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Abstract: Mining high utility itemsets from a transactional database refers to the discovery of itemsets with high utility like profits. 
Frequent itemset mining (FIM) is one of the most fundamental problems in data mining. In this work, we propose a novel strategy based 
on the analysis of item co-occurrences to reduce the number of join operations that need to be performed (FHM: Faster High-Utility
Miner). A better approach in which we characterize a differentially private FIM algorithm based on the FP-growth algorithm, which is
referred to as PFP-growth. The PFP-growth algorithm consists of a preprocessing phase and a mining phase. AS another commitment, 
we incorporate utility into sequential pattern mining, and a generic framework for high utility sequence mining is defined. An efficient 
algorithm, USpan, is presented to mine for high utility sequential patterns. 
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1. Introduction 

Data mining is the process of revealing nontrivial, previously 
unknown and potentially useful information from large 
databases. Discovering useful patterns hidden in a database 
plays an essential role in several data mining tasks, such as
frequent pattern mining, weighted frequent pattern mining, 
and high utility pattern mining. Frequent itemset mining 
(FIM) is one of the most fundamental problems in data 
mining. It has practical importance in a wide range of
application areas such as decision support, Web usage 
mining, bioinformatics, etc. Given a transaction database, 
FIM consists of discovering frequent itemsets. i.e. groups of
items (itemsets) appearing frequently in transactions [2]. 
However, an important limitation of FIM is that it assumes 
that each item cannot appear more than once in each 
transaction and that all items have the same importance 
(weight, unit profit or value). 

To address this issue, the problem of FIM has been redefined 
as High-Utility Itemset Mining (HUIM) to consider the case 
where items can appear more than once in each transaction 
and where each item has a weight (e.g. unit profit). The goal 
of HUIM is to discover itemsets having a high utility (e.g. 
generating a high profit). FHM is based on the observation 
that although HUI-Miner performs a single phase and thus 
do not generate candidates as per the definition of the two-
phase model, HUI-Miner explores the search space of
itemsets by generating itemsets and a costly join operation 
has to be performed to evaluate the utility of each itemset. To
reduce the number of joins that are performed, we propose a 
novel pruning strategy named EUCP (Estimated Utility Co-
occurrence Pruning) that can prune itemsets without having 
to perform joins. This strategy is easy to implement and very 
effective. 

A better approach in which we present private FP growth 
(PFP-growth) algorithm, which consists of a preprocessing 
phase and a mining phase. In the preprocessing phase, we
transform the database to limit the length of transactions. The 
preprocessing phase is irrelevant to user-specified thresholds 

and needs to be performed only once for a given database In
the mining phase, given the transformed database and a user-
specified threshold, we privately discover frequent itemsets. 

Sequential pattern mining has emerged as an important topic 
in data mining. The selection of interesting sequences is
generally based on the frequency/support framework: 
sequences of high frequency are treated as significant. Under 
this framework, the downward closure property (also known 
as Apriori property) [18] plays a fundamental role for 
varieties of algorithms designed to search for frequent 
sequential patterns [20, 21, 23]. In practice, many patterns 
are identified by frequent sequential pattern mining 
algorithms. Most of them may not be informative to business 
decision-making, since they do not show the business value 
and impact. This has led to high utility pattern mining [22], 
which selects interesting patterns based on minimum utility 
rather than minimum support. A sequence is of high utility 
only if its utility is no less than a user-specified minimum 
utility. An efficient algorithm, USpan, is presented to mine 
for high utility sequential patterns. In USpan, we introduce 
the lexicographic quantitative sequence tree to extract the 
complete set of high utility sequences and design 
concatenation mechanisms for calculating the utility of a 
node and its children with two effective pruning strategies.  

2. The FHM Algorithm  

The main procedure in FHM takes as input a transaction 
database with utility values and the minutil threshold. The 
algorithm first scans the database to calculate the TWU of
each item. Then, the algorithm identifies the set I* of all 
items having a TWU no less than minutil. The TWU values 
of items are then used to establish a total order ≻ on items, 
which is the order of ascending TWU values(as suggested in
[1]). A second database scan is then performed.  

