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Abstract: Eighty three types perfect carbon nanotubes (PCNTs) are chosen between the diameter range of 0.3 nm - 3.9355 nm. These 
PCNTs include armchair, chiral and zigzag tubes leaving out those zigzag tubes which are metallic in nature. 16 of these 83 PCNTs are 
metallic (armchair) and 67 are semiconductor (chiral and zigzag). The band gaps of chiral and zigzag tubes are calculated with 
increasing chiral angle θ° from 0.3 nm to 3.9355 nm diameters (67 in numbers) in order of increase in indices (n, m). The tube diameter 
and the calculated value of band gap in also given. It is observed that irrespective of the chiral angle, with the increase in diameter the 
band gap decreases. Further it may be seen that for the tube of about the same diameter with different chirality shall have about the 
same band gap. Therefore it is seen that the band gap of the semiconducting tubes depend inversely upon the diameter. Also calculated 
that the armchair (n, n) tubes band gap of the order of 0.011eV remain independent of diameter.
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1. Introduction 

The electronic band structure (or simply band structure) of a 
solid is defined as those ranges of energy an electron is
“forbidden” or “allowed” to possess and is equivalent to the 
energy required to free an outer shell electron from its orbit 
about the nucleus to become mobile charge carrier and able 
to move freely within the solid material [2, 4]. It gives a 
band gap or energy gap within the energy range in a solid 
where no electron states can exist and is an important factor 
for determination of electrical conductivity of materials. The 
band structure for a periodic specific crystal lattice may be
obtained from diffraction of quantum mechanical electron 
waves along the Bravais lattice. Material properties such as
electronic, optical and others depend upon band structure 
[2]. In the present work numerical calculations have been 
presented for energy gaps for various perfect carbon 
nanotubes (PCNTs) and electron density of states (DOS) in
Sub-Sections respectively.  

Directions of each wave vector and no net charge is
transported in either direction In the semi-classical theory 
(Tight Binding Method) the time evolution of the wave 
vector for the Bloch electrons in a uniform electric field 
electron interchange of states occur through each carbon 
nanotube [6]. Each of these carbon nanotubes exhibits its 
own electronic band and the band structure changes when 
electric or magnetic field is applied. The band structure of
these nanotubes describe whether it is conducting or semi-
conducting. This motivates the intensive study of the 
electronic band structure of nanotubes since their shape and 
occupation are crucial for the electronic transport. In the 
present chapter, the band structure and the band gaps of
various PCNTs are studied. This section gives formation of
different forms of carbon nanotubes using two dimensional 
graphene sheets, namely: the armchair; the zigzag; and the 
chiral types of the carbon nanotubes. Electrons Density of
State for these CNTs is calculated using the Tight Binding 
Method. Finally, the energy gaps are calculated for each
type of carbon nanotubes.  

2. Computational Details 

2.1 Model 

2.2 Types of Perfect Carbon Nanotubes (PCNTs) Studied

The construction of perfect carbon nanotube has been 
explained. Using the Tight Binding Method [5, 6] eighty-
three carbon nanotubes is constructed [1-3] and out of these 
four tubes are shown in Figure 1- Figure 4, two are zigzag 
and the other two have armchair structures.

Figure 1: Perfect carbon nanotube (zigzag (4, 0)) 

Figure 2: Perfect carbon nanotube (zigzag (9, 0))

Figure 3: Perfect carbon nanotube (armchair (4, 4))

Figure 4: Perfect carbon nanotube (armchair (9, 9)) 

3. Calculations of Energy Gap 

3.1 Tight Binding Method 

Tight Binding Method (TBM) or LCAO (linear combination 
of atomic orbitals) or Bloch is the standard method for 
solving the periodic potential problems encountered in the 
electronic motion in solids. This was originally proposed by
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Bloch. The method consists of making a linear combination 
of atomic orbitals situated on the various atoms of the 
crystal. The coefficients being the values of the plane wave 
exp(ik.R) at various positions R where the atoms are located.  

