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Abstract: Bicycles continue to be eliminate mode of transport for middle income families. This is because the bicycle is environment 
but required more people efforts. India is the largest producer of bicycles. Considering the rising fuels cost and pollution, the bicycle is 
considered ideal. These can be maintained at low costs. Since their inception bicycles have provided society with a good source of 
transportation, exercise which is good for human body, recreation and sport. New bicycle frames are generally motivated by weight and 
often incorporate the use of high performance materials. Energy is expended for propulsion and elastic deformation of the frame. 
Therefore a minimization of frame’s total mass and deflection are essential. Most modern bicycle frames have simple form e.g. 
diamond shaped frame it was in 1895 after several remained basically unchanged since that time. The need for low load coupled with 
high strength has led to continuing trail and development of excellent materials for racing bicycles The solution to the pertaining 
problem is to switch to the most reliable and a proven tool of structural engineering; the Finite Element Method (FEM).  
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1. Introduction 
 
The bicycle frame designed for analysis feature a traditional 
diamond frame design, consisting of a front and rear triangle. 
This design has been the industry standard for bicycle frame 
design for over one hundred years. The frame consists of a 
top tube, down tube, head tube, seat tube, seat stays, and 
chain stays as seen in Figure 1. The head tube of the frame 
holds the steerer tube of the fork, which in turn holds the 
front wheel. The top tube and down tube connect the head 
tube to the seat tube and bottom bracket. The seat tube holds 
the seat post, which holds the saddle. The bottom bracket 
holds the cranks, which hold the pedals. The seat stays and 
chain stays hold the rear dropouts, which connect the rear 
wheel to the frame. From that a size for a person with a 
height of normal person a frame was constructed. Throughout 
the years, frame building materials have evolved from what 
we now think as very primitive materials to space age 
materials which were unknown to our society 30 years ago. It 
is his improvement in materials which allowed to the greatest 
extent the evolution of the bicycle frame designs.  
 

 
Figure 1: Tubing diagram of the bike frame 

 
 
 
 
 
 

2. Theoretical Analysis of Bike Frames 

 
 Figure 2: Bike frame truss 

 
There are 7 steps involved in any finite element analysis. 
These steps are related to 3 phases, namely: 
1. Preprocessing 
2. Solution 
3. Post processing 
 
Preprocessing Phase 

i. Discredited the bike frame into nodes and elements. 

Each truss members is considered an element, and each joint 
connecting member is a node. Therefore, the given truss can 
be modeled with four nodes and five elements from figure 
60. Table 6 clearly depicts the relationship between the 
elements and their corresponding nodes. 
 

Table 1: The relationship between the elements and their 
corresponding nodes 

Element Node i Node j Ɵ 
-1 1 2 349 
-2 2 3 50 
-3 3 4 0 
-4 1 4 63 
-5 2 4 110 

 
In general, two frames of reference are required to describe 
truss problems: a global coordinate system and a local frame 
of reference. A fixed global coordinate system, XY (1) to 
represent the location of each joint (node) and to keep track 
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of the orientation of each member (element), using angles 
such as Ɵ; (2) to apply the constraints and the applied loads 
in terms of their respective global components; and (3) to 
represent the solution – that is, the displacement of each joint 
in global directions. We will also need a local, or an 
elemental coordinate system xy, to describe the two-force 
member behavior of individual members (elements). The 
relationship between the local (element) descriptions and the 
global description is shown in figure 61. 

 
Figure 3: Relationship between local and global coordinates. 
 
Note that local coordinate x points from node i toward j 
 
ii. Assume a solution that approximates the behavior of an 
element. 
 
