
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Mining High Utility Itemsets from
Transactional Databases

Riswana .P .P1, Divya .M2

1AWH Engineering College, KTU University, Department of Computer science & Engineering, Kuttikkatoor, Kozhikode, India

2AWH Engineering College, KTU University, Department of Computer science & Engineering, Kuttikkatoor, Kozhikode, India

Abstract: Mining high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like profits.
Frequent itemset mining (FIM) is one of the most fundamental problems in data mining. In this work, we propose a novel strategy based
on the analysis of item co-occurrences to reduce the number of join operations that need to be performed (FHM: Faster High-Utility
Miner). A better approach in which we characterize a differentially private FIM algorithm based on the FP-growth algorithm, which is
referred to as PFP-growth. The PFP-growth algorithm consists of a preprocessing phase and a mining phase. AS another commitment,
we incorporate utility into sequential pattern mining, and a generic framework for high utility sequence mining is defined. An efficient
algorithm, USpan, is presented to mine for high utility sequential patterns.

Keywords: Frequent Itemset Mining, Co-Occurrence Pruning, differential privacy, High-Utility Mining, Sequential pattern Mining

1. Introduction

Data mining is the process of revealing nontrivial, previously
unknown and potentially useful information from large
databases. Discovering useful patterns hidden in a database
plays an essential role in several data mining tasks, such as
frequent pattern mining, weighted frequent pattern mining,
and high utility pattern mining. Frequent itemset mining
(FIM) is one of the most fundamental problems in data
mining. It has practical importance in a wide range of
application areas such as decision support, Web usage
mining, bioinformatics, etc. Given a transaction database,
FIM consists of discovering frequent itemsets. i.e. groups of
items (itemsets) appearing frequently in transactions [2].
However, an important limitation of FIM is that it assumes
that each item cannot appear more than once in each
transaction and that all items have the same importance
(weight, unit profit or value).

To address this issue, the problem of FIM has been redefined
as High-Utility Itemset Mining (HUIM) to consider the case
where items can appear more than once in each transaction
and where each item has a weight (e.g. unit profit). The goal
of HUIM is to discover itemsets having a high utility (e.g.
generating a high profit). FHM is based on the observation
that although HUI-Miner performs a single phase and thus
do not generate candidates as per the definition of the two-
phase model, HUI-Miner explores the search space of
itemsets by generating itemsets and a costly join operation
has to be performed to evaluate the utility of each itemset. To
reduce the number of joins that are performed, we propose a
novel pruning strategy named EUCP (Estimated Utility Co-
occurrence Pruning) that can prune itemsets without having
to perform joins. This strategy is easy to implement and very
effective.

A better approach in which we present private FP growth
(PFP-growth) algorithm, which consists of a preprocessing
phase and a mining phase. In the preprocessing phase, we
transform the database to limit the length of transactions. The
preprocessing phase is irrelevant to user-specified thresholds

and needs to be performed only once for a given database In
the mining phase, given the transformed database and a user-
specified threshold, we privately discover frequent itemsets.

Sequential pattern mining has emerged as an important topic
in data mining. The selection of interesting sequences is
generally based on the frequency/support framework:
sequences of high frequency are treated as significant. Under
this framework, the downward closure property (also known
as Apriori property) [18] plays a fundamental role for
varieties of algorithms designed to search for frequent
sequential patterns [20, 21, 23]. In practice, many patterns
are identified by frequent sequential pattern mining
algorithms. Most of them may not be informative to business
decision-making, since they do not show the business value
and impact. This has led to high utility pattern mining [22],
which selects interesting patterns based on minimum utility
rather than minimum support. A sequence is of high utility
only if its utility is no less than a user-specified minimum
utility. An efficient algorithm, USpan, is presented to mine
for high utility sequential patterns. In USpan, we introduce
the lexicographic quantitative sequence tree to extract the
complete set of high utility sequences and design
concatenation mechanisms for calculating the utility of a
node and its children with two effective pruning strategies.

2. The FHM Algorithm

The main procedure in FHM takes as input a transaction
database with utility values and the minutil threshold. The
algorithm first scans the database to calculate the TWU of
each item. Then, the algorithm identifies the set I* of all
items having a TWU no less than minutil. The TWU values
of items are then used to establish a total order ≻ on items,
which is the order of ascending TWU values(as suggested in
[1]). A second database scan is then performed.

