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Abstract: Many applications require finding objects closest to a specified location that contains a set of keywords. Today, many 
modern applications call for novel forms of queries that aim to find objects satisfying both a spatial predicate, and a predicate on their 
associated texts.  The problems of nearest neighbor search on spatial data and keyword search on text data have been extensively 
studied separately.  In this work, we present an efficient method to answer top-k spatial keyword queries.  To do so, we introduce an 
indexing structure called IR2-Tree (Information Retrieval R-Tree) which combines an R-Tree with superimposed text signatures. To
increase the efficiency of nearest neighbor search we develop a new access method called the spatial inverted index that extends the 
conventional inverted index to cope with multidimensional data, and comes with algorithms that can answer nearest neighbor queries 
with keywords in real time. To answer mCK m-closest keywords queries efficiently, we introduce a new index called the bR*-tree, which 
is an extension of the R*-tree. 
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1. Introduction 

An increasing number of applications require the efficient 
execution of nearest neighbor (NN) queries constrained by 
the properties of the spatial objects. Due to the popularity of 
keyword search, particularly on the Internet, many of these 
applications allow the user to provide a list of keywords that 
the spatial objects (henceforth referred to simply as objects) 
should contain, in their description or other attribute. For 
example, online yellow pages allow users to specify an 
address and a set of keywords, and return businesses whose 
description contains these keywords, ordered by their 
distance to the specified address location. As another 
example, real estate web sites allow users to search for 
properties with specific keywords in their description and 
rank them according to their distance from a specified 
location. We call such queries spatial keyword queries. 

We present a method to efficiently answer top-k spatial 
keyword queries, which is based on the tight integration of 
data structures and algorithms used in spatial database search 
and Information Retrieval (IR). In particular, our method 
consists of building an Information Retrieval R Tree (IR2- 
Tree), which is a structure based on the R-Tree [Gut84]. At 
query time an incremental algorithm is employed that uses 
the IR2-Tree to efficiently produce the top results of the 
query. 

The IR2-tree, however, also inherits a drawback of signature 
files: false hits. That is, a signature file, due to its 
conservative nature, may still direct the search to some 
objects, even though they do not have all the keywords. The 
penalty thus caused is the need to verify an object whose 
satisfying a query or not cannot be resolved using only its 
signature, but requires loading its full text description, which 
is expensive due to the resulting random accesses. In this 
paper, we design a variant of inverted index that is optimized 
for multidimensional points, and is thus named the spatial 
inverted index (SI-index). This access method successfully 
incorporates point coordinates into a conventional inverted 

index with small extra space, owing to a delicate compact 
storage scheme. Meanwhile, an SI-index preserves the 
spatial locality of data points, and comes with an R-tree built 
on every inverted list at little space overhead. 

Current research on queries goes well beyond pure spatial 
queries such as nearest neighbor queries [29], range queries 
[25], and spatial joins [24], [28], [27], [26]. Queries on 
spatial objects associated with textual information 
represented by sets of keywords are beginning to receive 
significant attention from the spatial database research 
community and the  industry. This paper focuses on a novel  
type of query called the mclosest keywords (mCK) query: 
given m keywords provided by the user, the mCK query aims 
at finding the closest tuples (in space) that match these 
keywords. While such a query has various applications, our 
main interest lies in that of a search by document. 

2. IR² tree 

Τhe IR2-Tree is a combination of an R-Tree and signature 
files. In particular, each node of an IR2-Tree contains both 
spatial and keyword information; the former in the form of a 
minimum bounding area and the latter in the form of a 
signature. An IR2-Tree facilitates both top-k spatial queries 
and top-k spatial keyword queries as we explain below. 
More formally, an IR2-Tree R is a height-balanced tree data 
structure, where each leaf node has entries of the form 
(ObjPtr, A, S). ObjPtr and A are defined as in the R-Tree 
while S is the signature of the object referred by ObjPtr. A 
non-leaf node has entries of the form (NodePtr, A, S). 
NodePtr and A are defined as in the R-Tree while S is the 
signature of the node. The signature of a node is the 
superimposition (OR-ing) of all the signatures of its entries. 
Thus a signature of a node is equivalent to a signature for all 
the documents in its subtree.  
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2.1 IR2-Tree Algorithm 

In this section we present the general version of the IR2- 
Tree algorithm, where objects are output ordered by a 
ranking function f(distance(T.p, Q.p), IRscore(T.t, Q.t)) as 
defined. The key differences to the distance-first version are 
that: 

(i) We do not create a single signature Signature(Q.t) for the 
query, but instead we use the individual signatures, 
Signature(w), w∈  Q.t, of the query keywords. The reason is 
that we do not use AND semantics, that is, an object 
containing only some of the query keywords may be in the 
result. 