The average stresses in any two-force member are given by 

/F A                                              (a) 
The average strain of the member can be expressed by 

  /L L                                                 (b) 
Over the elastic region, the stress and strain are related by 
Hooke’s law, 

E                                                  (c) 
Combining Eqs. (a), (b) and (c) and simplifying, we have 

( / ) *F AE L L                                       (d) 
Equation (d) is similar to the equation of a linear spring, F = 
kx. Therefore, a centrally loaded member of uniform cross 
section may be modeled as a spring with equivalent stress of 

Keq= AE/L                                          (e) 
This equivalent stiffness constant will vary for individual 
material alloys and also for different dimensioned members 
of the same alloy. As there are 5 different elements in the 
bike truss so we will obtain 5 different stiffness constants for 
a single material alloy. 
 
iii. Develop equations for elements. 
The global displacements (UiX, UiYat node i and UjX, 
UjYat node j) are related to the local displacements (uix, 
uiyat node i and ujx, ujyat node j) according to the equations 
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Now, equation (f) in matrix form, 

{U} = [T] {u}                                       (g) 
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{U}=displacements of nodes i and j with respect to the global 
XY 
{u}=displacements of nodes i and j with respect to the local 
xy frame of reference 
[T]=transformation matrix that allows for transfer of local 
deformations to their respective global values 
 
The local forces may be related according to the equations: 
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 Or, in matrix form, 
 {F} = [T] {f} (i) 
Where 

{F} = 
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Are components of forces acting at nodes i and j with respect 
to global coordinates and 

{f} = 
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Represent the local components of the forces at nodes i and j. 
Here the displacements and the forces are zero in the local y-
direction. This fact is simply because under the two-force 
assumption, the members can only be shortened along their 
longitudinal axis (local x-axis). This fact also holds true for 
the internal forces that acts only in the local x-direction. So 
the y-components of the displacements and forces equal to 
zero. The local internal forces and displacements are related 
through the stiffness matrix 
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where k = keq= AE/L, and using matrix form we can write 
 {f} = [K]{u} (k) 
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After substituting for {f} and {u} in terms of {F} and {U}, 
we have 

 [T]-1{F} = [K] [T]-1{U}                           (l) 
 
where [T]-1 is the inverse of the transformation matrix [T] 
and is 

 [T]-1 = 

cos sin 0 0
sin cos 0 0
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Multiplying both sides of eq. (l) by [T] and simplifying, 

 {F} = [T] [K][T]-1{U}                           (n) 
Substituting the values of the [T], [K], [T]-1, and {U} 
matrices in eq. (n) and multiplying, we are left with 

iX

iY

jX

jY

F

F

F

F

 
 
 
 
 
  =k          

2 2

2 2

2 2

2 2

cos sin cos cos sin cos
sin cos sin sin cos sin

cos sin cos cos sin cos
sin cos sin sin cos sin

     

     

     

     

  
 

  
  
 
  

iX

iY

jX

jY

U

U

U

U

 
 
 
 
 
                                         (o) 

Equation (o) expresses the relationship between the applied 
forces, the element stiffness matrix [K] (e), and the global 
deflection of the nodes of an arbitrary element. The stiffness 
matrix [K] (e) for any member (element) of the truss is 
 
[K](e) = 
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(p) 
 
By using eq. (p) different stiffness matrices are obtained for 
different elements which are made to assemble in the next 
step. 
 
iv. Assemble elements 

The global stiffness matrix is obtained by assembling, or 
adding together, the individual elements’ matrices: 
 
[K](G) = [K](1G) + [K](2G) + [K](3G) + [K](4G) + [K](5G) 
 

V. Apply the boundary conditions and loads. 

The boundary conditions in accordance to the loading cases 
are incorporated in the global stiffness matrix. The external 

loads at the nodes and fixing of the nodes should be in 
accordance to boundary conditions. 
 [K](G){U} = {F} 
 

Solution Phase 

 

vi. Solve a system of algebraic equations simultaneously 

The displacement of the nodes is obtained on solving the 
above matrix with respect to the global coordinate system. 

{U} = [K]-(G)                                    {F} 
 
Post Processing Phase 

vi. Obtain other information. 
Reaction Forces 
Reaction forces can be computed from: 
 {R} = [K] (G) {U} – {F} 
Internal Forces and Normal Stresses 
The member internal forces fix and fjx, which are equal and 
opposite in direction, are 
 fix = k(uix– ujx)  
 fjx = k(ujx– uix) (q) 
The sum of fix and fjxis zero. For computing the internal 
forces in a given element, we must know the displacements 
of the element’s end nodes, uix and ujx, with respect to the 
local coordinate system, x,y. the global displacements are 
related to the local displacements through a transformation 
matrix, according to eq. (g), 
 
