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Abstract: Multiple imputation procedure is used in handling of item non-response. The imputation procedure is affected by model 

misspecification and leads to loss in efficiency and biased results. The inclusion of auxiliary variables in the sampling design helps to 

avoid sensitivity of inference to model misspecification and improves the precision of estimate of population mean. The main aim of this 

study is to incorporate auxiliary variables in the multiple imputations to improve the accuracy of the values imputed and the efficiency of 

point estimators. The two-step semi-parametric multiple imputation procedure is considered and modified to incorporate the auxiliary 

variables. The two-step semi-parametric multiple imputation procedure accounts for unequal probabilities of selection and reduces 

misspecification in the imputation model. In the first step a non-parametric model is used to generate a posterior predictive model that 

includes both item level missingness and auxiliary information. The size variables in a sample are replicated using a constrained 

Bayesian Bootstrap. A constrained Weighted Finite Population Bayesian Bootstrap is then used to create a population of size variables 

which is considered to be the value of an auxiliary variable that is closely associated with the survey variable. The imputed size variables 

are then used in a linear regression model to predict the survey variables for the synthetic population. A parametric model is used to 

impute the missing data on the survey variables in the second step. A simulation study was conducted using  single stage probability-

proportionate-to-size without replacement sampling design to compare the asymptotic properties of the estimator of  the population mean 

to those obtained using the existing two-step semi-parametric multiple imputation procedure. The proposed procedure reduced bias and 

resulted in gain in efficiency. The 95% confidence interval coverage rates of the proposed estimator are close to nominal level when the 

sample size is small. 
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1. Introduction 
 

Item non-response results when some of the individuals in 

the sample refuse to give responses to particular questions in 

a study. According to Rubin (1987), item non-response is 

handled by use of Multiple Imputation. The Bayesian 

bootstrap was suggested by Rubin in 1981.It is a 

development of Efron’s (1979) Bootstrap. Bootstrap 

involves estimation of parameters by simulating the 

sampling distribution. In Bayesian Bootstrap, the posterior 

distribution of a parameter is simulated. Lo (1988) assumed 

a simple random sampling design and developed the Finite 

Population Bayesian Bootstrap (FPBB) which is based on a 

sampling scheme that is equivalent to polya urn. The polya 

posterior is closely related to the Bayesian bootstrap and the 

finite population Bayesian bootstrap. According to Lazar et 

al (2008), the polya posterior is a non-informative Bayesian 

approach to finite population sampling. It involves assigning 

a prior distribution to the population statistics using the 

Bayes theorem. 

 

Auxiliary variables exist within the original data set. They 

are not included in the analysis but they are related to the 

variable of interest. They help in maintenance of the missing 

at random (MAR) condition. Little et al (2013) argues that, 

auxiliary variables are related to the probability of 

missingness in a variable or to the incomplete variable itself. 

Incorporation of auxiliary variables in incomplete data 

analysis takes into account the condition of missingness. 

 

According to Strief et al (2014), the auxiliary variables can 

be used to create a sampling design and also in making 

inferences. Lazar et al (2008) proposed a constrained polya 

posterior to be used when there are prior information about 

population quantile and means of the auxiliary variables. 

Strief and Meeden (2014) incorporated weights which 

depended on auxiliary variables in the constrained polya 

posterior. According to Meeden (2008), inference on finite 

population can be obtained by incorporating auxiliary 

variables in the non-informative Bayesian model.  

 

Zangeneh et al (2011) proposed a Bayesian non-parametric 

imputation procedure to be used in estimation of the 

population quantities in absence of design information on 

non-sampled units. A Dirichlet Process Mixture Normal 

(DPMN) was used in the imputation of the non-sampled 

units and a Bayesian Penalized spline model was used in 

prediction of the survey outcome variables. It was observed 

that using the imputed size variables in prediction of the 

survey outcomes results to significant gain in efficiency. The 

weighted FPBB was developed by Cohen (1997) and used 

by Zhou et al (2016) to account for item non-response. 

According to Zhou et al (2016) the new procedure accounted 

for unequal selection probabilities and reduced bias although 

with little loss in efficiency.  

 

This research incorporates the auxiliary variables in the two-

step semi- parametric multiple imputation procedure so as to 

improve efficiency and reduce the biasedness in estimation 

of mean. The inclusion of the auxiliary variables in the 

weighted FPBB is done under the assumption of MAR. 