(ii) We can no longer output an object as soon as we know 
it is the next closest and contains all query keywords, 
because a farther object may have a higher overall f(.) score. 
Hence, the nodes v in the queue U are ordered by the 
maximum score that an object T inside them may have, that 
is, by: 

Upper(v)=UpperBoundT∈ v(f(distance(T.p,Q.p),        
IRscore(T.t, Q.t)) 

Assuming that f() is decreasing with distance() and 
increasing with IRscore() we have: 

Upper(v)=LowerBoundT∈ v(f(distance(v.MBR,Q.p),    
UpperBoundT-hassignature-v.S(IRscore(T.t,                                               
Q.t)))  

To compute the maximum possible IR score UpperBoundT-
has-signature-v.S(IRscore(T.t, Q.t)) of an object in the MBR 
of v we can assume that v has an imaginary object T that 
contains all keywords of Q specified by the signature of v.S 
exactly once (term frequency tf=1), that is, we assume no 
false positives. Hence, the document length (dl) of T.t is the  
number of such keywords. Then, we can use a traditional 
tfidf IR ranking function [Sin01]. This method facilitates 
outputting result-objects as early as possible. Note that it is 
not possible to estimate a tight maximum possible IR score if 
the IR function uses advanced features like thesaurus or 
ontology. 

3. Spatial Inverted List 

The IR2-tree is the first access method for answering NN 
queries with keywords. As with many pioneering solutions, 
the IR2-tree also has a few drawbacks that affect its 
efficiency. The most serious one of all is that the number of 
false hits can be really large when the object of the final 
result is faraway from the query point, or the result is simply 
empty. In these cases, the query algorithm would need to 
load the documents of many objects, incurring expensive 
overhead as each loading necessitates a random access. 

Algorithm 1: Distance-First IR2-Tree algorithm 

The spatial inverted list (SI-index) is essentially compressed 
version of an I-index with embedded coordinates as 
described. Query processing with an SI index can be done 
either by merging, or together with R-trees in a distance 
browsing manner. Furthermore, the compression eliminates 
the defect of a conventional Iindex such that an SI-index 
consumes much less space. 

Compression is already widely used to reduce the size of an 
inverted index in the conventional context where each 
inverted list contains only ids. In that case, an effective 
approach is to record the gaps between consecutive ids, as 
opposed to the precise ids. For example, given a set S of 
integers {2, 3, 6, 8}, the gap-keeping approach will store {2, 
1, 3, 2} instead, where the i-th value (i _ 2) is the difference 
between the i-th and (i –  1)-th values in the original S. As 
the original S can be precisely reconstructed, no information 
is lost. The only overhead is that decompression incurs extra 
computation cost, but such cost is negligible compared to the 
overhead of I/Os.  Note that gap-keeping will be much less 
beneficial if the integers of S are not in a sorted order. This 
is because the space saving comes from the hope that gaps 
would be much smaller (than the original values) and hence 
could be represented with fewer bits. This would not be true 
had S not been sorted.

Compressing an SI-index is less straightforward. The 
difference here is that each element of a list, a.k.a. a point p, 
is a triplet (idp, xp, yp), including both the id and 
coordinates of p. As gap-keeping requires a sorted order, it 
can be applied on only one attribute of the triplet. For 
example, if we decide to sort the list by ids, gap-keeping on 
ids may lead to good space saving, but its application on the 
x- and y-coordinates would not have much effect . 

To attack this problem, let us first leave out the ids and focus 
on the coordinates. Even though each point has 2 
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coordinates, we can convert them into only one so that gap 
keeping can be applied effectively. The tool needed is a 
space filling curve (SFC) such as Hilbert- or Z-curve. SFC 
converts a multidimensional point to a 1D value such that if 
two points are close in the original space, their 1D values 
also tend to be similar. As dimensionality has been brought 
to 1, gap-keeping works nicely after sorting the (converted) 
1D values. 

For example, based on the Z-curve2, the resulting values, 
called Z-values, of the points in  demonstrated in Figure 5 in 
ascending order. With gapkeeping, we will store these 8 
points as the sequence 12, 3, 8, 1, 7, 9, 2, 7. Note that as the 
Z-values of all points can be accurately restored, the exact 
coordinates can be restored as well. 

