Generalized Radical_g–Supplemented Modules

Wasan Khalid Alobaidy¹, Aseel Amer Alatuany²

¹Department of Mathematics, College of science, Baghdad University, Baghdad, Iraq

²Department of Mathematics, College of science, Baghdad University, Baghdad, Iraq

Abstract: In this paper we introduce generalized Radicals-supplemented and \oplus generalized Radical_g – supplemented module as generalizations of generalized Radical- supplemented module, \oplus generalized Radical supplemented module respectively some properties of these types of modules are investigated.

Keywords: generalized Radicals Radical_g supplemented module, supplemented module, \oplus generalized

1. Introduction

Let R be an associative ring with identity and let M be a a unital left R-module. A submodule N of M is said to be small in M (brietly N \ll M), if whenever M = N + L for L \leq M implies L = M [1]. By Rad(M) we denote the Jacobson radical of M, Rad(M) is the intersection of all maximal submodules equivalently Rad(M) is the sum of all small submodules. A submodules N of M is called essential in M denoted by N \leq_{e} M, if N \cap K \neq 0 for every submodule K \neq 0[2].A submodule L of M is called generalized small denoted by L <<_M, if for essential submodule T of M with the property M = L + T implies that T = M[6]. It is clear that every small submodule is generalized small, but the converse is not true generally. The intersection of all maximal essential submodules of M is called generalized radical of M denoted by Radg(M), If M has no maximal, then $\operatorname{Rad}_{g}(M) = M$, In fact $\operatorname{Rad}_{g}(M)$ is the sum of all g-small submodule of M [1]. The concept of generalized supplemented module appeared in [3].Let N be any submodule of M, if there exists a submodule L of M such that M = N + L with $N \cap L \leq Rad(L)$, then L is called generalized supplement of L in M. A module is called generalized supplemented, if every submdule of M has a generalized supplement in M [3]. Also in [3] a module M is called generalized⊕ supplemented, if every submodule of M has a generalized supplemented in M that is direct summand of M[5]. The concept of G-Radical supplemented module was introduced in [4] as a generalization of generalized supplemented modules, M is said to be generalized Radical supplemented (briefly) Rad_a supplemented, if $\forall N \leq M$, $\exists L \leq M$ such that M = N + Land $N \cap L \leq Rad$ (L). In this paper we will give another notation of modules as generalization of Rad_g – supplemented module. Also \bigoplus G-Rad_g –supplemented will be introduced some properties of these types of modules will be proved.

2. G-Rad g-supplemented Modules

In this section we will introduce $G-Rad_{g}$ - supplemented modules as a generalization of generalized Radical supplemented that appeared in [4] some properties of this type of modules will be proved.

 $\mbox{Definition(2.1)}:$ Let $N\leq M$, with Rad $(M)\leq N$, N is said to has a Rad_g - supplement submodule, if $\exists \ L\leq M$ such that M=N+L and $N\cap L\leq Rad_g(M).$

A module M is called G- Rad_g –Supplemented, if every submodule N containing $Rad_g(M)$ has a Rad_g -supplement.

Recall that a submodule N of M is fully invariant if for every $h \in End(M)$, $h(N) \le N$ and M is called a duo module, if every submodule of M is fully invariant.[9]

Proportion (2.2):Let N be a submodule of M such that $Rad(M) \le N$ and N is a direct summand of M, then Rad $N = Rad(M) \cap N$

Proof: Let $N \leq M$ such that $Rad_g(M) \leq N$, since N is a direct summand of M, then $M = N \bigoplus K$ for some $K \leq M$ thus by [3],

 $\operatorname{Rad}_g(M) = \operatorname{Rad}_g(N) \bigoplus \operatorname{Rad}_g(K) \text{ and } \operatorname{Rad}_g(M) \cap N = (\operatorname{Rad}_g(N) \bigoplus \operatorname{Rad}_g(K)) \cap N, \text{thus } \operatorname{Rad}_g(M) \cap N = \operatorname{Rad}_g(N).$

Proportion (2.3): Let $M = M_1 \bigoplus M_2$, if M is G- Rad_g-supplemented then M_1 and M_2 are G- Rad_g-supplemented.

 $\begin{array}{l} \textbf{Proof:} \ \text{Let}\ N_1 \leq M_1 \ \text{and} \ \text{let}\ Rad(M_1) \leq N_1 \ \text{then}\ Rad(M) \leq N_1 + \\ Rad(M_1), \text{since} \ M \ \text{is} \ G \text{-} \ Rad_g\text{-supplemented}, \ \text{then} \ \exists \ K_1 \leq M \\ \text{such that} \ M = N_1 + \ Rad_g(M) + K_1 \ \text{and} \ N_1 + \ Rad_g(M) \ \cap \ K \leq \\ Rad_g(M). \end{array}$

Now $M_1 = N_1 + Rad_g(M) + K_1 \cap M_1, M_1 = N_1 + Radg(M) \cap M_1 + (K_1 \cap M_1) = N_1 + Rad_g(M_1) + (K_1 \cap M_1) = N_1 + (K_1 \cap M_1)$ by proportion (2.2) and $N_1 \cap (K_1 \cap M_1) \leq N_1 \cap K_1 \leq Rad(M) \cap M_1 = Rad(M_1)$ by proportion (2.2), similarly for M_2

Proportion (2.4): Let $M = M_1 \bigoplus M_2$, if M_1 , M_2 are G-Rad_g-supplemented and M is a due modules, then M is G-Rad_g-supplemented.

