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Abstract: A 54 years dataset (1961 -2014) of recordings of the maximum daily (24 h) rainfall in the Dar Es Salaam area, Tanzania is 

analyzed using Extreme Value Theory with Bayesian framework. Prior distributions are constructed using quantiles approach. Experts 

in the field are normally used to elicit distribution of quantiles. With scarcity of data, these experts may not exist. In this paper a 

different approach in eliciting prior distribution is proposed. In this proposal the quantiles for prior construction are obtained from the 

Weather Research Forecasting (WRF) model. For the case of Dar es Salaam, WRF outputs are generated based on the physical 

conditions around 20th December 2011, a day when Dar es Salaam experienced the extreme rainfall which has never been experienced 

for more than 50 years. A combination of these two data sets, through Bayesian framework, has improved the reliability of forecasting 

of extreme events.  The point estimates for both Maximum Likelihood and Bayesian estimation methods are almost the same, but the 

associated 95% confidence intervals for Bayesian method are narrower highlighting the reliability of the estimator. It is demonstrated 

in this paper that WRF outputs can be used to construct prior distributions, and hence improve reliability of extreme rainfall 

forecasting. 
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1. Introduction 
 

Extreme rainfall events cause significant damage to many 

sectors. These include agriculture, infrastructure and 

transport, human settlements, heath sector, insurance, to 

mention few. In Tanzania many areas are usually 

affected by heavy rainfall. The floods that occurred in 

Dar es Salaamin the year 2011 are example of such 

destructive heavy rainfall. More examples of such 

destructive heavy rainfall in Tanzania can be found, for 

example, in Ngailo et al (2016). 

 

Most climate models indicate that in many places global 

warming is likely to increase the frequency of 

extremeweather events [14].  The United Nations 

Intergovernmental Panel on Climate Change (IPCC) 

issued a report inFebruary 2007 stating that ―It is very 

likely that hot extremes, heat waves, and heavy 

precipitation eventswill continue to become more 

frequent‖. Therefore, understanding the patterns of 

extreme rainfall and their future behaviour is very 

important to policy makers in Tanzania. To achieve 

this,a long historical dataset on rainfall is needed. In 

Tanzania, like other developing (even developed) 

countries, such data are not available. Classical 

statistical techniques for the analysis of extreme rainfall, 

that requires long historical data, may not produce the 

reliable results for scarcity data. In such case, a Bayesian 

framework for extreme values analysis is usually 

preferred [14], [20]. Using Bayesian inference in such 

situation would allow any additional information about 

the processes to be incorporated as prior information. 

The benefits of using any information available are 

likely to be great- due to lack of data; however, there is 

some concern that it may not be possible to formulate 

such prior information. Coles and Powell (1996) 

comment that if data on the extremes are so scarce, then 

it may not be possible for an expert to independently 

formulate prior beliefs about the process. Alternatively, 

one would opt to use non-informative prior when no 

such informative prior is possible.This paper aims at 

using the output from Weather Research and Forecasting 

(WRF) model as a source (external) of an informative 

prior. Furthermore, this will link two data sets: gauging 

(or automatic) station records and WRF outputs in order 

to enhance forecasting of extreme events. 

 

Recently there has been an increasing interest in 

Bayesian methods applied to extreme value problems, 

and there have been a number of studies on extreme 

value problems (see for example Coles and Powell 

(1996) and Coles and Tawn (1996, 1991)). In most cases 

atrivariate normal prior distribution of parameters is 

used. The means of marginal distributions are set to zero 

(except few cases for shape parameter [14]) and 

variances are set to high values to reflect the absence of 

external information. Another approach is to construct a 

prior distribution in terms of quantiles. Coles andTawn 

(1996) argue that eliciting prior information in terms of 

extreme quantiles is sensible because this is a scale on 

which an expert is most likely to be able to accurately 

quantify their prior beliefs about extremal behaviour. 

Likewise, the author of this paper argues that since the 

outputs from WRF on extremal rainfall are in quantiles 

forms, then it is sensible to construct prior distribution 

from these outputs using quantiles approach. 

 

Thepaper is organizedasfollows. Section2, describes study 

area, data and methodology for Bayesian methods, 

likelihood of extremes and prior distribution construction. 

