
International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 

Volume 6 Issue 10, October 2017 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

An Approach for System Reliability of Two- 

Commodity Stochastic-Flow Networks with Budget 

Constraints 
 

Pei-Chun Feng 
 

Department of Administrative Management, Central Police University, Taoyuan, Taiwan 333, R.O.C. 

 

 

Abstract: Many physical systems such as transportation systems and logistics systems can be regarded as flow networks in which 

arcs have independent and multi-valued random capacities. Such a flow network is a multistate system with multistate 

components. For such a flow network with two different types of commodity, it is very desirable to compute its system reliability 

for level ),,( 21 cdd , i.e., the probability that two different types of commodity can be transmitted from the source node to the sink node 

such that the demand level ),( 21 dd  is satisfied and the total transmission cost is less than or equal to c , can be computed in terms of 

minimal path vectors to level ),,( 21 cdd  (named MPs),,( 21 cdd  here). The main objective of this article is to present an 

intuitive algorithm to generate all MPs),,( 21 cdd  of such a flow network for each level ),,( 21 cdd  in terms of minimal pathsets. An 

example is given to illustrate how all MPs),,( 21 cdd  are generated by our algorithm and the system reliability is then computed. 
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1. Introduction 
 

Reliability evaluation is an important issue in the planning, 

designing and operation of a system. Traditionally, it is 

assumed that the system under study is represented by a 

stochastic graph in a binary-state model, and the system 

operates successfully if there exists at least one path from the 

source node s to the sink node t. In such a case, reliability is 

considered as a matter of connectivity only and so it does not 

seem to be reasonable as a model for some real-world systems. 

Many real-world systems such as transportation systems and 

logistics systems can be regarded as flow networks whose 

arcs have independent and multi-valued random capacities. 

To evaluate the system reliability of such a flow network, 

different approaches have been presented [4, 6, 13-15, 

18]. However, these models have assumed that the flow 

along any arc consisted of a single commodity only. For 

such a flow network with two different types of 

commodity, it is very desirable to compute its reliability 

for level ),,( 21 cdd , i.e., the probability that two different 

types of commodity can be transmitted from the source node to 

the sink node such that the demand level ),( 21 dd  is satisfied 

and the total transmission cost is less than or equal to c . 

 

In general, reliability evaluation can be carried out in terms of 

minimal pathsets (MPs) in the binary-state model case and 

(d,c)-MPs (i.e., minimal path vectors to level (d,c) [2], lower 

boundary points of level (d,c) [10], or upper critical 

connection vector to level (d,c) [5]) for each level (d,c) in the 

multistate model case. The two-commodity stochastic-flow 

network with budget constraints here can be treated as a 

multistate system of multistate components and so the need of 

an efficient algorithm to search for all of its MPs),,( 21 cdd  

arises. The main purpose of this paper is to present a simple 

and intuitive algorithm to generate all MPs),,( 21 cdd  of such 

a network in terms of minimal pathsets. An example is given to 

illustrate how all MPs),,( 21 cdd  are generated and the 

reliability is calculated by further applying the state-space 

decomposition method [2]. 

 

2. Assumptions 
 

Let ),,( UANG   be a directed stochastic-flow network with 

the  source node s and the sink node t, where N is the set of 

nodes, }1|{ niaA i   is the set of arcs, and 

),...,,( 21 nuuuU  , where iu  denotes the maximum 

capacity of arc ia  for .,...,2,1 ni   Such a flow network is 

assumed to further satisfy the following assumptions:[13-15] 

1) Each node is perfectly reliable. Otherwise, the network 

will be enlarged by treating each of such nodes as an arc 

[1]. 

2) The capacity of each arc ia  is an integer-valued random 

variable that takes integer values from 0 to 
iu  according 

to a given distribution. 

3) Every unit flow of commodity   consumes a given 

amount   of the capacity associated with each arc. 

4) The capacities of different arcs are statistically 

independent. 

5) Flow in the network must be integer-valued and satisfy 

the so-called flow-conservation law [7]. This means that 

no flow will disappear or be created during the 

transmission. 