TBM gives solutions exhibiting all the correct symmetry 
properties of the energy bands. It is easier to get solutions 
with TBM for energy bands at arbitrary points in the 
Brillouin zone in comparison with other approximate 
methods. Initially an atomic orbital φn (r - Ri) is located on
an atom at vector position Ri and with quantum numbers 
symbolized by the subscript n. Then the Bloch sum is
formulated over all the atomic positions in the unit cells of
the crystal  𝑅𝑖  exp(𝑖𝑘. 𝑅)𝜑𝑛  (𝑟 −  𝑅𝑖) . Similarly, other 
Bloch sums are set up corresponding to each atomic orbital 
of an atom which corresponds to each atom in the unit cell 
of the crystal. The non-vanishing matrix components of the 
Hamiltonian lies between the Bloch sums of the same k 
value corresponding either to different atomic orbitals on the 
same atom or to atomic orbitals on different atoms in the 
unit cell. Diagonalizing the matrix of Bloch sum yields the 
energy band structure solution. Non-diagonal matrix 
components vanish at special symmetry points of the 
Brillouin zone by taking special values of k. These 
vanishing components of matrix lead to special properties of
the energy bands at these symmetry points.  

The commonly used method for determining the electronic 
structure of single wall carbon nanotubes is the Tight 
Binding (TBM) Method [6]. This is a standard procedure in
solid-state physics and works well for the case of weak 
overlap of atomic wave functions in an insulating crystal. 
The TBM approximation gives a convenient method for 
understanding the basic characteristics of band structure in
single wall carbon nanotube [5, 6]. The electronic structure 
of a carbon nanotube (CNT) can be acquired from that of
graphene. The wave vector related with the chiral vector Ch
in the circumferential direction gets quantized. On the other 
hand wave-vector associated with the direction of the 
translation vector T along the CNT axis remains continuous 
for an infinite carbon nanotube. These are the boundary 
conditions of the nanotube. This gives the energy bands in
form of one-dimensional dispersion relationship which are 
the cross sections of the energy bands in the case of
graphene. For the reciprocal lattice vectors 𝐾2 of PCNTs 
along the carbon nanotube axis 𝐶 . 𝐾2 = 0, 𝑇. 𝐾2 = 2𝜋 and 
𝐾1 in the circumferential direction,   𝐶 . 𝐾1 = 2𝜋 , 𝑇. 𝐾1 =
0  the expressions are given as: 

𝐾1 =
1

𝑁
 −𝑡2𝑏1 + 𝑡1𝑏2                                  (1)

𝐾2 =
1

𝑁
 𝑚𝑏1 − 𝑛𝑏2                                    (2)

The one-dimensional energy dispersion relation of a carbon 
nanotube can be written as  

𝐸𝐶𝑁𝑇
ν (𝑘) = 𝐸𝑔−2𝐷  𝑘

𝐾2

 𝐾2 
+ 𝜈𝐾1                      (3)

where −𝜋 𝑇 < 𝑘 <  𝜋 𝑇   is a one-dimensional wave-
vector along the carbon nanotube axis 
and ν = 1,2,3 ……… . .𝑁. The periodic boundary condition 
for carbon nanotube provides 𝑁 discrete 𝑘 values in the 
circumferential direction. These 𝑁 pairs of energy dispersion 
curves correspond to the cross sections of the two-

dimensional energy dispersion surface of graphene which is
given by eqn. (3). Several lines cut near one of the 𝐾 points 
as shown in Figure 5. The separations between two adjacent 
lines with the length of the cutting lines are given by
 𝐾1 =  2 𝑑𝐶𝑁𝑇  and  𝐾2 =  2𝜋 𝑇  respectively. The carbon 
nanotube gets a zero energy gap if the cutting line passes 
through a 𝐾 point of the two-dimensional Brillouin zone [2, 
7] as shown in Figure 5(a), where the π and π* energy 
bands of graphene are degenerate by symmetry. If the 𝐾-
point is situated between two cutting lines such that 𝐾 is
always located in a position one-third of the distance 
between two adjacent 𝐾1 lines then a semiconducting carbon 
nanotube with a finite energy gap is formed as shown in
Figure 5 (b). Further, for a given indices of carbon nanotube 
(n, m) if n-m is exactly divisible by 3 then the carbon 
nanotube is metallic where as carbon nanotubes with 
residuals 1 and 2 for the division n-m by 3 are 
semiconducting as pictorially depicted in Figure 5 (a) and
Figure 5 (b) respectively. Calculations for band gaps of
different kind of carbon nanotubes are given below that 
explain the metallic or semiconductor nature of the carbon 
nanotube. 