Since under MAR, the condition of missingness is 

independent of unobserved data. The weighted FPBB model 

is modified so as to adjust for PPS selection by incorporating 

size variables and applying it in prediction of the non-

sampled sizes. A model is then used to predict the survey 
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outcome variables for the obtained non-sampled sizes. The 

Constrained Bayesian Bootstrap procedure of Zangeneh et al 

(2011) is then used to modify the weighted FPBB of Zhou et 

al (2016). This results to a constrained Weighted FPBB.  

 

This article is organized as follows. In section 2 the 

proposed estimator of population mean is discussed in detail. 

In Section 2.1 a posterior predictive distribution that 

incorporates auxiliary variables is developed. A constrained 

weighted Finite Population Bayesian Bootstrap is described 

in section 2.2.The asymptotic properties of the proposed 

estimator of population mean is discussed in section 2.3.The 

empirical study is described in section 3 and finally the 

conclusion discussed in section 4. 

 

2. Proposed Estimator of  Population Mean 
 

2.1 Posterior predictive distribution that incorporates 

auxiliary variables 

 

In this study a Bayesian population model that makes use of 

prior information available about auxiliary variables is 

developed. A Bayesian model in which the prior distribution 

for the parameter    is specified together with a distribution 

for the population value conditional on  say       is 

considered. The posterior distribution of the non-sampled 

data is determined by conditioning on the sampled data. It is 

assumed that auxiliary variables are observed for every unit 

in the population. Consider a population with N units in 

which Y is the survey outcome variable,    is the size 

variable, W is the weight, I is the sampling indicator. In this 

case I=1 if a unit is sampled and 0 otherwise. If a sample is 

selected, the units in the population can be divided into 

sampled and non-sampled thus         , 
              and      according to the sampling indicator. 

Also the population is divided into the observed and missing 

units according to the response indicator           . 

Where     the response indicator for the units observed in 

the sample and      is the response indicator for the non-

sampled units. 

 

The sampled size measures are divided into those observed 

and those missing 

                      , according to their correspondence to 

the survey outcome variables 

,                    . The non-sampled size measures are 

also divided into observed   and missing,      

                     .The non-sampled size measures are 

obtained using a constrained weighted Bayesian bootstrap. 

The observed and missing information on size variable is 

pooled together resulting to                        ) and   

                            . The observed size variable in 

the entire population is then used in prediction of their 

associated survey variables via a linear regression model. 

These results to                      ) and       

                  .The missing survey outcome variables are 

obtained by imputation using a parametric model. 

 

The joint distribution of the size variable and survey variable 

is given by 

                     . The posterior predictive 

distribution of   given the observed sampled size variable is   

        . The posterior predictive distribution of   is 

obtained by averaging the complete data on posterior of   

over the posterior predictive distribution of the missing 

sizes, 

                                                         

                                     (1) 

The posterior predictive distribution of the non-sampled 

sizes given the sampled sizes is                     
               

                                      (2) 

The information on missing sizes and the associated survey 

outcome variables is incorporated into (2) and results to  

                                                              (3) 

The non-sampled data is generated together with the missing 

and the observed information on both the size variable and 

the survey variable using the constrained weighted FPBB. 

Since        is associated with        the integration is done 

over      .Thus, 

                                                    

  ,   ,    ,  ) (   ,   /  ,   ,  )       
      

   (4) 

Equation (4) is parameterized and then integrated with 

respect to the posterior distribution of   resulting to  

                                                     

  ,   ,    ,  , ) (   ,   /  ,   ,  , ) (  ,   ,  , 
  ,  / ) ( )d d          (5) 

                                                     

  ,   ,     
,  , ) (   ,   /  ,   ,  , ) ( /    ,    ,  ,)d d 

          
 (6)  

The simulation of equation (6) is done using the Gibbs 

sampler by iterating between the draws of     
                                           , and 

those of                           . The draws of the non-

sampled size variables are obtained using the constrained 

weighted FPBB which undoes the sampling deign (weights). 

This makes it possible to draw units from the posterior 

predictive distribution that is free from the effect of unequal 

probability selection. 

 

2.2 The constrained weighted FPBB 

 

Consider a sample of size n which consists of both the 

survey outcome variable and its associated auxiliary 

variable, (        where i=1, 2… n. It is assumed that the 

auxiliary variables are available for all the sampled units and 

their corresponding total is known       
 
   . Also the 

population mean of the auxiliary variable is known since it is 

assumed that there exist a linear relationship between the 

variable of interest and the known auxiliary characteristic. 

