_n \cup D_n)$$

Since $f_n \xrightarrow{\mu} f, f_n = g_n$ $\Rightarrow \mu(C_n) \rightarrow 0, \mu(D_n) \rightarrow 0 \text{ as } n \rightarrow \infty$ Since μ is countably weakly null-additive, we have

 $\mu(C_n \cup D_n) \longrightarrow 0 \text{ as } n \to \infty$ Therefore $\mu(C) \rightarrow 0$ as $n \rightarrow \infty$

$$\Rightarrow g_n \xrightarrow{\mu} f$$

Theorem (15):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is weakly null-additive, let $f, f_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, if $f_n \xrightarrow{\mu} f, g_n \xrightarrow{\mu} gC \in \mathbb{R}$ then

(1)
$$c. f_n \xrightarrow{\mu} c. f$$

(2) $|f_n| \xrightarrow{\mu} |f|$

Proof:

This is clear if c = 0, if $c \neq 0$, let $\varepsilon > 0$. (1) Since $f_n \stackrel{\mu}{\to} f$ and $(\{x \in \Omega: |c. f_n(x) - c. f(x)| \ge \varepsilon\} \cap A)$ $= \left(\left\{ x \in \Omega : |f_n(x) - f(x)| \ge \frac{\varepsilon}{|c|} \right\} \cap A \right)$

This implies that

$$\mu(\{x \in \Omega: |c. f_n(x) - c. f(x)| \ge \varepsilon\} \cap A)$$

= $\mu\left(\left\{x \in \Omega: |f_n(x) - f(x)| \ge \frac{\varepsilon}{|c|}\right\} \cap A\right) \to 0 \text{ as } n \to \infty$
So that

S

(2)

 $c.f_n \xrightarrow{\mu} c.f$

Since
$$||f_n(x)| - |f(x)|| \le |f_n(x) - f(x)|$$

This implies

s that

$$\left\{x \in \Omega: \left| |f_n(x)| - |f(x)| \right| \ge \varepsilon \right\} \cap A$$

$$\subseteq \{x \in \Omega: |f_n(x) - f(x)| \ge \varepsilon\} \cap A$$

Since $f_n \xrightarrow{\mu} f$ so $\mu(\{x \in \Omega: ||f_n(x)| - |f(x)|| \ge \varepsilon\} \cap A) \to 0 \text{ as } n \to \infty$ Therefore

$$|f_n| \xrightarrow{\mu} |f|.$$

Theorem (16):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is weakly null-additive, let $f, g, f_n, g_n \in \mathbb{C}(\Omega), n \in \mathbb{N}$ and let $A \in \mathcal{F}$, suppose that $f_n + g_n \xrightarrow{\mu} 0$ whenever $f_n \xrightarrow{\mu} 0$ and $g_n \xrightarrow{\mu} 0$, then μ is autocontinuous from below

Proof:

Let $\{A_n\}$ be a sequence with $\lim_{n\to\infty} \mu(A_n) = 0$, given any $\varepsilon > 0$

Suppose μ is not autcontinuous from below Take $\lim_{n\to\infty} \mu(A \cup A_n) > 0$ There is no loss of generality $A, A_n \in \mathcal{F}$ and $A \cap A_n = \emptyset$ $f_n(x) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } x \in A \end{cases}$ and $g_n(x) = \begin{cases} 0 & \text{if } x \notin A_n \\ 1 & \text{if } x \in A_n \end{cases}$ Then $f_n \xrightarrow{\mu} 0$ and $g_n \xrightarrow{\mu} 0$, thus $f_n + g_n = \begin{cases} 0 & \text{if } x \notin A \cup A_n \\ 1 & \text{if } x \in A \cup A_n \end{cases}$ So $f_n + g_n \xrightarrow{\mu} 0$ $\lim_{n\to\infty}\mu(A\cup A_n)$ $= \lim_{n \to \infty} \mu(\{x \in \Omega : |f_n(x) + g_n(x)| \ge \varepsilon\} \cap A) = 0$

$$\Rightarrow \lim \mu(A \cup A_n) = 0$$

Which is contradiction with assumption that $\lim_{n\to\infty} \mu(A \cup I)$ An)>0 Consequently

μ is autocontinuous from below

Theorem (17):

Let $(\Omega, \mathcal{F}, \mu)$ be a fuzzy measure space such that μ is countably weakly null-additive, let $f, g, f_n, g_n \in \mathbb{C}(\Omega), n \in$ \mathbb{N} and let $A \in \mathcal{F}$, suppose that $f_n + g_n \xrightarrow{\mu} 0$ whenever $f_n \xrightarrow{\mu} 0$ and $g_n \xrightarrow{\mu} 0$, then μ is null continuous.