During this database scan, items in transactions are reordered 
according to the total order ≻, the utility-list of each item I ∈
I* is built and our novel structure named EUCS (Estimated 
Utility Co-Occurrence Structure) is built. This latter structure 
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is defined as a set of triples of the form (a, b, c) ∈ I* × I*×R. 
A triple (a,b,c) indicates that TWU({a,b})=c. The EUCS can 
be implemented as a triangular matrix or as a hashmap of
hashmaps where only tuples of the form (a, b, c) such that c≠
0 are kept. Building the EUCS is very fast (it is performed 
with a single database scan) and occupies a small amount of
memory, bounded by | I*| × | I*|, although in practice the size 
is much smaller because a limited number of pairs of items 
co-occurs in transactions. After the construction of the 
EUCS, the depth-first search exploration of itemsets starts by
calling the recursive procedure Search with the empty ∅

itemset ;, the set of single items I* , minutil and the EUCS 
structure. 

Figure 1: A transaction database (left) and external utility 
values (right) 

Table 1: The FHM algorithm 

The FHM algorithm
input : D: a transaction database, minutil: a user-specified

threshold
output: the set of high-utility itemsets

1 Scan D to calculate the TWU of single items;
2 I* each item i such that TWU(i) < minutil;
3 Let ≻ be the total order of TWU ascending values on I*;
4 Scan D to built the utility-list of each item i ∈ I* and
build the EUCS structure;
5 Search (∅, I*, minutil, EUCS);

Figure 2: Transaction utilities (left), TWU values (center) 
and EUCS (right) 

3. PFP-Growth Algorithm 

In this work, we present a private FP-growth algorithm, 
which is referred to as PFP-growth. The framework of PFP-
growth algorithm is shown in Figure below. 

PFP-growth algorithm consists of a Preprocessing phase and 
a mining phase. In the preprocessing phase, we transform the 
database to limit the length of transactions. The 
preprocessing phase is irrelevant to user-specified thresholds 
and needs to be performed only once for a given database. 
We argue, to enforce such a limit, long transactions should 
be split rather than truncated. That is, if a transaction has 
more items than the limit, we divide it into multiple subsets 
(i.e., sub transactions) and guarantee each subset is under the 

limit. We devise a novel smart splitting method to transform 
the database. In particular, to ensure applying ϵ- 
differentially private algorithm on the transformed database 
still satisfies ϵ -differential privacy for the original database, 
we propose a weighted splitting operation. Moreover, to
preserve more frequency information in subsets, we propose 
a graph-based approach to reveal the correlation of items 
within transactions and utilize such correlation to guide the 
splitting process. 

In the mining phase, given the transformed database and a 
user-specified threshold, we privately discover frequent 
itemsets. Despite the potential advantages of transaction 
splitting, it might bring frequency information loss. In the 
mining phase, inspired by the double standards method in
[15], we propose a run-time estimation method to offset such 
information loss. In particular, given the noisy support of an
itemset in the database transformed by transaction splitting, 
we first estimate its actual support in the transformed 
database, and then further compute its actual support in the 
original database. In addition, by leveraging the downward 
closure property, we put forward a dynamic reduction 
method. During the mining process, we dynamically estimate 
the number of support computations, so that we can 
gradually reduce the amount of noise required by differential 
privacy. 

Through formal privacy analysis, we show that our PFP-
growth algorithm is ϵ -differentially private. . For two 
databases D and D’, they are neighboring databases if they 
differ by at most one record. A fundamental concept in
differential privacy is the sensitivity [12]. The amount of
injected noise is carefully calibrated to the sensitivity. The 
sensitivity of count queries is used to measure the maximum 
possible change in the outputs over any two neighboring 
databases. For the computation whose outputs are real, 
Dwork et al. [12] propose the Laplace mechanism. The 
Laplace mechanism adds noise drawn randomly from the 
Laplace distribution. For the computation whose outputs are 
integer, Ghosh et al. [17] propose the Geometric mechanism. 

Figure 3: The Framework of PFP-growth Algorithm 

4. USpan Algorithm

The USpan algorithm is illustrated in table 2 below. The 
input for USpan is a database S and a minimum utility 
threshold ξ; the output includes all the high utility patterns. 

