
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on Nearest Neighbor Search with
Keywords

Shimna P. T1, Dilna V. C2

1, 2AWH Engineering College, KTU University, Department of Computer Science & Engineering, Kuttikkatoor, Kozhikode, India

Abstract: Many applications require finding objects closest to a specified location that contains a set of keywords. Today, many
modern applications call for novel forms of queries that aim to find objects satisfying both a spatial predicate, and a predicate on their
associated texts. The problems of nearest neighbor search on spatial data and keyword search on text data have been extensively
studied separately. In this work, we present an efficient method to answer top-k spatial keyword queries. To do so, we introduce an
indexing structure called IR2-Tree (Information Retrieval R-Tree) which combines an R-Tree with superimposed text signatures. To
increase the efficiency of nearest neighbor search we develop a new access method called the spatial inverted index that extends the
conventional inverted index to cope with multidimensional data, and comes with algorithms that can answer nearest neighbor queries
with keywords in real time. To answer mCK m-closest keywords queries efficiently, we introduce a new index called the bR*-tree, which
is an extension of the R*-tree.

Keywords: Nearest Neighbor Search, Keyword Search, Spatial Index, bR*-tree, IR2-Tree

1. Introduction

An increasing number of applications require the efficient
execution of nearest neighbor (NN) queries constrained by
the properties of the spatial objects. Due to the popularity of
keyword search, particularly on the Internet, many of these
applications allow the user to provide a list of keywords that
the spatial objects (henceforth referred to simply as objects)
should contain, in their description or other attribute. For
example, online yellow pages allow users to specify an
address and a set of keywords, and return businesses whose
description contains these keywords, ordered by their
distance to the specified address location. As another
example, real estate web sites allow users to search for
properties with specific keywords in their description and
rank them according to their distance from a specified
location. We call such queries spatial keyword queries.

We present a method to efficiently answer top-k spatial
keyword queries, which is based on the tight integration of
data structures and algorithms used in spatial database search
and Information Retrieval (IR). In particular, our method
consists of building an Information Retrieval R Tree (IR2-
Tree), which is a structure based on the R-Tree [Gut84]. At
query time an incremental algorithm is employed that uses
the IR2-Tree to efficiently produce the top results of the
query.

The IR2-tree, however, also inherits a drawback of signature
files: false hits. That is, a signature file, due to its
conservative nature, may still direct the search to some
objects, even though they do not have all the keywords. The
penalty thus caused is the need to verify an object whose
satisfying a query or not cannot be resolved using only its
signature, but requires loading its full text description, which
is expensive due to the resulting random accesses. In this
paper, we design a variant of inverted index that is optimized
for multidimensional points, and is thus named the spatial
inverted index (SI-index). This access method successfully
incorporates point coordinates into a conventional inverted

index with small extra space, owing to a delicate compact
storage scheme. Meanwhile, an SI-index preserves the
spatial locality of data points, and comes with an R-tree built
on every inverted list at little space overhead.

Current research on queries goes well beyond pure spatial
queries such as nearest neighbor queries [29], range queries
[25], and spatial joins [24], [28], [27], [26]. Queries on
spatial objects associated with textual information
represented by sets of keywords are beginning to receive
significant attention from the spatial database research
community and the industry. This paper focuses on a novel
type of query called the mclosest keywords (mCK) query:
given m keywords provided by the user, the mCK query aims
at finding the closest tuples (in space) that match these
keywords. While such a query has various applications, our
main interest lies in that of a search by document.

2. IR² tree

Τhe IR2-Tree is a combination of an R-Tree and signature
files. In particular, each node of an IR2-Tree contains both
spatial and keyword information; the former in the form of a
minimum bounding area and the latter in the form of a
signature. An IR2-Tree facilitates both top-k spatial queries
and top-k spatial keyword queries as we explain below.
More formally, an IR2-Tree R is a height-balanced tree data
structure, where each leaf node has entries of the form
(ObjPtr, A, S). ObjPtr and A are defined as in the R-Tree
while S is the signature of the object referred by ObjPtr. A
non-leaf node has entries of the form (NodePtr, A, S).
NodePtr and A are defined as in the R-Tree while S is the
signature of the node. The signature of a node is the
superimposition (OR-ing) of all the signatures of its entries.
Thus a signature of a node is equivalent to a signature for all
the documents in its subtree.