During this database scan, items in transactions are reordered
according to the total order ≻, the utility-list of each item I ∈
I* is built and our novel structure named EUCS (Estimated
Utility Co-Occurrence Structure) is built. This latter structure

Paper ID: ART20164639 1975

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

is defined as a set of triples of the form (a, b, c) ∈ I* × I*×R.
A triple (a,b,c) indicates that TWU({a,b})=c. The EUCS can
be implemented as a triangular matrix or as a hashmap of
hashmaps where only tuples of the form (a, b, c) such that c≠
0 are kept. Building the EUCS is very fast (it is performed
with a single database scan) and occupies a small amount of
memory, bounded by | I*| × | I*|, although in practice the size
is much smaller because a limited number of pairs of items
co-occurs in transactions. After the construction of the
EUCS, the depth-first search exploration of itemsets starts by
calling the recursive procedure Search with the empty ∅

itemset ;, the set of single items I* , minutil and the EUCS
structure.

Figure 1: A transaction database (left) and external utility
values (right)

Table 1: The FHM algorithm

The FHM algorithm
input : D: a transaction database, minutil: a user-specified

threshold
output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I* each item i such that TWU(i) < minutil;
3 Let ≻ be the total order of TWU ascending values on I*;
4 Scan D to built the utility-list of each item i ∈ I* and
build the EUCS structure;
5 Search (∅, I*, minutil, EUCS);

Figure 2: Transaction utilities (left), TWU values (center)
and EUCS (right)

3. PFP-Growth Algorithm

In this work, we present a private FP-growth algorithm,
which is referred to as PFP-growth. The framework of PFP-
growth algorithm is shown in Figure below.

PFP-growth algorithm consists of a Preprocessing phase and
a mining phase. In the preprocessing phase, we transform the
database to limit the length of transactions. The
preprocessing phase is irrelevant to user-specified thresholds
and needs to be performed only once for a given database.
We argue, to enforce such a limit, long transactions should
be split rather than truncated. That is, if a transaction has
more items than the limit, we divide it into multiple subsets
(i.e., sub transactions) and guarantee each subset is under the

limit. We devise a novel smart splitting method to transform
the database. In particular, to ensure applying ϵ-
differentially private algorithm on the transformed database
still satisfies ϵ -differential privacy for the original database,
we propose a weighted splitting operation. Moreover, to
preserve more frequency information in subsets, we propose
a graph-based approach to reveal the correlation of items
within transactions and utilize such correlation to guide the
splitting process.

In the mining phase, given the transformed database and a
user-specified threshold, we privately discover frequent
itemsets. Despite the potential advantages of transaction
splitting, it might bring frequency information loss. In the
mining phase, inspired by the double standards method in
[15], we propose a run-time estimation method to offset such
information loss. In particular, given the noisy support of an
itemset in the database transformed by transaction splitting,
we first estimate its actual support in the transformed
database, and then further compute its actual support in the
original database. In addition, by leveraging the downward
closure property, we put forward a dynamic reduction
method. During the mining process, we dynamically estimate
the number of support computations, so that we can
gradually reduce the amount of noise required by differential
privacy.

Through formal privacy analysis, we show that our PFP-
growth algorithm is ϵ -differentially private. . For two
databases D and D’, they are neighboring databases if they
differ by at most one record. A fundamental concept in
differential privacy is the sensitivity [12]. The amount of
injected noise is carefully calibrated to the sensitivity. The
sensitivity of count queries is used to measure the maximum
possible change in the outputs over any two neighboring
databases. For the computation whose outputs are real,
Dwork et al. [12] propose the Laplace mechanism. The
Laplace mechanism adds noise drawn randomly from the
Laplace distribution. For the computation whose outputs are
integer, Ghosh et al. [17] propose the Geometric mechanism.

Figure 3: The Framework of PFP-growth Algorithm

4. USpan Algorithm

The USpan algorithm is illustrated in table 2 below. The
input for USpan is a database S and a minimum utility
threshold ξ; the output includes all the high utility patterns.

Lines 1 describes the depth pruning strategy. A depth
pruning strategy stops USpan from going deeper by
identifying the leaf nodes in the tree. Imagine the following
scenario: the pivots are approaching the end of q-sequences;

Paper ID: ART20164639 1976

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

meanwhile, the maximum utility of the sequence is much
less than ξ. The gap is so large that even if all the utilities of
the remaining q-items are counted into the utility of the
sequence, the cumulative utility still cannot satisfy ξ. In this
situation, we use the depth pruning strategy to backtrack
USpan instead of waiting to go deeper and returning with
nothing. We use the notation urest(i, s) to refer to the
remaining utility at q-item i (exclusive) in q-sequence s.