Proof:

Let
$$A_1 = \left\{ x \in \Omega: |f_n(x)| \ge \frac{\varepsilon}{2} \right\} \cap A$$

 $A_2 = \left\{ x \in \Omega: |g_n(x)| \ge \frac{\varepsilon}{2} \right\} \cap A$
 $A_3 = \left\{ x \in \Omega: |f_n(x) + g_n(x)| \ge \varepsilon \right\} \cap A$
Since $f_n \to 0, g_n \to 0$ and $f_n + g_n \to 0$, we have
 $\therefore \lim_{n \to \infty} \left\{ x \in \Omega: |f_n(x)| \ge \frac{\varepsilon}{2} \right\} \cap A \right\} = 0$
 $\therefore \lim_{n \to \infty} \left\{ x \in \Omega: |g_n(x)| \ge \frac{\varepsilon}{2} \right\} \cap A \right\} = 0$
 $\therefore \lim_{n \to \infty} \left\{ x \in \Omega: |f_n(x) + g_n(x)| \ge \varepsilon \right\} \cap A \right\} = 0$
 $\therefore \mu(A_1) = 0, \mu(A_2) = 0, \mu(A_3) = 0$
 $\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = 0$

 $\therefore \mu$ is null-continuous.

References

- [1] Z. Wang and G. J. Klir, "Fuzzy measure theory", Plenum Press, New York, 1992.
- [2] Jun Li, Masami Yasuda, Qingshan Jiang, Hisakichi Suzuki, Zhenyuan Wang "Convergence of sequence of measureable functions on fuzzy measure spaces" Fuzzy Sets and Systems, 87, (1997), 317-323.
- [3] P.R.Halmos, Measure theory (VanNostrand, New York, 1968).
- [4] Jun Li, "order continuous of monotone set function and convergence of measurable functions sequence ", Applied Mathematics and Computation, 135, (2003), 211-218.
- [5] Deli Zhang, Caimei Guo "on the convergence of

Volume 6 Issue 10, October 2017

www.ijsr.net

sequences of fuzzy measures and generalized convergence theorems of fuzzy integrals" Fuzzy Sets and Systems, 72, (1995), 349-356.

- [6] G. J. Klir, "Convergence of sequences of measurable functions on fuzzy measure space ", fuzzy set and system 87(1997)317-323.
- [7] G. J. Klir, "Convergence of sequences of measurable functions on fuzzy measure space ", fuzzy set and system 112(2000) 241-249.
- [8] Jun Li, Radko Mesiar, Endre Pap and Erich Peter Klement, "Convergence theorems for monotone measures", fuzzy set and system (2015) 1-25.
- [9] L.Y. Kui, "on the Convergence of measurable set-valued function sequence on fuzzy measure space ", fuzzy set and system 112, (2000), 241-249.
- [10] L.Y. Kui and L. Baoding, " the relationship between structural characterisitics of fuzzy measure and convergence of sequence of measurable functions ", fuzzy set and system 123, (2001), 121-133.
- [11] QiaoZhong, "Riesz's theorem and Lebesgue's theorem on the fuzzy measure space", busefal 29, (1987), 33-41.
- [12] E. P. Klement, "Fuzzy u-algebras and fuzzy measurable functions", Fuzzy *Sets and Systems* 4, (1980), 83-93.
- [13] Sugeno, .M" Theory of Fuzzy Integrals and Its Applications", Ph.D. Dissertation, Tokyo Institute of Technology, 1975.
- [14] Jun Li, Radko Mesiar and Endre Pap, "Atoms of weakly null- additive monotone measures and integrals", Information Science 257, (2014), 183-192.
- [15] Wang Zhenyuan, "The Autocontinuity of Set Function and the Fuzzy Integral", journal of mathematical analysis and application, 99, (1984), 195-218.
- [16] Q. Jiang, H. Suzuki, "Lebesgue and Saks decompositions of σ –finite fuzzy measure", Fuzzy Set and Systems, 75, (1995), 181-201.
- [17] L. A. Zadeh, Fuzzy sets, Information and Control, 8, (1965), 338-353.
- [18] H. J. Zimmerman, "fuzzy set theory and Its Application", Kluwer Academic Publisher, 1991.
- [19] Qiao Zhong, " On Fuzzy MeasureandFuzzy Integralon Fuzzy Set", Fuzzy Sets and Systems 37, (1990), 77-92.
- [20] Sugeno.M" Theory of Fuzzy Integrals and Its Applications", Ph.D. Dissertation, Tokyo Institute of Technology, 1975.
- [21] D. Ralescu, G.Adms, "The fuzzy integral", J. Math. Anal. Appl. 75, (1980), 562-570.