Paper ID: ART20164631 1984

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.1 IR2-Tree Algorithm

In this section we present the general version of the IR2-
Tree algorithm, where objects are output ordered by a
ranking function f(distance(T.p, Q.p), IRscore(T.t, Q.t)) as
defined. The key differences to the distance-first version are
that:

(i) We do not create a single signature Signature(Q.t) for the
query, but instead we use the individual signatures,
Signature(w), w∈ Q.t, of the query keywords. The reason is
that we do not use AND semantics, that is, an object
containing only some of the query keywords may be in the
result.

(ii) We can no longer output an object as soon as we know
it is the next closest and contains all query keywords,
because a farther object may have a higher overall f(.) score.
Hence, the nodes v in the queue U are ordered by the
maximum score that an object T inside them may have, that
is, by:

Upper(v)=UpperBoundT∈ v(f(distance(T.p,Q.p),
IRscore(T.t, Q.t))

Assuming that f() is decreasing with distance() and
increasing with IRscore() we have:

Upper(v)=LowerBoundT∈ v(f(distance(v.MBR,Q.p),
UpperBoundT-hassignature-v.S(IRscore(T.t,
Q.t)))

To compute the maximum possible IR score UpperBoundT-
has-signature-v.S(IRscore(T.t, Q.t)) of an object in the MBR
of v we can assume that v has an imaginary object T that
contains all keywords of Q specified by the signature of v.S
exactly once (term frequency tf=1), that is, we assume no
false positives. Hence, the document length (dl) of T.t is the
number of such keywords. Then, we can use a traditional
tfidf IR ranking function [Sin01]. This method facilitates
outputting result-objects as early as possible. Note that it is
not possible to estimate a tight maximum possible IR score if
the IR function uses advanced features like thesaurus or
ontology.

3. Spatial Inverted List

The IR2-tree is the first access method for answering NN
queries with keywords. As with many pioneering solutions,
the IR2-tree also has a few drawbacks that affect its
efficiency. The most serious one of all is that the number of
false hits can be really large when the object of the final
result is faraway from the query point, or the result is simply
empty. In these cases, the query algorithm would need to
load the documents of many objects, incurring expensive
overhead as each loading necessitates a random access.

Algorithm 1: Distance-First IR2-Tree algorithm

The spatial inverted list (SI-index) is essentially compressed
version of an I-index with embedded coordinates as
described. Query processing with an SI index can be done
either by merging, or together with R-trees in a distance
browsing manner. Furthermore, the compression eliminates
the defect of a conventional Iindex such that an SI-index
consumes much less space.

Compression is already widely used to reduce the size of an
inverted index in the conventional context where each
inverted list contains only ids. In that case, an effective
approach is to record the gaps between consecutive ids, as
opposed to the precise ids. For example, given a set S of
integers {2, 3, 6, 8}, the gap-keeping approach will store {2,
1, 3, 2} instead, where the i-th value (i _ 2) is the difference
between the i-th and (i – 1)-th values in the original S. As
the original S can be precisely reconstructed, no information
is lost. The only overhead is that decompression incurs extra
computation cost, but such cost is negligible compared to the
overhead of I/Os. Note that gap-keeping will be much less
beneficial if the integers of S are not in a sorted order. This
is because the space saving comes from the hope that gaps
would be much smaller (than the original values) and hence
could be represented with fewer bits. This would not be true
had S not been sorted.

Compressing an SI-index is less straightforward. The
difference here is that each element of a list, a.k.a. a point p,
is a triplet (idp, xp, yp), including both the id and
coordinates of p. As gap-keeping requires a sorted order, it
can be applied on only one attribute of the triplet. For
example, if we decide to sort the list by ids, gap-keeping on
ids may lead to good space saving, but its application on the
x- and y-coordinates would not have much effect .

To attack this problem, let us first leave out the ids and focus
on the coordinates. Even though each point has 2

Paper ID: ART20164631 1985

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

coordinates, we can convert them into only one so that gap
keeping can be applied effectively. The tool needed is a
space filling curve (SFC) such as Hilbert- or Z-curve. SFC
converts a multidimensional point to a 1D value such that if
two points are close in the original space, their 1D values
also tend to be similar. As dimensionality has been brought
to 1, gap-keeping works nicely after sorting the (converted)
1D values.

For example, based on the Z-curve2, the resulting values,
called Z-values, of the points in demonstrated in Figure 5 in
ascending order. With gapkeeping, we will store these 8
points as the sequence 12, 3, 8, 1, 7, 9, 2, 7. Note that as the
Z-values of all points can be accurately restored, the exact
coordinates can be restored as well.