Finally, the results and conclusion are presented insection 

3. 
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2. Materials and Methods 
 

2.1   Study Area 

 

Dar es Salaam is located in the eastern part of Tanzania 

mainland between latitudes 60S and 70S and longitudes 

33.330E and 390E. To the east, it borders Indian Ocean. It 

stretch about100 km between the Mpiji River to the north 

and beyond the Mzinga River in the south, enclosing a land 

of 1,350 km
2
. 

 

Tanzania has a tropical equatorial ltype of climate. Dar es 

Salaam region, which is Northern Coast of Tanzania, has an 

average temperature of 25.9
o 

C and about 1074.5 mm of 

precipitation falls annually [6]. The driest month is August 

with average of 23mm of rain and the most of precipitation 

falls in April with average 251mm.  February is the 

warmest month of the year with average temperature of 

27.9
o 

C and July is the coldest month with average 

temperature of 23.8
o 
C. 

 

2.2 Data 

 

Two types of data sets are used in this study: the daily 

rainfall and WRF outputs. The dailyrainfall data set 

recorded atDar es Salaam Airport, Tanzania (latitude: 6.87 

S; longitude: 39.20 E; 53 m above mean sea level) between 

1
st
 January 1961 - 31st December 2014wasobtained from 

the Tanzania Meteorological Agency (TMA), while the 

WRF outputs are the outputs of the experiment run for 15 

days (14
th

-28
th

 December 2011).WRF experiments were run 

using optimal parameterization for Dar es Salaam region. 

For more details on these experiments refer toNgailo 

(2017). 

 

Figure 1 represents the daily rainfall at Dar es Salaam 

over the period 1961-2014 and we can see some 

extreme rainfall (>50mm) over the periods. Figure 2 

represents the WRF outputs of the experiment on 

rainfall for Dar es Salam in December 2011. In this 

month Dar es Salaam experienced heavy rainfalls for 

three consecutive days (19th to 21st, with the highest 

on 20th) which have not been experienced for more 

than 50 years according to TMA [7].  The 

experiments were run over the period from 14th to 

28th December 2011. As it can be seen, the 

experiment satisfactorily captured the event (WRF 

outputs are indicated by ―+‖) although the highest 

quantile (156.4 mm) was not captured adequately. 

 

 
Figure 1: Original Daily rainfall data for Dares Salam 

 

 
Figure 2: WRF outputs of the experiment of rainfall 

(in mm) for Dar es Salam for 15 days (14th to 28th)in 

December 2011 indicated by ―+‖. Values indicated by 

―o‖ correspond to the observed daily (24h) rainfall for 

the entire month. 

 

2.3  Bayesian Modelling 

 

Suppose that the data 𝒙 = (𝑥1 , 𝑥2 , … 𝑥𝑛 )  are 

independent realizations of a random variable whose 

density 𝑓(. )  falls within parametric 

family 𝑓 𝑥 𝜃 : 𝜃 ∈ Θ .  The likelihood function is 

defined as  

𝐿 𝜃; 𝒙 =  𝑓(𝑥𝑖 |𝜃)𝑛
𝑖=1 . 

 

Usually it is easier to work with log-likelihood 

function𝑙 𝜃; 𝒙 = 𝑙𝑜𝑔 𝐿(𝜃; 𝒙) . In classical 

framework (i.e. Frequentist paradigm) parameters are 

assumed to be constant. However, in Bayesian 

framework, parameters are assumed to be variable 

with a certain distribution. More details on Bayesian 

framework on extreme value analysis can be found, 

for instance, in [8], [9],[10]. 

 

In Bayes Theorem we assume that, without reference 

to the data, it is possible to formulate beliefs about 𝜃 

that can be expressed as a probability distribution. 
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This distribution is known as prior distribution. Let 

𝜋(𝜃) denote the density of the prior distribution of 𝜃. 

Bayes’ theorem can be used to combine likelihood 

and prior information to give posterior distribution as 

follows: 

  

𝜋 𝜃 𝒙 =
𝜋 𝜃 𝐿 𝜃 ;𝒙 

 𝜋 𝜃 𝐿 𝜃 ;𝒙 𝑑𝜃
.
Θ

∝ 𝜋 𝜃 𝐿 𝜃; 𝒙 ,  (1) 

 

whereπ θ x  is the density of posterior distribution. 

 

The primary objective of an extreme value analysis is 

usually prediction. Let 𝑦 denote a future observation 

with density function𝑓(𝑦|𝜽), where 𝜃 ∈ Θ. The 

posterior predictive density of 𝑦, given observed data 

𝒙, is  

𝑓 𝑦 𝒙 =  𝑓 𝑦 𝜃 𝜋 𝜃 𝒙 𝑑𝜃
.