(a) Metallic  

 (b) Semiconductor 

Figure 5: One-dimensional wave-vectors K are shown in
the BRILLOUIN zone of graphene as bold lines for (a) 

metallic and (b) semiconducting carbon nanotubes [ref. 2, 7] 

4. Result of armchair and zigzag PCNTs 

When the system has a large number of atoms in case of
PCNT or CNT with Intramolecular Junction as also in
crystalline material, the higher energy levels tend to merge 
into two separate bands of allowed energies called the 
valence band and the conduction band as shown in Figure 6 
and Figure 7. The energy levels which are mostly filled are 
called valence band while those which remain nearly empty 
are called conduction band. Electrons that occupy the energy 
levels in the conduction band are called free elections. The 
extremely closely spaced energy levels in the valence and 
conduction bands are often separated by an energy range 
where there are no allowed quantum states or energy levels 
known as the energy gap Eg (or band gap).  

Fermi energy level at EF = 0 divides the conduction band 
and valence band. It is useful to build an approximate 
relation that describes the dispersion relations in the regions 
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around the Fermi energy EF = 0 as electrical conduction is
decided by states around the Fermi energy. The expression 
around the point (0, ±4π/3a) where the energy gap is zero 
and f = 0 is given 
by 𝑓 𝑘  ≈  −𝑡 1 + 2𝑒 3𝑘𝑥𝑎 2  cos 𝑘𝑦 𝑎 2   . It is easy to
show that 𝑓 𝑘  ≈  𝑖 3 𝑎𝑡 2   𝑘𝑥 ∓ 𝑖𝛽𝑦 , with 𝛽𝑦 ≡  𝑘𝑦  ∓
 4𝜋 3𝑎  . The corresponding energy dispersion relation can 
be written as [28]  

𝐸𝑔−2𝐷 𝑘  𝑓 𝑘  

𝐸𝑔−2𝐷 𝑘 
 3𝑎𝑡

2
 𝑘𝑥  

2 + 𝛽𝑦  
2                         (4)

4.1 Band Structure 

In general (n, n) armchair carbon nanotubes yield 4n energy 
subbands by means of 2n conduction and 2n valence bands. 
Out of these 2n bands, two are non-degenerate and n-1are 
doubly degenerate [2]. The degeneracy comes from the two 
subbands with the same energy dispersion but with different 
ν - values. In general all the zigzag carbon nanotubes have 
the lowest conduction and the highest valence bands and are 
doubly degenerate whereas all armchair carbon nanotubes 
have band degeneracy between the highest valence and the 
lowest conduction band. For both of the armchair as well as
zigzag carbon nanotubes bands are symmetric with respect 
to k = 0 [2 - 4].  

Figure 6: Energy versus Axial Wave Vector (a) of zigzag, 
semiconducting (4, 0) and (b) of armchair, metallic (4, 4) 

PCNTs respectively 

Figure 7: Energy versus Axial Wave Vector (a) of zigzag, 
metallic (9, 0) and (b) of armchair, metallic (9, 9) PCNTs 

respectively 

It is a known fact [2] and present calculations also show that 
an armchair carbon nanotubes bands have two valleys at
around k = ±2π/3a points as shown for example in Figure 
7(b) while the zigzag carbon nanotubes can have at the most 
one valley as shown in Figure 7(a). The bands in each 
armchair cross the Fermi level at k = ±2π/3a thus they are 
considered to exhibit metallic behaviour [2]. There is no
energy gap of the order of ≈ 0.011 eV for armchairs as
shown in Figure 6(b), Figure 7(b) and Figure 8 

irrespectively of the tube diameter. Some zigzag tubes also 
show zero band gaps as shown in Figure 7(a). This is
because zigzag tubes become metallic when the tubes are 
(2n + m)/3 is an integer otherwise the tube remains 
semiconducting.  

Figure 8: Calculated band gaps in PCNTs (armchair) of
different diameters. 

83 PCNTs are chosen between the diameter range of 0.3 nm
- 3.9355 nm. These PCNTs include armchair, chiral and 
zigzag tubes leaving out those zigzag tubes which are 
metallic in nature. 16 of these 83 PCNTs are metallic 
(armchair) and 67 are semiconductor (chiral and zigzag). 
The band gaps of chiral and zigzag tubes between 0.3 nm to
3.9355 nm diameters (67 in numbers) is presented in Figure 
9 and in Table 1.  

Figure 9: Band gaps of PCNTs with increase in diameters. 