Lines 1 describes the depth pruning strategy. A depth 
pruning strategy stops USpan from going deeper by
identifying the leaf nodes in the tree. Imagine the following 
scenario: the pivots are approaching the end of q-sequences; 
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meanwhile, the maximum utility of the sequence is much 
less than ξ. The gap is so large that even if all the utilities of
the remaining q-items are counted into the utility of the 
sequence, the cumulative utility still cannot satisfy ξ. In this 
situation, we use the depth pruning strategy to backtrack 
USpan instead of waiting to go deeper and returning with 
nothing. We use the notation urest(i, s) to refer to the 
remaining utility at q-item i (exclusive) in q-sequence s.

  𝑢𝑟𝑒𝑠𝑡 𝑖, 𝑠 +  𝑢 𝑠′                              (1)

𝑖∈𝑠′˄𝑠′∼𝑡˄𝑠′⊆𝑠˄𝑠∈𝑆

A node is judged as a leaf or not based on the comparison 
between the value of Equation (1) and ξ; if it is lower than ξ
then it returns to its parent nodes. Lines 2 to 4 are the 
scanning subroutine with the width pruning in Line 5. To
avoid selecting the unpromising items, we propose a width 
pruning strategy for the scanning subroutine. This is based 
on the sequence-weighted downward closure property 
(SDCP). Sequence-weighted utilization (SWU) of a 
sequence. 

𝑆𝑊𝑈 𝑡 =  𝑢(𝑠)𝑠′∼𝑡˄𝑠′⊆𝑠˄𝑠⊆𝑆                        (2) 

If SWU (t') ≥ ξ, we say item i is a promising item to t.
Otherwise, i is called an unpromising item. In the 
implementation, to test whether an item is promising, we do
not have to generate the new sequence to test whether an
item is promising. We simply add the utilities of all the 
sequences; this is equal to the SWU of the new sequence. For 
utility-based sequences, we adapt the concept of the 
Lexicographic Sequence Tree in [20] to the characteristics of
q-sequences, and come up with the Lexicographic Q-
sequence Tree (LQS-Tree) to construct and organize utility 
based q-sequences. 

Figure 4: Data Representation in USpan 

Suppose we have a k-sequence t, we call the operation of
appending a new item to the end of t to form (k+1)-sequence 
concatenation. If the size of t does not change, we call the 
operation I-Concatenation. Otherwise, if the size increases 
by one, we call it S-Concatenation.  

Table 2: USpan Algorithm 

Algorithm USpan(t, v(t))
Input: A sequence t, t’s utility v(t), a utility-based sequence
database S, the minimum utility threshold ξ.
Output: All high utility sequential patterns
1: if p is a leaf node then return
2: scan the projected database S(v(t)) once to:
3: a).put I-Concatenation items into ilist, or
4: b).put S-Concatenation items into slist
5: remove unpromising items in ilist and slist
6: for each item i in ilist do
7: (t', v(t')) ← I-Concatenate(p,i)
8: if umax(t') ≥ ξ then
9: output t'
10: USpan(t', v(t'))
11: for each item i in slist do
12: (t', v(t')) ← S-Concatenate(p,i)
13: if umax(t') ≥ξ then
14: output t'
15: USpan(t', v(t'))
Return

Once the concatenation items are collected, the unpromising 
items are omitted from the respective lists. Lines 7 and 12
construct the I-Concatenation and S-Concatenation children 
respectively. It invokes the concatenation to generate the 
utilities of sequences; the positions are also maintained. 
USpan then outputs the high utility sequences if qualified, 
and recursively invokes itself to go deeper in the LQS-Tree. 

5. Conclusions 

In this work, we have presented a novel algorithm for high-
utility itemset mining named FHM (Fast High-Utility 
Miner). This algorithm integrates a novel strategy named 
EUCP (Estimated Utility Co-occurrence Pruning) to reduce 
the number of joins operations when mining high-utility 
itemsets using the utility list data structure. We additionally 
presented another private FP-growth (PFP-growth) 
algorithm, which consists of a preprocessing phase and a 
mining phase. In the preprocessing phase, to better improve 
the utility-privacy tradeoff, we devise a smart splitting 
method to transform the database. In the mining phase, a run-
time estimation method is proposed to offset the information 
loss incurred by transaction splitting. Finally we have 
provided a systematic statement of a generic framework, and 
an efficient algorithm, USpan, for mining high utility 
sequential patterns. In fact, USpan stores the positions and 
utilities of the candidates, a range of different functions can 
be applied on them with different purposes in such a 
framework. 
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