 {U} = [T] {u}  
 
And the local displacements in terms of global 
displacements: 
 {u} = [T]-1{U} 
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Once the internal force in each member is computed, the 
normal stress in each member can be determined from the 
equation 
 

  = internal force / area = f/A 
Or alternatively, normal stress can be calculated as 
 

  = f/A = k (uix– ujx)/A = (AE/L)* (uix– ujx)/A = E (uix– 
ujx/L) 
 
3. Modal Analysis 
 
Vibration analysis is made to be performed on all the 5 
material alloy frames. No boundary condition is applied on 
the bike frames. Seat tube is supported so as to make the bike 
frames stable for the vibration test. When the simulation has 
finished the mode shapes are made visible. 
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3.1 Aluminum 6061-T 

 

 
Figure 4: Mode 1, 235.78 Hz 

 
Figure 5: Mode 2, 255.27 Hz 

 
Figure 6: Mode 3, 301.66 Hz 

 
Figure 7: Mode 4, 324.36 Hz 

 
Figure 8: Mode 5, 340.54 Hz 

 
Figure 9: Mode 6, 368.11 Hz 

  
3.2 Aluminum 7005-T 

 
Figure 10: Mode 1, 235.86 Hz 

 
Figure 11: Mode 2, 255.37 Hz 

 
Figure 12: Mode 3, 301.71 Hz 

 
Figure 13: Mode 4, 324.53 Hz 
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Figure 14: Mode 5, 340.61 Hz 

 
Figure 15: Mode 6, 368.27 Hz 

 
3.3 Chromoly-4130 

 

 
Figure 15: Mode 1, 238.44 Hz 

 

 
Figure 16: Mode 2, 258.23 Hz 

 

 
Figure 17: Mode 3, 304.91 Hz 

 
Figure 18: Mode 4, 328.3 Hz 

 
Figure 19: Mode 5, 344.23 Hz 

 
Figure 20: Mode 5, 372.41 Hz 

 
3.4 Titanium-3Al-2.5V 

 
Figure 21: Mode 1, 220.46 Hz 

 

 
Figure 22: Mode 2, 238.73 Hz 
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Figure 23: Mode 3, 281.95 Hz 

 
Figure 24: Mode 4, 303.48 Hz 

 
Figure 25: Mode 5, 318.3 Hz 

 
Figure 26: Mode 6, 344.29 Hz 

 

 3.5 Titanium-6Al-4V 

 

 
Figure 27: Mode 1, 236.6 Hz 

 
 

 
Figure 28: Mode 2, 256.13 Hz 

 
Figure 29: Mode 3, 302.75 Hz 

 
Figure 30: Mode 4, 325.41 Hz 

 
Figure 31: Mode 5, 341.76 Hz 

 
Figure 32: Mode 6, 369.34 Hz 
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4. Result and Conclusion 
 

Table 2: Comparison of natural frequencies of the bike 
frames (Hz) 

ALLOYS Natural frequency of the bike frames (Hz) 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Aluminum 
6061-T 235.78 255.27 301.66 324.36 340.54 368.11 

Aluminum 
7005-T 235.86 255.37 301.71 324.53 340.61 368.27 

Chromoly-
4130 238.44 258.23 304.91 328.3 344.23 372.41 

Titanium-3Al-
2.5V 220.46 238.73 281.95 303.48 318.3 344.29 

Titanium-6Al-
4V 236.6 256.13 302.75 325.41 341.76 369.34 

 
The modal analysis clearly suggests the dynamic behavior of 
the bike frames on free vibration conditions. The mode 
shapes quantify the vibrational pattern of the material alloy. 
The 1st mode shape obtained defines the 1st vibration 
obtained for the bike frame on free vibration. From Table 50 
we can deduce the mode shape obtained for different alloys. 
The increasing order of frequency is as follows: 
Titanium-3Al-2.5V < Aluminum 6061-T < Aluminum 

7005-T < Chromoly-4130 < Titanium-6Al-4V 

 

The increasing order of deformation can be made out 

from the figure (124-154) which is as follows: 

 

Chromoly-4130 < Titanium-3Al-2.5V < Titanium-6Al-4V 

< Aluminum7005-T < Aluminum 6061-T 
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