 $\begin{array}{l} \textbf{Proof}: Let \ N \leq M \ \text{such that} \ Rad_{g} \ (M) \leq N, \ \text{then} \ N \cap M_{i} \leq \\ M_{i} \ \forall \ i = 1,2 \ \text{and} \ Rad_{g}(M) \ \cap \ M_{i} \leq N \ \cap \ M_{i}, \ \text{but} \ Rad_{g}(M_{i}) \\ \leq Rad_{g}(M) \ \cap \ M_{i} \leq N \ \cap \ M_{i} \ \forall \ i = 1,2, \\ \text{Since} \ M_{i} \ \text{is} \ Rad_{g} \\ \text{supplemented}, \ \text{then} \ \forall \ i = 1,2, \ \exists \ K_{i} \leq M_{i} \ \text{such that} \ M_{i} = (\ N \ \cap \\ M_{i}) + K_{i} \ \text{and} \ (N \cap M_{i}) \ \cap \ K_{i} \leq Rad_{g}(M_{i}) \end{array}$

 $\begin{array}{l} Now \; M = M_1 \bigoplus \; M_2 \; , \; then \; N = (N \cap M_1) \bigoplus \; (\; N \cap M_2) \; and \\ M = ((\; N \cap M_1) + (N \cap M_2) + (\; K_1 + K_2) and \; ((\; N \cap M_1\;) + \\ (N \cap M_2)) \cap (\; K_1 + K_2) = N \cap M_1 \; \cap K_1 + N \cap M_2 \; \cap \; K_2 \leq \\ Rad_g(M_1) + Rad_g(M_2) = Rad_g(M). \end{array}$

 $\label{eq:proportion(2.6)} \begin{array}{l} \text{Proportion(2.6)} : \text{Let } M \text{ be a } G\text{-Rad}_g\text{-supplemented} \text{ , then for any submodule } N \text{ of } M, M / N \text{ is a } G\text{-Rad}_g\text{-supplemented}. \end{array}$

Proof: Let $K / N \le M / N$ such that $Rad(M/N) \le K / N$. Since $Rad_g((M+N)/N) \le Rad_g(M/N)$. Then $Rad_g(M) \le K$ by hypothesis , $\exists L \le M$ such that M = K + L and $K \cap L \le Rad_g(M)$. Then M / N = (K + L) / N = K / N + (L + N) / N and $K / N \cap (L + N) / N = (K \cap L) + N / N) \le (Rad_g(M) + N) / N \le Rad_g(M / N)$.

Corollary(2.7): The homomorphic image of any G- Rad_{g} -Supplemented module is a G- Rad_{g} - supplemented module.

Proof: Clear since every homomorphic image is isomorphic to a quotient module.

Lemma (2.8): Let M be any R-module with $Rad_g(M) = M$, then M is a G- Rad_g -supplemented,

Proof: Since $Rad_g(M) = M$, then M has the travail Rad_g -supplement 0 in M Consequently M is a G-Rad_g-supplemented.

It is clear that every semi simple is a G- Rad supplemented , but the converse in general is not true for example Q as Z-module is G-Rad_g supplemented but not semi simple.

Proportion (2.9) : Let M be a module with Rad(M) = 0 then M is a G- Rad_g -supplemented if and only if M is semi simple.

Proof: ←)) Clear

 \rightarrow)) Let $N \leq M$, then $0 \leq N$, since M is Rad_g-supplemented, then M = N + K and $N \cap K \leq Rad_g(M) = 0$, hence $M = N \bigoplus K$ (i.e. M is semi simple).

A ring R is called left V- ring, if every simple R-module is injective. Equivalently R is a V - ring if and only if every Rad(M)= 0 for every left R-module M [8]. Let R be a commutative ring R is regular if and only if every simple R-module is injective, [7]

Proportion (2.10): Let M be a V-ring and M is R-module, then M is G- Rad_g -supplemented if and only if M is semi simple.

Corollary (2.11): Let R be a commutative regular ring and M is a R-module, then M is G-Rad_g - supplemented if and only if M is semi simple.

 $3 \oplus G$ - Rad_g –Supplemented Modules

This section dedicated to introduces $\bigoplus G\text{-Rad}_{g^{\text{-}}}$ supplemented modules as a generalization of G-Radg-

supplemented modules. The results of this section is a generalization of G-Radg-supplemented modules

Proportion (3.3) : If N is a direct summand of G-Rad_g supplemented module, then N is G-Rad_g supplemented.