In Tables 1 nanotubes are listed with increasing chiral angle 
θ° in order of increase in indices (n, m). The tube diameter 
and the calculated value of band gap in also given. The 
results in Tables 1 clearly show that irrespective of the 
chiral angle, with the increase in diameter the band gap 
decreases. Further it may be seen that for the tube of about 
the same diameter with different chirality shall have about 
the same band gap. Therefore it is clear that the band gap of
the semiconducting tubes depend inversely upon the 
diameter. The armchair (n, n) tubes band gap of the order of
0.011eV remain independent of diameter as shown in
Figure 9 and Figure 8. Figure 9 also give the band gaps by
Mintmire et al [8]. Similar results have also been reported by
White et al [10, 11] for the band gaps of carbon nanotubes.  
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4.2 Electron Density of States (DOS) 

Density of states (DOS) is the total number of energy levels 
per unit volume available for possible occupation by
electrons. Local density of states (LDOS) is defined as the
specific small area where the total number of electrons 
occupy energy levels per unit volume.  

4.3 DOS for zigzag PCNT 

The energy bands for (n, 0) zigzag carbon nanotubes may be
obtained by enforcing the periodic boundary conditions. 
This prescribes the allowed wave-vectors ky in the 
circumferential direction as nkya = 2 ν π, (ν = 1… 2n). The
one-dimensional dispersion relations for the 4n states of the 
(n, 0) zigzag carbon nanotubes may be written as: 

𝐸𝜈 𝑘𝑥 
 3𝑎𝑡

2
 𝑘𝑥  

2 +  
4𝜋

3𝑎
 

3𝜈

2𝑛
− 1  

2

            (5)

−  𝜋  3𝑎  < 𝑘𝑥 < 𝜋  3𝑎   
 

The energy gap for subband ν can be written as difference 
between the energies of the + and - branches at kx = 0: 

𝐸𝑔
𝜈 =  3𝑎𝑡

2𝜋

𝑛𝑎
 𝜈 −

2𝑛

3
                             (6)

The energy gap has a minimum value of zero corresponding 
to ν = 2n/3. If n is not a multiple of three then the minimum 
value of 𝜈 − 2𝑛 3  is equal to 1/3. This gives the minimum 
energy gap as: 

𝐸𝑔 =  
 3𝑎𝑡

3

2𝜋

𝑛𝑎
 =  

2𝑎𝐶−𝐶𝑡

𝑑𝐶𝑁𝑇

 ≈  
0.8𝑒𝑉𝑛𝑚
𝑑𝐶𝑁𝑇

 

where 𝑑𝐶𝑁𝑇 − 𝑛𝑎 𝜋  is the diameter of the carbon nanotubes. 
The DOS for semiconducting zigzag carbon nanotubes 
based on (6) and (7) may be written as: 

𝑔 𝐸  =  
8

3𝜋𝑎𝐶−𝐶𝑡
𝜈

 
𝐸

 𝐸 −  𝐸𝑔  
𝜈 2  

               (7)

which is valid only if  𝐸 − 𝐸𝐹   ≪ 𝑡 [29].

The DOS for the metallic carbon nanotubes (armchair) DOS 
may also be obtained but it is independent of their diameters 
as well as chirality because of the linear dispersion relations 
around the Fermi energy [2]. The density of states (DOS) [2] 
per unit length along the metallic carbon nanotube axis is
constant given by 8/3πaC-Ct. 

(a)

(b)
Figure 10 Density of State versus Energy (a) of (4, 0) 
(zigzag, semiconducting) and (b) of (4, 4) (armchair, 

metallic) PCNTs respectively. 

It is observed that the DOS of PCNTs shows same typical 
features in one dimensional system. The DOS of
semiconducting zigzag depends on the structure and 
diameter as shown in Figure 10 (a) and Figure 11 (a). The 
continuous electronic density of states (DOS) in a CNT is
divided into a series of spikes because of radial confinement 
of the wave function which is referred to as Van Hove 
singularities shown in Figure 10 and Figure 11. It may be
seen in Figures 10(b) and 11(b) observed that the universal 
relation for the armchair [2] nanotubes has zero band gaps 
near the Fermi level.  

(a) 
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(b) 
Figure 11 Density of State versus Energy (a) of (9, 0) 
(zigzag, metallic) and (b) of (9, 9) (armchair, metallic) 

PCNTs respectively

At Fermi level the DOS between the two adjacent Van Hove 
singularities has some finite value for metallic tubes as
shown in Figure 10(b) and Figure 11(b) while the DOS is
zero at the Fermi level for semiconducting nature of zigzag 
tubes shown in Figure 10 (a). It may be noted that the 
zigzag tube (9, 0) is metallic in nature. It has been already 
verified through Scanning-Tunneling Microscopy (STM) 
that the nanotubes [9] that both metallic and semiconducting 
PCNTs possess DOS. 