 

In PPS sampling the units are selected with probability 

proportional to the value of    which is the size measure. The 

size measure is only reported for the sampled units. The 

number of non-sampled units (N-n) is known but their sizes 

are unknown hence the PPS sampling scheme is informative. 
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This implies that the sizes need to be adjusted due to the 

effect of selection. This is achieved by incorporation of the 

size measure in the weighted FPBB. The constrained 

Weighted FPBB is obtained by assuming a multinomial 

distribution for the observed sampled size variables and  

Dirichlet posterior distribution for the parameter   Thus the 

posterior predictive distribution of the non-sampled counts 

in the population is obtained by considering both the 

multinomial and Dirichlet distribution. 

 

Denote the sample by                                   

         , where    is the weight attached to     unit in 

the sample,    is the survey variable, 

                               is the response indicator. Let 

(            be a set of distinct sizes for the sampled units 

and      
 
  

 
     

 
  be a vector of probabilities. The 

sampled units are assumed to contain different vectors of 

values such that n=k. This implies that                  

        
 
. Let    be the number of sampled units with 

distinct sizes      where         
                     In 

this case          
   , where X is the total sum of all the 

size measures in the sample. The distribution of the sampled 

counts in the population is obtained by assuming 

multinomial distributions for the weighted count. Thus 

               
 
    

 
  hence 

                 
 

   
     (7) 

.Where,   
 

  
, and,     

    

   
 . 

According to Zhou et al (2016), to obtain a posterior 

distribution for the parameter    both a multinomial 

distribution and a Halden prior of                 are 

considered. This results to a Dirichlet posterior distribution 

given by                             . Thus 

                  
 

     
     (8) 

To create draws for the non-sampled sizes using the 

constrained weighted FPBB consider the following. Let   
  

be the number of non-sampled counts with size measure 

   .This implies that    
      

    .The counts of the non-

sampled sizes have a posterior predictive distribution which 

follows a multinomial distribution with a sample size of N-n 

and probabilities    
 
      

 
  , where  

 
  

           

  
 .c is a 

constant that normalizes the expression. Thus the posterior 

predictive distribution of the non-sampled values in the 

population is given by 

             
                  

 

 

 

 
           

 
     

 

      
 

 

 

 
           

 
     

 

 

             
         

       
                               

 
     

 
 
   

 

 

 

 

                       
 
     

 
 
   

 

 

 

 

 

             
       

 
    

 
   

 
       

     
 
     

 
 
   

 

 

 

 

       
 
       

     
 
     

 

 

 

 

 

 

    
        

             

       
    

     
   

      
     

   

     
   

    
         

    
   

 
 

 
 

       
    

    
      

     
   

    
    

         
    

   
 
 

 
 

 

 (9) 

In this study the adapted version of the constrained FPBB is 

in line with that of Zhou et al (2016). It is carried out in two 

stages. The first stage involves replicating the initial sample 

using a constrained Bayesian bootstrap to generate L 

replicate for the size measure. This involves drawing the 

posterior distribution of the parameter vector   conditional 

on the counts in the sampled data,            .Thus   
    

                      , where 

  
   

=  
 

         
 

    .This generates the posterior joint 

distribution of all the size variables in the population given 

the observed values in the sample. These results 

to      
    

    
               . The number of times the 

size measure is picked from the  
   replicate is denoted 

by      , this is considered in calculation of the     bootstrap 

weight for the size measure. Thus             .This 

weights are used in the second stage. 

 

The second stage involves undoing the sampling weights 

using a constrained weighted FPBB. This is achieved by 

creating a B unweighted population of size measures for 

each of the L replicates. This yields the predicted counts of 

the non-sampled sizes for the replicated samples. The 

constrained weighted FPBB (9) is approximated using the 

procedure proposed by Cohen (1997).The procedure 

involves selecting a polya sample of size 

measures      
    

    
    

  of size N-n from the urn     
      

   of 

size n. The selection of     size measure     
   

   
      

      is 

done using the probability   
     

  
            

   

 
 

           
   

 
 
 

    (10)  

, where                 and            .In this 

case   
   

 is the bootstrap weight for     size measure in the 

    replicate of the constrained Bayesian Bootstrap sample 

and        is the number of selection of unit i such that 

when           . This results into a constrained 

weighted FPBB population of size N denoted by,         
   

 

     
   

   
   

      
    

    
    

                         

        .Thus the unweighted population of size variables 

is given by,   
              

          
    

     Population of size 

variables is then used in a linear regression model to predict 

the survey outcome variables. This results to       
   

 

         
         

    
 , where 

        
   

         
   

    
   

   
   

         
    

    
    

    
    

   is the 

observed data and      
    

         
            

    
 , is the missing 

data. The missing data on survey variables are obtained by 

imputation using a parametric model. The undoing of the 

sampling design makes it possible to conduct multiple 

imputations under the assumption of iid. The draws of the 
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missing data are obtained from the posterior predictive 

distribution (     
    

         
  .  