 

Assumption 4 is made just for convenience. If it fails in 

practice, the proposed algorithm to search for all 

MPs),,( 21 cdd  is still valid except that the reliability 

computation in terms of such MPs),,( 21 cdd  should take the 

joint probability distributions of all arc capacities into account. 
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Since there are two different types of commodity within the 

network, the system demand level can be represented as a 

2-tuple vector ),( 21 dd  where 
jd  is the demand level of 

commodity j for .2,1j  Let ),...,( 2,1 nxxxX   be a 

system-state vector (i.e., the current capacity of each arc ia  

under X is ix , where ix  takes integer values 
iu,...,2,1,0 ), 

and ))(,)(()( 21 XVXVXV  , the system maximal flow vector 

under X where 
jXV )(  denotes the maximal flow of 

commodity j under X. Under the system-state vector 

),...,( 2,1 nxxxX  , the arc set A has the following three 

important subsets: }0|{  iiX xAaN , },0|{  iiX xAaZ  

and )},()(|{ XVeXVNaS iXiX   where 

),,...,,( 21 iniiie   with 1ij  if ij   and 0 if ij  . In 

fact, 
XXXX ZSNSA  )\(  is a disjoint union of A under 

X. 

 

A system-state vector X is said to be a MP),,( 21 cdd  if and 

only if: (1) its system capacity level is ),( 21 dd  (i.e., 

),()( 21 ddXV  ), (2) each nonzero-capacity arc under X is 

sensitive (i.e., Nx = Sx ), and (3) the total transmission cost is 

less than or equal to c. If level ),,( 21 cdd  is given, then the 

probability that two different types of commodity can be 

transmitted from the source node to the sink node in the 

way that the demand level ),( 21 dd  is satisfied and the total 

transmission cost is less than or equal to c, is taken as the 

system reliability. 

 

3.   Model Building 
 

Suppose that mPPP ,...,, 21  are the collection of all MPs of the 

system, and let ),,...,,,,( 212

2

1

2

2

1

1

1 nn ccccccC   denote the 

transmission cost vector where 

ic  is the unit transmission 

cost of commodity   through arc 
ia . For each jP , 

 
i

j

iij PacW }|{   and }|min{ j

iij PauL   are taken 

as the unit transmission cost of commodity   and 

maximum capacity through it, respectively. Under the 

flow-conservation law, any feasible flow pattern from s 

to t should satisfy that (1) the total flow-in and the total 

flow-out of each commodity for any given node (except 

for s and t) are equal, and (2) every unit flow of each 

commodity from s to t should travel through one of the 

MPs. Hence, under the system-state vector 

),...,( 2,1 nxxxX   with ),()( 21 ddXV  , any feasible flow 

pattern that the total transmission cost is less than or equal to 

c can be represented as a flow vector 

),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  where 
jf  is the flow of 

commodity   transmitted through jP  such that the 

following four conditions are satisfied: 





m

j

j df
1


  for each 2,1                                            (1) 

jj Lf 







2

1

 for each mj ,...,2,1                                   (2) 

i

j

i

m

j

j uPaf 
 

}|{
2

1 1





  for each ni ,...,2,1                  (3) 

cfW j

m

j

j 
 






2

1 1

                                                                 (4) 

Note that }|{
2

1 1

j

i

m

j

j Paf 
 





  is the least amount of 

capacity needed for 
ia  under such a flow pattern 

),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  and so, under the system-state vector 

X, }|{
2

1 1

j

i

m

j

j Paf 
 





  does not exceed the current capacity 

ix  of ia . This fact is given in the following theorem. 

 

Theorem 1. Let ),...,,( 21 nxxxX   be any system-state 

vector for which ),()( 21 ddXV  . Then, the following is a 

necessary condition for the flow-conservation law to hold 

under X: 

}|{
2

1 1

j

i

m

j

ji Pafx 
 





  for each ni ,...,2,1                       (5) 

for any ),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  which is a feasible flow 

pattern of flow ),( 21 dd  under X. 