Let us put the ids back into consideration. Now that we have
successfully dealt with the two coordinates with a 2D SFC, it
would be natural to think about using a 3D SFC to cope with
ids too. As far as space reduction is concerned, this 3D
approach may not a bad solution. The problem is that it will
destroy the locality of the points in their original space.
Specifically, the converted values would no longer preserve
the spatial proximity of the points, because ids in general
have nothing to do with coordinates.

4. BR*-Tree

Spatial data is almost always indexed to facilitate fast
retrieval. We can adopt the idea of Papadias et al. [26] to
answer the mCK query. Given N R*-trees, one for each
keyword, candidate spatial windows for the mCK query
result can be identified by executing multiway spatial joins
(MWSJ) among the R*-trees. The join condition here
becomes “closest in space” instead of “overlapping in space”
[26]. When m is very small, this approach accesses only a
small portion of the data and returns the result relatively
quickly. However, as m increases, this approach suffers from
two serious drawbacks. First, it incurs high disk I/O cost for
identifying the candidate windows (due to synchronous
multiway traversal of R*-trees) since it does not inherently
support effective summarization of keyword locations.
Second, it may not be able to identify a “tight” set of
candidate windows since it determines candidate windows in
an approximate manner based on the leaf-node MBRs of R*-
trees without considering the actual objects. To process
mCK queries in a more scalable manner, we propose to use
one R*-tree to index all the spatial objects as well as their
keywords. Integrating all the information in a single R*- tree
provides more opportunities for efficient search and pruning.

To process mCK queries in a more scalable manner, we
propose to use one R*-tree to index all the spatial objects
and their keywords. In this section, we discuss the proposed
index structure called the bR*-tree. The bR*-tree is an
extension of the R*-tree. Besides the node MBR, each node
is augmented with additional information. A straightforward
extension is to summarize the keywords in the node. With
this information, it becomes easy to decide whether m query
keywords can be found in this node. If there are N keywords
in the database, the keywords for each node can be
represented using a bitmap of size N, with a “1” indicating

its existence in the node and a “0” otherwise. For example, a
bitmap B = 01001 reveals that there are five keywords in the
database and the current node can only be associated with
the keywords in the second and fifth positions of the bitmap.
This representation incurs little storage overhead. Moreover,
it can accelerate the checking process of keyword constraints
due to the relatively high speed of binary operations. Given a
query Q = 00110, if we have B AND Q = 0, it implies that
the given node does not have any query keywords and thus,
this node can be eliminated from the search space.

Besides the keyword bitmap, we also store the keyword MBR
in the node to set up more powerful pruning rules. The
keyword MBR of keyword wi is the MBR for all the objects
in the nodes that are associated with wi. It summarizes the
spatial locations of wi in the node. Using this information,
we know the approximate area in the node which each
keyword is distributed. If M is the node MBR and Mi is the
keyword MBR for wi, we have Mi ⊆ M. When N is a large
number, the cost for storing the keyword MBR is very high.
For example, suppose there are a total of 100 keywords in
the database and the objects are three dimensional data.
Spatial coordinates are usually stored I double precision,
which occupies eight bytes per coordinate.

It would therefore take 100×3×8×2 = 4800 bytes to store
the keyword MBRs in one node. To reduce the storage cost,
we split the node MBR into segments along each dimension.
Each keyword MBR is represented approximately by the
start and end offsets of the segments along each dimension.
The range of an offset that occupies n bits is [0, 2n − 1]. In
our implementation, we set n = 8 (resulting in 256
segments) and found that it provided satisfactory
approximation. After being augmented with the bitmap and
keyword MBR, non-leaf nodes of the bR*-tree contain
entries of the form (ptrs, mbr, bmp, kwd mbr), where
 ptrs are pointers to child nodes;
 mbr is the node MBR that covers all the MBRs in the
 child nodes;
 bmp is a keyword bitmap, each bit of which corresponds

to a specific keyword, and is marked as “1” if the MBR of
the node contains the keyword and “0” otherwise;

 kwd mbr is the vector of keyword MBR for all the
keywords contained in the node.

Fig. 1 depicts an example of an internal node containing
three keywords w1, w2, w3 represented as 111. It also
maintains the keyword MBRs of w1, w2 and w3. The
keyword MBR of wi is a spatial bound of all the objects with
keyword wi. Leaf nodes contain entries of the form (oid, loc,
bmp), where
 oid is a pointer to an object in the database;
 loc represents the coordinates of the object;
 bmp is the keyword bitmap.