5. Conclusion 

This paper deals with the electronic band structures of one-
dimensional carbon nanotubes and the effect of change in
diameter of carbon nanotubes on the band structure and 
explains the behavior of PCNTs in respect of being metallic 
or semiconductor depending upon the chirality. In case of
graphene, a zero gap semi-conductor, the valence and 
conduction bands meet at the corners called the K-points of
the hexagonal Brillouin zone. The graphene sheet can be
taken as infinite two dimensional plane without additional 
constrains while the PCNTs made up of rolling of graphene 
sheet may be considered to be infinite in one direction and 
finite around its circumference producing its confinement 
effects and additional periodic boundary conditions. Eighty-
three perfect carbon nanotubes are considered for 
calculations of band gaps. In the Section electron DOS is
calculated and presented.  
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Table 1: Comparison of the band gaps of different PCNTs with increase in diameters
1. 2. 3. 1. 2. 3. 1. 2. 3.

θ=0˚ θ=1.87˚ θ=7.58˚
(n , m) Diameter (nm) Gap (eV) (n , m) Diameter (nm) Gap (eV) (n , m) Diameter (nm) Gap (eV)
(4,0) 0.31315 2.4853 (6,2) 0.56455 1.453 (6,1) 0.51337 1.72
(5,0) 0.39144 2.2918 (12,4) 1.1291 0.765 (12,2) 1.0267 0.811
(7,0) 0.54802 1.4819 (15,5) 1.4114 0.596 (24,4) 2.0535 0.419
(8,0) 0.62631 1.4078 (21,7) 1.9759 0.435 (30,5) 2.5669 0.329
(10,0) 0.78289 1.0534 (24,8) 2.2582 0.374 (42,7) 3.5936 0.239
(11,0) 0.86118 1.015 (30,10) 2.8227 0.304 - - -
(13,0) 1.0178 0.8168 (33,11) 3.105 0.273 - - -
(14,0) 1.096 0.7934 (39,13) 3.6696 0.233 - - -
(16,0) 1.2526 0.6668 - - - - - -
(17,0) 1.3309 0.6511 θ=5.20˚ θ=8.94˚
(19,0) 1.4875 0.5634 (n , m) Diameter (nm) Gap (n , m) Diameter (nm) Gap
(20,0) 1.5658 0.5521 (9,1) 0.74683 1.1729 (5,1) 0.43589 1.845
(22,0) 1.7224 0.4877 (18,2) 1.4937 0.5614 (10,2) 0.87179 0.999
(23,0) 1.8006 0.4792 (36,4) 2.9873 0.2873 (20,4) 1.7436 0.482
(25,0) 1.9572 0.4299 (45,5) 3.7341 0.2268 (25,5) 2.1795 0.395
(28,0) 2.1921 0.3844 - - - (35,7) 3.0513 0.277
(31,0) 2.4269 0.3476 θ=5.81˚ (40,8) 3.4871 0.246
(32,0) 2.5052 0.3432 (n , m) Diameter (nm) Gap - - -
(34,0) 2.6618 0.3172 (8,1) 0.6689 1.227 - - -
(35,0) 2.7401 0.3136 (16,2) 1.3378 0.647 - - -
(37,0) 2.8967 0.2917 (32,4) 2.6756 0.316 - - -
(38,0) 2.975 0.2886 (40,5) 3.3445 0.256 - - -
(40,0) 3.1315 0.27 - - - - - -

  
Table 1: Continued

1. 2. 3. 1. 2. 3.
θ=19.10˚ θ=23.41˚
(n , m) Diameter (nm) Gap (eV) (n , m) Diameter (nm) Gap
(4,2) 0.4143 2.084 (3,2) 0.3413 2.377
(8,4) 0.8285 1.009 (6,4) 0.6825 1.254
(10,5) 1.0357 0.831 (12,8) 1.365 0.62
(14,7) 1.4499 0.582 (15,10) 1.7063 0.501

(22,11) 2.2785 0.376 (21,14) 2.3888 0.355
(26,13) 2.6927 0.315 (27,16) 2.947 0.29
(28,14) 2.8999 0.295 (33,20) 3.6293 0.234
(32,16) 3.3141 0.256 - - -
(34,17) 3.5213 0.243 - - -
(38,19) 3.9355 0.216 - - -

- - - - - -
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