Θ

 

So, if a suitable prior can be specified Bayesian 

framework can be used for prediction purpose. The 

difficulty in using Bayes’ procedure is the 

computation of the integral in (1). This problem can 

be overcome by using simulation based techniques 

such as Markov Chain Monte Carlo (MCMC) to 

simulate realizations of the posterior distribution. 

 

Apart from prior distribution specification, equation 

(1) requires the likelihood function that can be 

obtained from the governing distribution of the 

observed processes, in this case the extreme 

behaviour. In the following section, the likelihoods 

based on different characterizations (that are used in 

this study) of extreme behaviour are outlined. 

 

2.4 Likelihoods for Extremes 

 
Let 𝜽 = (𝜇, 𝜎, 𝜉)where (𝜇, 𝜎, 𝜉)are the location, scale 

and shape parameters; suppose the data 𝒙 =
(𝑥1, 𝑥2 , … 𝑥𝑛 )  are independent realizations of a random 

variable from extreme value distribution. Then the 

following outlines the likelihood functions that are used in 

study. 

 

2.4.1 Generalized Extreme Value Distribution 
Generalized Extreme Value (GEV) distribution has 

distribution function given by 

𝐹 𝑧 = 𝑒𝑥𝑝  − 1 + 𝜉(𝑧 − 𝜇)/𝜎 +
−1/𝜉

 ,  (2) 

Where 𝜎 > 0 and ℎ+ = max⁡(ℎ, 0).  The case of 𝜉 = 0 the 

distribution converges to Gumbel distribution. 

 

The log-likelihood for GEV(𝜽) is given by  

𝑙 𝜽; 𝒙 = −𝑛 log 𝜎 −  1 +
1

ξ
  log  1 +

𝜉 𝑥𝑖 − 𝜇 

𝜎
 

𝑛

𝑖=1

−   1 +
𝜉 𝑥𝑖 − 𝜇 

𝜎
 

−
1

𝜉
𝑛

𝑖=1

, 

 

Provided 1 + 𝜉(𝑥𝑖 − 𝜇)/𝜎 is positive for each i=1,..,n. 

 

 

 

2.4.2 Point Process Characterization 

Suppose 𝑀𝑛 = max 𝑋1, … , 𝑋𝑛  can be approximatedby the 

GEV(𝜽) with possibly end points 𝑧− and 𝑧+. For large 

𝑢 > 𝑧−  the sequence  𝑋1, 𝑋2, … , 𝑋𝑛  viewed on the 

interval (𝑢, 𝑧+) is approximately a non-homogeneous 

Poisson process with intensity function 

𝜆𝜽 𝑥 =
1

𝜎
 1 + 𝜉  

𝑥 − 𝜇

𝜎
  

−
 𝜉+1 

𝜉
,    𝑢 < 𝑥 < 𝑧+,  

where𝜎 > 0     and  𝜽 = (𝜇, 𝜎, 𝜉). The intensity measure on 

(𝑢, 𝑧+)  is therefore given by  

Λ𝜽 𝑢, 𝑧+ =  𝜆𝜽 𝑥 𝑑𝑥 =  1 + 𝜉  
𝑢 − 𝜇

𝜎
  

−
1

𝜉
.

𝑧+

𝑢

 

Suppose that 𝑛𝑢  of 𝑛 observations exceed the threshold 𝑢. 

Let 𝑥(𝑖) denotes the 𝑖th exceedance. The log-likelihood is 

derived as 

𝑙 𝜽; 𝒙 = 𝑛𝑦Λ𝜽 𝑢, 𝑧+ +  𝑙𝑜𝑔 𝜆𝜽(𝑥 𝑖 ) 

𝑛𝑢

𝑖=1

, 

provided1 + 𝜉(𝑢 − 𝜇)/𝜎   and  1 + 𝜉(𝑥(𝑖) − 𝜇)/𝜎  are 

positive for each i=1,..,n.  𝑛𝑦 is the number of periods of 

observation, and the maxima over those periods are 

distributed as GEV(𝜽). If 𝑛𝑦  is the number of years of 

observation, the annual maxima are distributed as GEV(𝜽). 

This approximation assumes that there are a large number 

of observations within each period. Mathematical details of 

these results can be obtained in [9],[11] ,[12]. 