Paper ID: ART20164631 1986

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Node information of the bR*-tree

4.1 Searching in One Node

When searching in one node, our task is to enumerate all the
subsets of its child nodes in which it is possible to find m
closer tuples matching the query keywords. The subsets
which contain all the m keywords and whose child nodes are
close to each other are considered as candidates. There is
also a constraint that the number of nodes in a subset should
not exceed m. In order to take advantage of the a priori
algorithm, we define two monotonic constraints called
distance mutex and keyword mutex. If a node set N =
{N1,N2, . . .,Nn} is distance mutex or keyword mutex, then
any superset of N is also distance mutex or keyword mutex
and can be pruned.

The method for searching in one node is shown in Algorithm
3. First (in line 1), we put all the child nodes in the bottom
level of the lattice. The lattice is built level by level with
increasing number of child nodes in the NodeSet. In level i,
each NodeSet contains exactly i child nodes. For a query
with m keywords, we only need to check NodeSet with at
most m nodes, leading to a lattice with at most m levels.
Lines 5–6 show two sets C1 and C2 in level i – 1 being
joined, they must have i − 2 nodes in common. Lines 7–14
check if any of its subsets in level i−1 is pruned due to
distance mutex or keyword mutex. If all the subsets are legal,
we check whether this new candidate itself is distance mutex
or keyword mutex for pruning. If it is not pruned, we add it
to level i. In lines 19–22, after all the candidates have been
generated, we check each one to see if it contains all the
query keywords. Those missing any keywords are
eliminated. We do not check this constraint while building
the lattice because if a node does not contain all the query
keywords, it can still combine with other nodes to cover the
missing keywords. As long as it is neither distance mutex nor
keyword mutex, we keep it in the lattice.

4.2 Searching In Multiple Nodes

Algorithm 4 shows how a set of n nodes {N1, . . . , Nn} is
explored. First, n lists of ordered subsets of child nodes are
obtained. Then Algorithm 5 is invoked to enumerate all the
candidate sets. It is implemented in a recursive manner.

Algorithm 3: Algorithm for searchInOneNode

Algorithm 4: Algorithm for SearchInMultiNodes

Each time an enumerated candidate is generated, we check if
it contains all the query keywords to decide whether to prune
it or to put it in the candidate list(see Lines 1–4). Lines 5–8
indicate the beginning of the recursion process. It starts from
each child node subset in list Ln and makes it as our current
partial node set curSet. curSet recursively combines with
other child node subsets until it finally contains child nodes
from {N1, . . .,Nn}. In each recursion, we iterate the child
node sets in list Li to combine with curSet and generate a
new set denoted as newSet. Lines 12–13 show that if newSet
already has more than m child nodes, we stop the iteration
because the list is ordered. The child node subsets which are
not checked could only have more child nodes and will result
in even more nodes in newSet. Otherwise, we check if any
subsets of newSet have been pruned due to distance mutex or
keyword mutex. If not, we go on checking whether this new
NodeSet itself is distance mutex or keyword mutex. All
these checking processes are shown in Lines 14–17. If
newSet is not pruned, we set it as curSet and continue the
recursion. Finally, the algorithm returns all the candidates
that were not pruned away. In the following subsections, we
propose two novel methods to efficiently check whether a set
is distance mutex or keyword mutex.

Paper ID: ART20164631 1987

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Algorithm 5: Algorithm for Enumerate Candidates

5. Conclusions

We introduced the problem of spatial keyword search and
explained the performance limitations of current approaches.
We proposed a solution which is dramatically faster than
current approaches and is based on a combination of R-Trees
and signature files techniques. An efficient incremental
algorithm was presented that uses the IR2-Tree to answer
spatial keyword queries. In second method, we have
remedied the situation by developing an access method
called the spatial inverted index (SI-index). Not only that the
SI-index is fairly space economical, but also it has the ability
to perform keyword-augmented nearest neighbor search in
time that is at the order of dozens of milliseconds. we take a
step towards searching by document by addressing the mCK
query. We use the bR*-tree to effectively summarize
keyword locations, thereby facilitating pruning. We propose
effective a priori- based search strategies for mCK query
processing. While handling large number of keywords is an
important step towards searching by document, there is still
much room for future research.

References

[1] A. J. Broder. Strategies for efficient incremental
neighbor search. In Pattern Recognition, 23(1–2):171–
178,January 1990.

[2] Nicolas Bruno, Luis Gravano, Amelie Marian.
Evaluating Top-k Queries over Web-Accessible
Databases., ICDE 2002.

[3] U. Deppisch. S-Tree: A dynamic balanced signature
index for office retrieval. In Proc. of the ACM Conf. on
Research and Development in Information Retrieval,
Pisa, 1986.