 𝑢𝑟𝑒𝑠𝑡 𝑖, 𝑠 + 𝑢 𝑠′ (1)

𝑖∈𝑠′˄𝑠′∼𝑡˄𝑠′⊆𝑠˄𝑠∈𝑆

A node is judged as a leaf or not based on the comparison
between the value of Equation (1) and ξ; if it is lower than ξ
then it returns to its parent nodes. Lines 2 to 4 are the
scanning subroutine with the width pruning in Line 5. To
avoid selecting the unpromising items, we propose a width
pruning strategy for the scanning subroutine. This is based
on the sequence-weighted downward closure property
(SDCP). Sequence-weighted utilization (SWU) of a
sequence.

𝑆𝑊𝑈 𝑡 = 𝑢(𝑠)𝑠′∼𝑡˄𝑠′⊆𝑠˄𝑠⊆𝑆 (2)

If SWU (t') ≥ ξ, we say item i is a promising item to t.
Otherwise, i is called an unpromising item. In the
implementation, to test whether an item is promising, we do
not have to generate the new sequence to test whether an
item is promising. We simply add the utilities of all the
sequences; this is equal to the SWU of the new sequence. For
utility-based sequences, we adapt the concept of the
Lexicographic Sequence Tree in [20] to the characteristics of
q-sequences, and come up with the Lexicographic Q-
sequence Tree (LQS-Tree) to construct and organize utility
based q-sequences.

Figure 4: Data Representation in USpan

Suppose we have a k-sequence t, we call the operation of
appending a new item to the end of t to form (k+1)-sequence
concatenation. If the size of t does not change, we call the
operation I-Concatenation. Otherwise, if the size increases
by one, we call it S-Concatenation.

Table 2: USpan Algorithm

Algorithm USpan(t, v(t))
Input: A sequence t, t’s utility v(t), a utility-based sequence
database S, the minimum utility threshold ξ.
Output: All high utility sequential patterns
1: if p is a leaf node then return
2: scan the projected database S(v(t)) once to:
3: a).put I-Concatenation items into ilist, or
4: b).put S-Concatenation items into slist
5: remove unpromising items in ilist and slist
6: for each item i in ilist do
7: (t', v(t')) ← I-Concatenate(p,i)
8: if umax(t') ≥ ξ then
9: output t'
10: USpan(t', v(t'))
11: for each item i in slist do
12: (t', v(t')) ← S-Concatenate(p,i)
13: if umax(t') ≥ξ then
14: output t'
15: USpan(t', v(t'))
Return

Once the concatenation items are collected, the unpromising
items are omitted from the respective lists. Lines 7 and 12
construct the I-Concatenation and S-Concatenation children
respectively. It invokes the concatenation to generate the
utilities of sequences; the positions are also maintained.
USpan then outputs the high utility sequences if qualified,
and recursively invokes itself to go deeper in the LQS-Tree.

5. Conclusions

In this work, we have presented a novel algorithm for high-
utility itemset mining named FHM (Fast High-Utility
Miner). This algorithm integrates a novel strategy named
EUCP (Estimated Utility Co-occurrence Pruning) to reduce
the number of joins operations when mining high-utility
itemsets using the utility list data structure. We additionally
presented another private FP-growth (PFP-growth)
algorithm, which consists of a preprocessing phase and a
mining phase. In the preprocessing phase, to better improve
the utility-privacy tradeoff, we devise a smart splitting
method to transform the database. In the mining phase, a run-
time estimation method is proposed to offset the information
loss incurred by transaction splitting. Finally we have
provided a systematic statement of a generic framework, and
an efficient algorithm, USpan, for mining high utility
sequential patterns. In fact, USpan stores the positions and
utilities of the candidates, a range of different functions can
be applied on them with different purposes in such a
framework.

References

[1] Liu, M., Qu, J.:Mining High Utility Itemsets without
Candidate Generation. In Proceedings of CIKM12, pp.
55{64 (2012).