 

2.5 Construction of Prior Distribution from WRF 

outputs 

 

The likelihoods outlined in sections 2.4.1 and 2.4.2 

are all function of the parameter vector 𝜽 = (𝜇, 𝜎, 𝜉).  
The construction procedures of prior distribution on these 

parametersare the same and the quantiles approach used 

here is the same as in Coles and Tawn (1996). Since the aim 

of this paper is to construct prior from WRF outputs on 

rainfall, the construction of prior distribution in terms of 

quantiles is the only procedure illustrated here by using 

GEV distribution. Other procedures can be found, for 

instance, in [2], [3], [13]. 

 

Let  𝐹 𝑞𝑝 = 1 − 𝑝where 𝐹(. ) is the GEV distribution 

function given in equation (2). It follows that 

𝑞𝑝 = 𝜇 +
𝜎 𝑥𝑝

−𝜉
− 1 

𝜉
, 

where 𝑥𝑝 = −log⁡(1 − 𝑝).   A prior distribution can be 

constructed in terms of quantiles  (𝑞𝑝1
, 𝑞𝑝2

, 𝑞𝑝3
)   for 

specified probabilities 𝑝1 > 𝑝2 > 𝑝3. It is easy to work with 

differences (𝑞 𝑝1
, 𝑞 𝑝2

, 𝑞 𝑝3
), so that 𝑞 𝑝𝑖

= 𝑞𝑝𝑖
− 𝑞𝑝𝑖−1

 for 

𝑖 = 1,2,3, where  𝑞𝑝0
  is the physical  lower end point of the 

process variable.  The quantile differences are assumed to 

be independent with gamma distribution i.e. 

𝑞 𝑝𝑖
~𝑔𝑎𝑚𝑚𝑎 𝛼𝑖 , 𝛽𝑖 ,        𝛼𝑖 , 𝛽𝑖 > 0, 

for 𝑖 = 1,2,3. This construction leads to the prior density 

𝜋 𝜽 ∝ 𝐽  𝑞 𝑝𝑖

𝛼𝑖−1
𝑒𝑥𝑝  −

𝑞 𝑝𝑖

𝛽𝑖

 

3

𝑖=1

, 

provided  that𝑞𝑝1
< 𝑞𝑝2

< 𝑞𝑝3
. 𝐽is the Jacobian of the 

transformation from (𝑞𝑝1
, 𝑞𝑝2

, 𝑞𝑝3
) to 𝜽 = (𝜇, 𝜎, 𝜉), namely 
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𝐽 =
𝜎

𝜉2     −1 𝑖+𝑗

𝑖,𝑗∈ 1,2,3 

𝑖<𝑗

(𝑥𝑖𝑥𝑗 )−𝜉 log⁡ 
𝑥𝑗

𝑥𝑖

   , 

where𝑥𝑖 = log⁡(1 − 𝑝𝑖) for  𝑖 = 1,2,3. 

At 𝜉 = 0 the prior distribution is defined by continuity, 

using 

lim
𝜉→0

𝑞𝑝𝑖
= 𝜇 − 𝜎 log 𝑥𝑖 ,       𝑖 = 1,2,3, 

and 

lim
𝜉→0

𝐽 =
𝜎

2
    −1 𝑖+𝑗 log 𝑥𝑖 log 𝑥𝑗 log  

𝑥𝑗

𝑥𝑖

 
𝑖,𝑗 ∈{1,2,3}

𝑖<𝑗

  . 

 

The hyperparameters𝛼𝑖 , 𝛽𝑖  and 𝑝𝑖  must be specified.  The 

𝑝𝑖 ’s values  are usually  set at 𝑝𝑖 =  10−𝑖    for 𝑖 = 1,2,3   (It 
is also by default in the evdbayes package).  In this study, 

the default values   (𝑝1,  𝑝2 ,𝑝3)=  (0.1, 0.01, 0.001) are 

used. 

 

To specify𝛼𝑖 ,  𝛽𝑖  for 𝑖 = 1,2,3 from WRF outputs, three 

upper quantiles from the WRF outputs are used  (from 

which the differences are obtained).  For gamma random 

variable, if the mean and variance are known, the shape 

𝛼𝑖and scale 𝛽𝑖parameters can be obtained (e.g. using  

igamma function in evdbayes R package).  Let   𝑞 𝑝𝑖
 and   

𝑣𝑞 𝑝𝑖
be respectively the mean and variance of a random 

variable 𝑞 𝑝𝑖
where  𝑞 𝑝𝑖

~𝑔𝑎𝑚𝑚𝑎 𝛼𝑖 , 𝛽𝑖 . It is easily shown 

that  𝛼𝑖 =  𝑞 𝑝𝑖
 

2
 𝑣𝑞 𝑝𝑖

    and  𝛽𝑖 =   𝑣𝑞 𝑝𝑖
  𝑞 𝑝𝑖

  for 

𝑖 = 1,2,3. 