Proof: Let $N \leq M$ such that $N \leq \bigoplus M$ and $L \leq N$ with $Rad(N) \leq L$ then $L \leq M$, since M is G-Rad_g –supplemented, then $\exists L' \leq L$ such that M = L + L', with $L \cap L' \leq Rad(M)$ and $M = L' \bigoplus L''$. Now $N \cap M = N = N \cap L' \bigoplus N \cap L''$ and $N = N \cap L + N \cap L''$.

 $N \cap L \cap N \cap L' = N \cap (L \cap L') \le N \cap Rad(M) = Rad(N)$ by proportion(2.2).

Proportion (3.4): Let $M = M_1 \bigoplus M_2$ be a $\bigoplus G$ - Rad_g-supplemented module, then $\forall i = 1, 2, M_i$ is a $\bigoplus G$ -Rad_g-supplemented module.

Proof: By using the same argument in proportion (2.5) , there exist $K_1 \leq M_1$ such that $M_1 = N_1 + K_1$ and $N_1 \cap K_1 \leq \text{Rad}(M_1)$ and since M is G-Radg-supplemented, then $\exists \ L_1 \leq M$ such that $M = (\ K_1 \bigoplus L_1) \cap M_1 = (K_1 \cap L_1) \bigoplus (\ L_1 \cap M_1)$, therefore M_1 is \bigoplus G-Radg-supplemented, similarly for M_2 .

Corollary (3.5): Let $M = M_1 \bigoplus M_2 \dots \bigoplus M_i$ be a $\bigoplus G$ - Rad_g-supplemented module, then then $\forall i = 1, 2, \dots, M_i$ is a $\bigoplus G$ -Rad_g-supplemented module.

Proportion (3.6) : Let $M = M_1 \bigoplus M_2$, if M_1 and M_2 are \bigoplus G-Rad_g-supplemented and M is a duo module then M is \bigoplus G-Rad_g-supplemented.

Proof: Let $Rad_g(M) \leq N \leq M$, then by the same arguments in Proportion (2.2), $N \cap M_i + K_i = M_i$, $K_i \leq M_i$, $(N \cap M_i) \cap K_i \leq Rad(M_i)$. $\forall i = 1, 2, ...$ and since M_1 , M_2 are \bigoplus G-Rad_g-supplemented then $K_i \bigoplus L_i = M_i$, $L_i \leq M_i$. $\forall i = 1, 2$

Now ($L_1 \bigoplus L_2$) \bigoplus ($K_1 \bigoplus K_2$)= M , hence $K_1 + K_2$ is G-Rad_g-supplemented of N in M which is a direct summand of M.

Corollary (3.7): Let $M = M_1 \bigoplus M_2 \bigoplus \dots M_i$, $. If \forall i = 1,2,..$ n, is $\bigoplus G$ - Rad_g-supplemented and M is a duo module, then M is $\bigoplus G$ - Rad_g-supplemented

Proportion (3.8): Let M be a \bigoplus G-Rad_g-supplemented module, then for any submodule N of M, M / N is \bigoplus G-Rad_g-supplemented.

Volume 6 Issue 10, October 2017 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Proof: Let $K / N \le M / N$ such that $Rad(M / N) \le K / N$. Since $(Rad(M)+ N) / N \le Rad(M / N) \le K / N$ then $Rad(M) \le K$, by assumption, there exists $L \le M$ such that M = K + L with $K \cap L \le Rad(M)$ and $M = L \bigoplus L'$, $L' \le M$.

Now M / N = (K + L) / N = K / N + (L + N / N) and $K / N \cap (L + N) / N = (L \cap K + N) / N \leq (Rad(M) + N) / N \leq Rad(M / N)$. And $M / N = (L \bigoplus L') / N = (L + N) / N \bigoplus (L' + N) / N$.thus M / N is a \bigoplus G-Rad_g-supplemented.

Corollary (3.9): The homorphic image of \bigoplus G-Rad_g-supplemented module is \bigoplus G-Rad_g-supplemented module.

References

- [1] F. Kasch , Modules and ring, Academic press Ins, London, (1982).
- [2] Goodear K.R. Ring theory ,pure and applied Math.No:33, marcel-Dekker.(1976).
- [3] Xue, W. characterizations of semi perfect and perfect rings ,publications mathematicques, 40 (1996), 115-125
- [4] Nebiyev, C. "G-Radical supplemented modules". Dep. Of Math. Ondokuz Mayis University 55270 Kurupelit-Atakum.(2016)
- [5] Turkmen B.N. and Apancar, " Generalized ⊕Radical supplemented module Vol.. 603851,(2014),4, pages Article I.
- [6] Kosar B., Nebiyev, C. and Sokmez N., G-Supplemented Modules, Ukrainian Math. Journal,67 No.6,861-864(2015).
- [7] Wisbauer R., Foundations of modules and Ring theory, Gordon and Breach, Reading,(1991)
- [8] Faith, C. Lectures on injective module and quotient rings (Lecture Notes in Math.49), Springer –Verlag, Berlin Heidelberg-New-York, (1967).
- [9] Tamer kosan M., Generalized semi perfect Modules Vol.5 (2009)58-69.