[2] Agrawal, R., Srikant, R.: Fast algorithms for mining
association rules in large databases. In: Proc. Int. Conf.
Very Large Databases, pp. 487–499, (1994)

[3] Tseng, V. S., Shie, B.-E., Wu, C.-W., Yu., P. S.:
Efficient Algorithms for Mining High Utility Itemsets
from Transactional Databases. In: IEEE Trans. Knowl.
Data Eng. 25(8), pp. 1772{1786 (2013).

Paper ID: ART20164639 1977

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[4] Ahmed, C. F., Tanbeer, S. K., Jeong, B.-S., Lee, Y.-K.:
Efficient Tree Structures for High-utility Pattern Mining
in Incremental Databases. In: IEEE Trans. Knowl. Data
Eng. 21(12), pp. 1708–1721 (2009).

[5] Li, Y.-C., Yeh, J.-S., Chang, C.-C.: Isolated items
discarding strategy for discovering high utility itemsets.
In: Data & Knowledge Engineering. 64(1), pp. 198–217
(2008)

[6] Fournier-Viger, P., Nkambou, R., Tseng, V. S.:
RuleGrowth: Mining Sequential Rules Common to
Several Sequences by Pattern-Growth. In: Proc. ACM
26th Symposium on Applied Computing, pp. 954–959
(2011)

[7] Fournier-Viger, P., Wu, C.-W., Gomariz, A., Tseng, V.
S.: VMSP: Efficient Vertical Mining of Maximal
Sequential Patterns. In: Proc. 27th Canadian Conference
on Artificial Intelligence, Springer, LNAI, pp. 83-94
(2014)

[8] Liu, Y., Liao, W., Choudhary, A.: A two-phase
algorithm for fast discovery of high utility itemsets. In:
Proc. PAKDD 2005, pp. 689–695 (2005)

[9] Fournier-Viger, P., Gomariz, A., Campos, M., Thomas,
R.: Fast Vertical Sequential Pattern Mining Using Co-
occurrence Information. In: Proc. 18th Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
Springer, LNAI, (2014)

[10] C. Dwork, “Differential privacy,” in ICALP, 2006.
[11] L. Sweeney, “k-anonymity: A model for protecting

privacy,” Int. J. Uncertain. Fuzziness Knowl.-Base Syst,
2002.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
“Calibrating noise to sensitivity in private data
analysis,” in TCC, 2006.

[13] C. Zeng, J. F. Naughton, and J.-Y. Cai, “On
differentially private frequent itemset mining,” in
VLDB, 2012.

[14] J. Vaidya and C. Clifton, “Privacy preserving
association rule mining in vertically partitioned data,” in
KDD, 2002.

[15] M. Kantarcioglu and C. Clifton, “Privacy-preserving
distributed mining of association rules on horizontally
partitioned data,” TKDE, 2004.

[16] L. Bonomi and L. Xiong, “A two-phase algorithm for
mining sequential patterns with differential privacy,” in
CIKM, 2013.

[17] A. Ghosh, T. Roughgarden, and M. Sundararajan,
“Universally utility-maximizing privacy mechanisms,”
SIAM Journal on Computing, 2012.

[18] R. Agrawal and R. Srikant, Mining sequential patterns,
ICDE 1995, pp. 3-14.

[19] C. F. Ahmed, S. K. Tanbeer, J. Byeong-Soo and L.
Young-Koo, Efficient tree structures for high utility
pattern mining in incremental databases, TKDE 2009,
vol. 21, pp. 1708-1721.

[20] J. Ayres, J. Flannick, J. Gehrke and T. Yiu, Sequential
PAttern mining using a bitmap representation, ICDM
2002, pp. 429-435.

[21] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q.
Chen, U. Dayal and M.C. Hsu.,PrefixSpan: mining
sequential patterns efficiently by prefix-projected
pattern growth, ICDE 2001, pp. 215-224.

[22] H. Yao, H. J. Hamilton and C. J. Butz, A foundational
approach to mining itemset utilities from databases,
ICDM 2004, pp. 482-486.

[23] M. J. Zaki, SPADE: An Efficient Algorithm for Mining
Frequent Sequences, Machine Learning, 2001, vol. 42,
pp. 31-60.

Author Profile

Riswana. P. P received B-Tech degree in Information Technology
from Calicut University in 2010. Currently pursuing M Tech in
Computer Science and Engineering from KTU University,
respectively.

Divya. M received the B Tech and M Tech degrees in
Computer Science and Engineering from University of
Calicut in 2014 respectively. Currently she is working as
assistant professor in AWH Engineering College.

Paper ID: ART20164639 1978