 

The Earth physical conditions of a given place for a given 

time interval are fixed.  Simulation results based on these 

fixed conditions will be the same for a particular simulation 

method.  Variations in the simulation output will depend on 

the variations on WRF model specifications.  Since 

different specifications in the WRF model will possibly 

result into different outputs, in this study it is assumed that 

the simulated quantiles are the means of sample quantiles 

space for that WRF model.  This assumption can be used 

for any simulation model.  The remaining information 

required is the variances of the quantiles. To allow possible 

different specifications of the WRF model, as with 

informative priors, variances are set at high values.  In this 

study, variances are set equal to 1000 for each quantile. 

 

3. Results and Discussion 
 

The first analysis is based on the observed annual maxima 

derived from daily (24h) rainfall data set described in 

section 2.2. It is assumed that these annual maxima are 

independent observations from the GEV distribution. Using 

the Maximum Likelihood Estimation (MLE) method [with 

the packages eXtremes (Gilleland and Katz, 2011) in R] we 

obtain the following estimates for the parameters  

 μ , σ , ξ  = (68.52, 18.70, 0.111) with standard errors 

(2.807, 2.108, 0.092 ) for   μ  , σ and ξ  respectively. 

Estimated 95%   confidence intervalsfor each parameter are 

[63.014, 74.017] for μ, [14.57, 22.832] for σ  and [-0.068, 

0.291] forξ (Table 1). Although the estimated shape 

parameter is positive, the estimated 95% confidence interval 

extends below zero showing uncertainty in estimating shape 

parameter. The return level plot in Figure 3 shows the curve 

to be approximately linear due to the estimate of ξ being 

close to zero. 

 

 
Figure 3: Return Level (in mm) plot using 

maximum likelihood estimates. 

 

We nowseek more reliable estimates based on the prior 

information using a Bayesian approach, through the 

package evdbayes under R (Stephenson A. and Ribatet M., 

2012). As mentioned earlier, in this study we apply 

quantiles approach in eliciting the prior distribution but 

instead of using experts knowledge (which in most cases do 

not exists), quantiles from WRF outputs are used.  

 

The WRF experiments were set to run at an interval of 3 

minutes for 15 days. The outputs are converted to 

cumulative rainfall using an interval of 24 hours. This leads 

to have 15 records of cumulative daily rainfall.  The 

resulting records are depicted together with gauge records 

on Figure 2. The three higher quantiles from the WRF 

outputs are 15.52084, 66.05064 and 84.49259.  The 

associated differences are 15.52084, 50.52980, 18.44195. 

These differences are assumed to be the means of random 

variables associated with quantiles of the differences. To 

allow uncertainties associated with this assumption, large 

variances are set to these quantiles and are set to be 1000 in 

this study. Using these in igamma of evdbayes package 

gives (α1 , α2, α3)=(0.241, 2.552, 0.339) and (β1, β2 , β3)= 

(64.433, 19.794, 54.348). 

 

By using point process characterization and setting 

threshold equal to 50mm, these (α1 , α2 , α3) and (β
1

, β
2

, β
3
) 

were applied in prior.quant and posterior functions of 

evdbayes package. Using MLEs as the initial vectorθ =

 μ , σ , ξ  = (68.52, 18.70, 0.111), and using proposal 

standard deviations psd = (2.8, 2.1, 0.09), a Markov chain 

Monte Carlo (MCMC) method was applied to generate 

samples from the posterior distribution (10000 

iterations).The sample means of each marginal component 

of the chain are  μ , σ , ξ  =(72.731, 19.361, 0.052 )with 

standard deviations2.285, 1.406, 0.063 for   μ  ,   σ   and  ξ  

respectively. Estimated 95%   confidence intervals for each 

parameter are [68.253, 77.210] for   μ , [16.605, 22.117] for 

σ  and [-0.071, 0.174] forξ  (These figures are rounded to 3 

decimal places). The posterior return level plot in Figure 3 

shows the curve to be approximately linear due to the 

estimate of ξ being close to zero. 
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Comparing the two methods (MLE and Bayesian), 