Let us put the ids back into consideration. Now that we have 
successfully dealt with the two coordinates with a 2D SFC, it 
would be natural to think about using a 3D SFC to cope with 
ids too. As far as space reduction is concerned, this 3D 
approach may not a bad solution. The problem is that it will 
destroy the locality of the points in their original space. 
Specifically, the converted values would no longer preserve 
the spatial proximity of the points, because ids in general 
have nothing to do with coordinates. 

4. BR*-Tree

Spatial data is almost always indexed to facilitate fast 
retrieval. We can adopt the idea of Papadias et al. [26] to 
answer the mCK query. Given N R*-trees, one for each  
keyword, candidate spatial windows for the mCK query 
result can be identified by executing multiway spatial joins 
(MWSJ) among the R*-trees. The join condition here  
becomes “closest in space” instead of “overlapping in space” 
[26]. When m is very small, this approach accesses only a  
small portion of the data and returns the result relatively 
quickly. However, as m increases, this approach suffers from 
two serious drawbacks. First, it incurs high disk I/O cost for 
identifying the candidate windows (due to synchronous 
multiway traversal of R*-trees) since it does not inherently 
support effective summarization of keyword locations. 
Second, it may not be able to identify a  “tight” set of 
candidate windows since it determines candidate windows in 
an approximate manner based on the leaf-node MBRs of R*-
trees without considering the actual objects. To process 
mCK queries in a more scalable manner, we propose to use 
one R*-tree to index all the spatial objects as well as their 
keywords. Integrating all the information in a single R*- tree 
provides more opportunities for efficient search and pruning. 

To process mCK queries in a more scalable manner, we 
propose to use one R*-tree to index all the spatial objects 
and their keywords. In this section, we discuss the proposed 
index structure called the bR*-tree. The bR*-tree is an 
extension of the R*-tree. Besides the node MBR, each node 
is augmented with additional information. A straightforward 
extension is to summarize the keywords in the node. With 
this information, it becomes easy to decide whether m query 
keywords can be found in this node. If there are N keywords 
in the database, the keywords for each node can be 
represented using a bitmap of size N, with a “1” indicating 

its existence in the node and a “0” otherwise. For example, a 
bitmap B = 01001 reveals that there are five keywords in the 
database and the current node can only be associated with 
the keywords in the second and fifth positions of the bitmap. 
This representation incurs little storage overhead. Moreover, 
it can accelerate the checking process of keyword constraints 
due to the relatively high speed of binary operations. Given a 
query Q = 00110, if we have B AND Q = 0, it implies that 
the given node does not have any query keywords and thus, 
this node can be eliminated from the search space. 

Besides the keyword bitmap, we also store the keyword MBR 
in the node to set up more powerful pruning rules. The
keyword MBR of keyword wi is the MBR for all the objects
in the nodes that are associated with wi. It summarizes the
spatial locations of wi in the node. Using this information, 
we know the approximate area in the node which each 
keyword is distributed. If M is the node MBR and Mi is the 
keyword MBR for wi, we have Mi ⊆ M. When N is a large 
number, the cost for storing the keyword MBR is very high. 
For example, suppose there are a total of 100 keywords in 
the database and the objects are three dimensional data. 
Spatial coordinates are usually stored I double precision, 
which occupies eight bytes per coordinate.

It would therefore take 100×3×8×2 = 4800 bytes to store 
the keyword MBRs in one node. To reduce the storage cost, 
we split the node MBR into segments along each dimension. 
Each keyword MBR is represented approximately by the 
start and end offsets of the segments along each dimension. 
The  range of an offset that occupies n bits is [0, 2n − 1]. In 
our  implementation, we set n = 8 (resulting in 256 
segments) and found that it provided satisfactory 
approximation. After being augmented with the bitmap and 
keyword MBR, non-leaf nodes of the bR*-tree contain 
entries of the form (ptrs, mbr, bmp, kwd mbr), where 
 ptrs are pointers to child nodes; 
 mbr is the node MBR that covers all the MBRs in the 
 child nodes; 
 bmp is a keyword bitmap, each bit of which corresponds 

to a specific keyword, and is marked as “1” if the MBR of 
the node contains the keyword and “0” otherwise;

 kwd mbr is the vector of keyword MBR for all the 
keywords contained in the node. 