 

This step yields M imputed data sets for each of the 

unweighted population generated above 

    
   

       
         

             
   

 . The resulting population 

of survey outcome variables is denoted         

      
             

              
            

             
   

  

 

2.3 Properties of the proposed estimator of population 

mean 

 

The missing data was first imputed using the weighted 

FPBB and resulted into B unweighted population of survey 

outcome variables. The resulting population was then 

imputed using a parametric model. This resulted into M 

imputed data sets for each of the B unweighted population,  

      

      
             

              
            

             
   

 

, where  l=1,2,…….,L , b=1,2,…..,B  and m=1,2,………,M. 

The population statistic is estimated by         which is 

obtained from the       imputation of     unweighted 

population within the     Bayesian Bootstrap sample. For 

complete data set the mean is given by     
 

 
       

    where                 
 

  
         

   
 
   . 

In this case       is estimated by   

       
 

  
         

   
 
   , which is the point estimate of 

the proposed estimator. The imputation model is correctly 

specified if          . 

       
 

  
         

 

   

 

   

 

       
 

  
              

 

   

 

   

 

But,            

           
 

  
      

             

    
 

 
      

 

   

 

E (     
 

 
     

E (       

This shows that the proposed estimator of population mean 

is unbiased. The variance of the proposed estimator of 

population mean is     
 

   
            

  
    

The mean squared error (MSE) is given by,     

             

    
 

   
            
 

   

 

The coverage rate of the confidence intervals for the 

population mean is obtained using normal approximation. 

Given the confidence level (1-      , the confidence 

interval for     bootstrap sample is obtained by  

        

 
     

 
      . Where   
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Thus the confidence interval is 

        
 

   
  

 
        

 

   
  

 
 . The coverage rates are 

obtained by computation of the proportions of samples for 

which the population mean is contained in the confidence 

interval. 

 

3. Empirical Study 
 

3.1 Description of the study population 

 

In the study design the survey outcome variable is assumed 

to be associated with the size variable, the probability of 

selection and their interaction. A missing data generation 

technique that does not depend on design information is 

considered, MAR-X. A population which consist of the 

survey outcome variables, size variables and other covariate 

is generated with the following joint distributions, logZ~N 

(2, 1), the survey weights Z=exp (logZ), size variables that 

are closely associated with the survey outcome variable. X ~ 

N (0.1*logZ,      
 ) , fully observed covariate information. 

Y~ N (0.1*X+0.5*logZ+0.6*x*logZ,    
  ),   the survey 

outcome variables of main interest 

 

3.2 Simulation Study 

 

A simulation study was conducted to assess the proposed 

estimator of population mean. The simulation design was as 

follows.  In steps one a population of size N=4000 is 

considered and used to obtain independent samples of size 

n=200 of size variables using PPSWOR sampling design. 

Step two involves generation of unweighted population of 

size variables. Each of the replicated samples is simulated 

using ‘wtpolyap’ function in the polyapost package. The 

number of simulations to be done is denoted as B. 

 

Step three involves prediction of survey outcome variables 

for the generated unweighted population of size variables. 

This is done using linear regression function in R package. 

This results to a complete data of survey variables which is 

referred to as “Before deletion population”. In step four, 

missing data is created for each of the replicated samples. A 

probit model is used as a deletion function to create missing 

data on each of the replicated samples. Both X and Z is 

assumed to be fully observed. The missing data generation 

technique is considered in the generation of latent variables 

for the deletion function. Thus                  , 

where        ) .The survey outcome variable is 
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considered to be missing if      .This may be done using 

the function ‘simsem’ in R.  

In step five missing data is imputed for each of the 

replicated samples using the ‘mice’ package in R. This is 

done using three different models of misspecification; the 

first model includes size variables, Z. The second model 

includes both size variables and weights say Z, logZ. The 

third model includes the interaction of size variables and 

weights, logZ*Z. Step six involves calculation of mean 

squared error and the 95% confidence interval coverage 

rates of the proposed estimator. Mean squared error (MSE) 

=             = 
 

 
         

   . 