the point estimates are almost the same, but 

Bayesian method gives relatively small standard 

error which results into narrower 95% confidence 

intervals. The associated intervals are narrower by 

(19%, 33%, 32%) for (𝜇,𝜎, 𝜉) respectively. This 

highlights that Bayesian estimation method results 

into more reliable results compared to MLE for 

scarcity data. Similar result is obtained by 

Giugni(2013) who analyzed a 53 years dataset from 

the year 1958 to 2010. Giugni applied Bayesian 

approach with priors of parameters estimated using 

the normal distributions which are set at 

𝜇~𝑁(0, 104),  𝜎~𝐿𝑁(0, 104)  and 𝜉~𝑁(0.15, 0.2). 

A shape (𝜉) parameter of 0.15 used by Giugni (also used 

in [17], [18], [19]) is the empirical evidence based on 

Europe and North America zones. 

 

Comparing the quantile approach applied in this paper and 

non-informative prior with normal distribution set at 

at𝜇~𝑁(0, 104),  𝜎~𝐿𝑁(0, 104)  and 𝜉~𝑁(0, 104), 

the point estimates are almost the same, but the 

quantile approach with prior derived from WRF 

outputs gives relatively small standard errors. This 

results into narrower empirical 95% confidence 

intervals. The empirical 95% confidence intervals 

are narrower by (21%, 38%, 34%) for (𝜇, 𝜎, 𝜉) 

respectively. This shows that by including 

informative priors (from WRF outputs) has 

improved reliability of estimates. Furthermore, 

comparing informative prior with normal 

distribution [the one used by Giugni (2013) applied 

to current dataset] set at 𝜇~𝑁(0, 104),  

𝜎~𝐿𝑁(0, 104)  and 𝜉~𝑁(0.15, 0.2) with quantile 

approach based on WRF outputs, the later gives 

almost the same point estimates but with relatively 

small standard errors. The informative prior 

𝜉~𝑁(0.15, 0.2) gives the means (standard errors) 

estimates of 68.506(2.849) forμ , 19.675(2.334) forσ  

and 0.113 (0.093) for ξ . 

 

 Table 1: A summary of results for the different methods of estimation in analysis of the Dar es Salaam data 
Method MLE Bayesian 

Quantiles from WRF 

Bayesian 

Non-informative 

 

Estimates 

𝜇 (mm) 68.52 72.585 72.827 

𝜎(mm) 18.70 19.216 20.1373 

𝜉(mm) 0.111 0.049 0.1149 

95%  

intervals 
𝜇(mm) [63.014,74.017] [67.920, 77.251] [67.795, 77.859] 

𝜎(mm) [14.57,  22.832] [16.274, 22.158] [16.385, 23.890] 

𝜉(mm) [-0.068, 0.291] [-0.074,    0.172] [-0.064, 0.294] 

 

 
Figure 4: Posterior return level plot in Bayesian 

analysis of the Dar Es Salaam rain data. The curves 

represent medians (solid line) and intervals 

containing 95% of the posterior probability (dashed 

lines) 

 

4. Conclusions 
 

In this paper it is shown that WRF rainfall outputs can be 

used to construct informative priors in the Bayesian 

framework of extreme value rainfall analysis. This was 

achieved by considering high quantiles from WRF outputs 

as the means of the possible WRF outputs with different 

possible configurations for  the given time interval and for 

the given place. 

 

Distribution of annual maxima of rainfall is well modelled 

by GEV distribution [14]. The shape parameter is crucial in 

determining the characteristics of extreme value behaviour. 

Estimation of GEV parameters by methods such as 

maximum likelihood can be unreliable due to small length 

of rainfall records. Rainfall data of 54 years of Dar es 

Salaam, Tanzania was analyzed using both MLE and 

Bayesian methods. The shape parameter, based on MLE, 

was estimated as ξ = 0.111 with a standard error of 

0.092.  

 

Bayesian method, constructing prior using WRF 

outputs, gives estimate of ξ = 0.052 with a standard 

error of 0.063. The Bayesian based estimates with 

prior constructed using WRF rainfall outputs are in 

agreement with those obtained with prior 

information of  𝜉~𝑁(0.15, 0.2), but the later gives 

relatively higher standard error i.e.𝜉 = 0.113 and 

standard error is 0.093. 
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