 

Theorem 2. Let X be a MP.),,( 21 cdd  Then, the following is 

a necessary condition for the flow-conservation law to hold 

under X: 

}|{
2

1 1

j

i

m

j

ji Pafx 
 





  for each ni ,...,2,1                   (6) 

for any ),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  which is a feasible flow 

pattern of flow ),( 21 dd  under X. 

The vector ),...,,( 21 nxxxX   obtained by first solving  

),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  subject to constraints (1) - (4) and 

then transforming such ),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  to 

),...,,( 21 nxxxX   by applying the relationship in (6), will be 

taken as a MP),,( 21 cdd  candidate. To make it clearer that 

all MPs),,( 21 cdd  can be generated by the proposed 

method, the following theorem is necessary. 

 

Theorem 3. Every MP),,( 21 cdd  is a MP),,( 21 cdd  

candidate. 

 

In this article, we first find feasible solutions 

),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffffF   subject to constraints (1) - (4) 

by applying an implicit enumeration method (e.g., 

backtracking or branch-and-bound [9]) and then transform 

such integer-valued solutions into MP),,( 21 cdd  candidates 

),...,,( 21 nxxx  via the relationship in (6). Each MP),,( 21 cdd  

candidate X must be checked whether all nonzero-capacity 

arcs under X (i.e., 
XNarc ) belong to XS . If the answer is 

“yes”, then X is a MP),,( 21 cdd . Otherwise, X is not a 

MP),,( 21 cdd . The following two theorems play the crucial 

roles in checking whether a MP),,( 21 cdd  candidate is a 

MP),,( 21 cdd . 
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Theorem 4. For each MP),,( 21 cdd  candidate X, there 

exists at least one MP),,( 21 cdd  Y such that XY  . In 

particular, X is not a MP),,( 21 cdd  if such a Y satisfies 

XY   (where XY   if and only if 
ii xy   for i=1, 2, 

..., n and XY   if and only if XY   and 
ii xy   for at 

least one i). 

 

Theorem 5. If the network is acyclic (i.e., contains no 

directed cycle), then each MP),,( 21 cdd  candidate is a 

MP),,( 21 cdd . 

 

Suppose that qXXX ,...,, 21  are total MP),,( 21 cdd  

candidates. We can thus conclude, by Lemma 4, that jX  is a 

MP),,( 21 cdd  if ij XX   for all qj ,....,2,1  but ij  . 

 

4.   Algorithm 
 

Suppose that all MPs, mPPP ,...,, 21 , have been stipulated in 

advance [12, 17], the family of all MPs),,( 21 cdd  can then 

be derived by the following steps: 

Step 1. For  each ),...,2,1( mjP j  , calculate 

}|min{ j

iij PauL   and  
i

j

iij PacW }|{   

Step 2.  Find all feasible solutions 

 ),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffffF   subject to the 

following constraints by applying an implicit 

enumeration method: 

(1) 



m

j

j df
1


  for each 2,1                  

(2) 
jj Lf 








2

1

 for each mj ,...,2,1                
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i

j

i

m

j
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1 1





  for each ni ,...,2,1      

(4) cfW j
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




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1 1

                                 

where 
jf  is a nonnegative integer for mj ,...,2,1  

and .2,1  

Step 3. Transform the solutions ),,...,,,,( 212

2

1

2

2

1

1

1 mm ffffff  

into MP),,( 21 cdd  candidates ),...,,( 21 nxxxX   

via }|{
2

1 1

j

i

m

j

ji Pafx 
 





  for .,...,2,1 ni   

Step 4.  Check each candidate X one at a time whether it is a 

MP),,( 21 cdd : 

(A) If the network is acyclic, then each candidate is 

a MP),,( 21 cdd . 

(B) If the network is cyclic, and suppose 

},...,,{ 21 qXXX  is the family of all such 

MP),,( 21 cdd  candidates, then iX  is a 

MP),,( 21 cdd  if ij XX   for all qj ,...,2,1  

but ij  . 