The 95% confidence interval coverage rate of the proposed 

estimator is calculated based on the L replicates. The 

confidence interval of the estimator of population mean is 

obtained using 

           
 

   
            

 

   
 . 

 
2.4 Simulation Results 

 

Two critical statistics examined are mean squared error and 

95% confidence interval coverage rate. All are calculated 

based on B=20, M=5 and L=20, 30…, 100. The mean of the 

generated data is 1.456 and variance is 0.046.The simulation 

results are as shown below. 

 

Table 2: Summary results of imputation model that includes auxiliary variables only and other covariates only 
Imputation model Sample size 20 30 40 50 60 70 80 90 100 

 

Z only 

MSE 0.144 0.104 0.100 0.096 0.087 0.078 0.071 0.057 0.053 

95% CI cov. 1.000 1.000 1.000 0.980 0.917 0.943 0.900 0.900 0.870 

X only 

 

MSE 0.145 0.105 0.102 0.098 0.088 0.078 0.066 0.059 0.052 

95% CI cov. 0.950 0.966 0.975 0.980 0.917 0.914 0.913 0.922 0.920 

 

 
Figure 1: Plots mean squared errors of imputation models that includes Z only and X only 

 

Table 2 displays the summary results of imputation model 

that includes auxiliary variables, Z only and other covariates, 

X only. Figure 1 compares this two imputation models in 

terms of mean squared error. Under Z only imputation 

model, most of the mean squared errors are observed to be 

lower than those for X only imputation. The coverage rates 

decreases with increase in sample size. Under X only 

imputation model, the coverage rates are closer to the 

nominal level. 

 

Table 3: Summary results for imputation model that includes weights. 
Imputation model Sample size 20 30 40 50 60 70 80 90 100 

Z, logZ 
MSE 0.145 0.103 0.099 0.095 0.086 0.077 0.071 0.056 0.054 

95% CI cov. 1.000 1.000 1.000 0.980 0.917 0.943 0.900 0.900 0.880 

X, logZ 
MSE 0.146 0.110 0.104 0.098 0.088 0.077 0.066 0.058 0.051 

95% CI cov. 0.950 0.966 0.975 0.98 0.917 0.914 0.913 0.922 0.920 
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Figure 2: Plots of mean squared errors of imputation model that includes weights 

Table 3 displays summary results of imputation model that 

incorporates survey weights. The mean squared errors are 

lower than those in table 1.This implies imputation models 

that includes weights outperforms imputation model that 

includes X only and Z only. The imputation model that 

includes both auxiliary variables and weight has coverage 

rates which are higher than the nominal level when the 

sample size is small. The imputation model that includes 

both auxiliary variables and weight outperforms that which 

includes both weights and other covariates. 

 

Table 4: Summary results for imputation model that includes interaction between weights, auxiliary variables and other 

covariates 

Imputation model Sample size 20 30 40 50 60 70 80 90 100 

z*logz 
MSE 0.146 0.100 0.096 0.092 0.085 0.077 0.070 0.056 0.053 

95% CI cov. 1.000 1.000 1.000 0.980 0.917 0.943 0.900 0.900 0.870 

x*logz 
MSE 0.155 0.110 0.104 0.098 0.088 0.077 0.066 0.059 0.050 

95% CI cov. 0.950 0.966 0.975 0.980 0.917 0.914 0.913 0.922 0.920 

 

 
Figure 3: Plots of mean squared errors of imputation models that include interaction between weight, auxiliary variables and 

other covariates 

 

Table 4 shows summary results of imputation models that 

include interaction between weights, auxiliary variables and 

other covariates. The imputation model that includes 

interaction between auxiliary variable and weights 

outperforms the one that includes interaction between the 

weights and other covariates. This is vice-versa when the 

sample size is large. The imputation model that includes 

interaction between weights, auxiliary variables and other 

covariates outperforms the other two imputation models. 

This implies inclusion of interaction in the imputation model 

results to unbiased results and coverage rates which are 

closer to the nominal level. 

 

4. Conclusion 
 

The aim of this study was to propose a two-step semi-

parametric multiple imputation procedure that incorporates 

auxiliary variables and to apply it in estimation of 

population mean. The results show that inclusion of 

auxiliary variables in the imputation model results to 

unbiased estimates and gain in efficiency. The 95% 

confidence interval coverage rate of the proposed estimator 

is closer to nominal level when the sample size is small. 
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