Fig. 1 depicts an example of an internal node containing 
three keywords w1, w2, w3 represented as 111. It also 
maintains the keyword MBRs of w1, w2 and w3. The 
keyword MBR of wi is a spatial bound of all the objects with 
keyword wi. Leaf nodes contain entries of the form (oid, loc, 
bmp), where 
 oid is a pointer to an object in the database; 
 loc represents the coordinates of the object; 
 bmp is the keyword bitmap. 
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Figure 1: Node information of the bR*-tree 

4.1 Searching in One Node 

When searching in one node, our task is to enumerate all the 
subsets of its child nodes in which it is possible to find m
closer tuples matching the query keywords. The subsets 
which contain all the m keywords and whose child nodes are 
close to each other are considered as candidates. There is 
also a constraint that the number of nodes in a subset should 
not exceed m.  In order to take advantage of the a priori 
algorithm, we define two monotonic constraints called 
distance mutex and keyword mutex. If a node set N =
{N1,N2, . . .,Nn} is distance mutex or keyword mutex, then 
any superset of N is also distance mutex or keyword mutex 
and can be pruned. 

The method for searching in one node is shown in Algorithm 
3. First (in line 1), we put all the child nodes in the bottom 
level of the lattice. The lattice is built level by level with 
increasing number of child nodes in the NodeSet. In level i,
each NodeSet contains exactly i child nodes. For a query 
with  m keywords, we only need to check NodeSet with at 
most m nodes, leading to a lattice with at most m levels. 
Lines 5–6  show two sets C1 and C2 in level i – 1 being 
joined, they must  have i − 2 nodes in common. Lines 7–14
check if any of its subsets in level i−1 is pruned due to 
distance mutex or keyword mutex. If all the subsets are legal, 
we check whether this new candidate itself is distance mutex 
or keyword mutex for pruning. If it is not pruned, we add it 
to level i. In lines 19–22, after all the candidates have been 
generated, we check each one to see if it contains all the 
query keywords. Those missing any keywords are 
eliminated. We do not check this constraint while building 
the lattice because if a node does not contain all the query 
keywords, it can still combine with other nodes to cover the 
missing keywords. As long as it is neither distance mutex nor 
keyword mutex, we keep it in the lattice. 

4.2 Searching In Multiple Nodes 

Algorithm 4 shows how a set of n nodes {N1, . . . , Nn} is 
explored. First, n lists of ordered subsets of child nodes are 
obtained. Then Algorithm 5 is invoked to enumerate all the 
candidate sets. It is implemented in a recursive manner.  

Algorithm 3: Algorithm for searchInOneNode 

Algorithm 4: Algorithm for SearchInMultiNodes 

Each time an enumerated candidate is generated, we check if
it contains all the query keywords to decide whether to prune 
it or to put it in the candidate list(see Lines 1–4). Lines 5–8
indicate the beginning of the recursion process. It starts from  
each child node subset in list Ln and makes it as our current
partial node set curSet. curSet recursively combines with
other child node subsets until it finally contains child nodes
from {N1, . . .,Nn}. In each recursion, we iterate the child
node sets  in list Li to combine with curSet and generate a
new set denoted as newSet. Lines 12–13 show that if newSet 
already has more than m child nodes, we stop the iteration
because the list is ordered. The child node subsets which are
not checked could only have more child nodes and will result
in even more nodes in newSet. Otherwise, we check if any
subsets of newSet have been pruned due to distance mutex or
keyword mutex. If not, we go on checking whether this new
NodeSet itself is  distance mutex or keyword mutex. All 
these checking processes are shown in Lines 14–17. If 
newSet is not pruned, we set it as curSet and continue the 
recursion. Finally, the algorithm returns all the candidates 
that were not pruned away. In the following subsections, we 
propose two novel methods to efficiently check whether a set 
is distance mutex or keyword mutex.
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Algorithm 5: Algorithm for Enumerate Candidates 

5. Conclusions 

We introduced the problem of spatial keyword search and 
explained the performance limitations of current approaches. 
We proposed a solution which is dramatically faster than 
current approaches and is based on a combination of R-Trees 
and signature files techniques. An efficient incremental 
algorithm was presented that uses the IR2-Tree to answer 
spatial keyword queries. In second method, we have 
remedied the situation by developing an access method 
called the spatial inverted index (SI-index). Not only that the 
SI-index is fairly space economical, but also it has the ability 
to  perform keyword-augmented nearest neighbor search in 
time that is at the order of dozens of milliseconds. we take a 
step towards searching by document by addressing the mCK 
query. We use the bR*-tree to effectively summarize
keyword locations, thereby facilitating pruning. We propose 
effective a priori- based search strategies for mCK query 
processing. While handling large number of keywords is an 
important step towards searching by document, there is still 
much room for future research. 
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