 

5.   An Example 

 

Figure 1: A bridge network. 

 

Table 1: Probability distributions of transmission time 

and transmission cost 
arc Capacity Probability 

1a  

3 0.60 

2 0.25 

1 0.10 

0 0.05 

2a  
2 0.70 

1 0.20 

0 0.10 

3a  1 0.90 

0 0.10 

4a  
1 0.90 

0 0.10 

5a  
2 0.80 

1 0.15 

0 0.05 

6a  

3 0.65 

2 0.20 

1 0.10 

0 0.05 

 

Table 2: Unit transmission cost on each arc 
arc Commodity Cost 

1a  
1 2 

2 2 

2a  
1 2 

2 3 

3a  1 1 

2 1 

4a  
1 1 

2 1 

5a  1 2 

2 3 

6a  
1 2 

2 2 

 

Consider the network in Figure 1. It is known that 

)3,2,1,1,2,3(),,,,,( 654321  uuuuuuU , ),2,1(),,( 321  ρ  

and there exists four MPs; 

}.,{},,,{},,,{},,{ 65

4

542

3

631

2

21

1 aaPaaaPaaaPaaP   

Given )1,2(),( 21 dd  and 16c , the family of 

MPs)16,1,2(   is derived as follows: 

 

Step 1. ,2}2,3min{1 L ,1}3,1,3min{2 L ,1}2,1,2min{3 L  

,2}3,2min{4 L  ,4221

1 W  ,5322

1 W  

,52121

2 W  ,52122

2 W ,52121

3 W  

,73132

3 W  ,4221

4 W  and .5232

4 W   
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Step 2. Find all feasible solutions 

),,,,,,,( 2

4

1

4

2

3

1

3

2

2

1

2

2

1

1

1 ffffffff subject to the 

following constraints by applying an implicit 

enumeration method:: 
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32211

22211
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32211
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1
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3

1
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2
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1654755554 2

4

1

4

2

3

1

3

2

2

1

2

2

1

1

1  ffffffff  

Total feasible solutions are 

),0,1,0,0,0,0,0,0,1,1,0,0(1 F  

),1,0,1,0,0,0,0,0,0,0,1,0(2 F  

),1,0,0,0,0,0,0,0,1,0,1,0(3 F  and 

).0,1,0,0,0,0,0,0,0,1,0,1(4 F  

Step 3. Transform such feasible solutions into MP)12,1,1(   

candidates ),,,,,( 654321 xxxxxxX   via 

}|{
3

1

j

i

j

ji Pafx 






  for .6,...,2,1i  Then 

),3,2,0,1,1,2(1 X  ),2,2,0,0,2,2(2 X  and 

)2,1,0,1,2,3(3 X  are total MP)12,1,1(   

candidates. 

Step 4. The network is cyclic, and },,{ 321 XXX  is the 

family of all MP)12,1,1(  candidates. Since 

ji XX  , every MP)12,1,1(   candidate is a 

MP)12,1,1(  . The result is listed in Table 2. 

 

Table3: List of all (1,1,12)-MPs 

MP)12,1,1(   candidate MP)12,1,1(   

)3,2,0,1,1,2(1 X  Yes 

)2,2,0,0,2,2(2 X  Yes 

)2,1,0,1,2,3(3 X  Yes 

 

6.   Conclusion 
 

Given all MPs that are stipulated in advance, the proposed 

method can generate all MPs),,( 21 cdd  of a 

capacitated-flow network with two different types of 

commodity under budget constraints for each level 

),,( 21 cdd . The system reliability, i.e., the probability that 

two different types of commodity can be transmitted from 

the source node s to the sink node t in the way that the 

demand level ),( 21 dd  is satisfied and the total 

transmission cost is less than or equal to c, can then be 

computed in terms of these MPs),,( 21 cdd . This 

algorithm can also apply to the capacitated-flow network 

with single commodity. Hence, earlier algorithm [14] is 

shown to be a special case of this new one. 
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