[4] Ron Sacks-Davis, Kotagiri Ramamohanarao: A two
level superimposed coding scheme for partial match
retrieval. Inf.Syst. 8(4): 273-289 (1983).

[5] Ronald Fagin, Amnon Lotem, Moni Naor: Optimal
Aggregation Algorithms for Middleware. In PODS
2001.

[6] Christos Faloutsos: Signature files: Design and
PerformanceComparison of Some Signature Extraction
Methods. In SIGMOD Conference 1985.

[7] Christos Faloutsos, Stavros Christodoulakis: Signature
Files: An Access Method for Documents and Its
Analytical Performance Evaluation. In ACM Trans. Inf.
Syst. 2(4): 267-288(1984) S.

[8] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. of ACM Management of
Data (SIGMOD), pages 322–331,1990.

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in
databases using banks.In Proc. of International
Conference on Data Engineering (ICDE), pages 431–
440, 2002.

[10] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A.
Skovsgaard, D. Wu, and M. L. Yiu. Spatial keyword
querying. In ER, pages 16–29, 2012. X. Cao, G. Cong,
and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. PVLDB, 3(1):373–384,
2010.

[11] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi.
Collective spatial keyword querying. In Proc. of ACM
Management of Data (SIG- MOD), pages 373–384,
2011.

[12] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
bloomier filter: an efficient data structure for static
support lookup tables. In Proc. of the Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 30–39, 2004.

[13] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query
processing in geographic web search engines. In Proc.
of ACM Management of Data (SIGMOD), pages 277–
288, 2006.

[14] E. Chu, A. Baid, X. Chai, A. Doan, and J. Naughton.
Combining keyword search and forms for ad hoc
querying of databases. In Proc. of ACM Management of
Data (SIGMOD), 2009.

[15] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of
the top-k most relevant spatial web objects. PVLDB,
2(1):337–348, 2009.

[16] C. Faloutsos and S. Christodoulakis. Signature files: An
access method for documents and its analytical
performance evaluation. ACM Transactions on
Information Systems (TOIS), 2(4):267–288, 1984.

[17] I. D. Felipe, V. Hristidis, and N. Rishe. Keyword
search on spatial databases. In Proc. of International
Conference on Data Engineering (ICDE), pages 656–
665, 2008.

[18] R. Hariharan, B. Hore, C. Li, and S. Mehrotra.
Processing spatialkeyword (SK) queries in geographic
information retrieval (GIR) systems. In Proc. of
Scientific and Statistical Database Management
(SSDBM), 2007.

Paper ID: ART20164631 1988

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[19] G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. ACM Transactions on Database
Systems (TODS), 24(2):265–318, 1999.

[20] W. Aref, D. Barbara, S. Johnson, and S. Mehrotra.
Efficient processing of proximity queries for large
databases. Proc. ICDE, pages 147–154, 1995.

[21] W. Aref and H. Samet. Efficient processing of window
queries in the pyramid data structure. Proc. PODS,
pages 265–272, 1990.

[22] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: an efficient and robust access method for
points and rectangles. Proc SIGMOD, pages 322–331,
1990.

[23] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. SudarshanKeyword searching and browsing in
databases using banks. In Proceedings of ICDE, 2002.

[24] T. Brinkhoff, H. Kriegel, and B. Seeger. Efficient
processing of spatial joins using R-trees. Proc.
SIGMOD, pages 237–246, 1993.

[25] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer.
Towards an analysis of range query performance in
spatial data structures. In PODS, pages 214–221, New
York, NY, USA, 1993. ACM.

[26] D. Papadias and D. Arkoumanis. Approximate
processing of multiway spatial joins in very large
databases. Proc. EDBT, pages 179–196, 2002.

[27] N. Mamoulis and D. Papadias. Multiway spatial joins.
Proc. TODS, 26(4):424–475, 2001.

[28] D. Papadias, N. Mamoulis, and Y. Theodoridis.
Processing and optimization of multiway spatial joins
using R-trees. Proc. PODS, pages 44–55, 1999.

[29] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. Proc. SIGMOD, pages 71–79, 1995.

Author Profile

Shimna P T received the B Tech degree in Information
Technology from Anna University in 2014. Currently pursuing M
Tech in Computer Science and Engineering from KTU university,
respectively.

Dilna V C received the B Tech and M Tech degree in Computer
Science and Engineering from Calicut university in 2010 and 2012
respectively. Now she is currently working as assistant professor in
AWH Engineering College.

Paper ID: ART20164631 1989

