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Abstract: Social media data reflects the lot of interests of virtual communities in a spontaneous and timely manner. Tweets are created 
as short text message and shared for each users and information analysts. Twitter that receives over four hundred million tweets per 
day has emerged as a useful supply of reports, blogs, opinions and additional. Our projected work consists of 3 parts. Tweet stream 
clustering to cluster tweets with k-prototype cluster algorithm (Existing paper shows, k-means clustering algorithm wont to produce the 
initial clusters. With globular clusters, it did not work well. Therefore in our projected work, we are using k-prototype algorithm to get 
tighter clusters than k-means algorithm, particularly if the clusters area globular).  Second is tweet cluster vector technique to get rank 
summarization with greedy algorithm. Third to notice and monitors the outline – summary based and volume based variation to provide 
timeline from tweet stream. Implementing continuous tweet stream reducing a text document is but not an easy task. Since a large 
variety of tweets area trashy, unrelated and raucous in nature, owing to the social nature of tweeting. Further, tweets area powerfully 
related with their announce instance and current tweets tend to reach an awfully quick rate. Efficiency - tweet streams are huge, thus 
the summarization algorithm ought to be greatly capable and time efficient. Flexibility - it ought to offer tweet summaries of random 
moment durations. Topic evolution - it ought to habitually notice sub - topic changes and therefore the moments that they happen.
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1. Introduction 

Twitter, Weibo, Tumblr such micro-blogging services has 
resulted in the huge amount of short-text messages. Twitter, 
which receives over millions tweets per day has emerged as 
an invaluable source of blogs, news, opinions, and more. 
Tweets, in their raw form, while more informative. For an 
instance, search for a hot topic in Twitter may yield millions
of tweet. Even if filtering is allowed, so many tweets for 
important contents are available. To make things worse, new 
tweets satisfying the filtering criteria may arrive very fast, 
continuously, at an unpredictable rate. One solution to 
information overloading problem is summarization. The 
summarization is restating of the main ideas of the text in as 
few words as possible. A good summary should cover the 
main topics also the subtopics and have diversity among the 
sentences to reduce redundancy. Summarization is widely 
used, especially when users surf the internet with their mobile 
devices which have much smaller screens than PCs. The 
Traditional document summarization approaches are not as 
effective in the situation of tweets like the big size of tweets 
and the fast and continuous nature of their arrival. 

In this project, we propose continuous tweet summarization 
as a solution to address this problem. Traditional documents 
focus on static and small-scale data. Here we aim to deal with 
dynamic, tweet streams and produce novel tweet streams. We 
propose a novel prototype called Sumblr (SUMmarization By 
stream cLusteRing) for tweet streams. We first use an online 
tweet stream clustering algorithm to cluster tweets and 
maintain distilled statistics called Tweet Cluster Vectors. In 
existing base paper, k-means clustering algorithm was used 
to create the initial clusters but with global cluster, it didn't 
work well. In our proposed work, we use k-prototype 
clustering to produce tighter clusters than k-means clustering, 

especially if the clusters are globular. Then the TCV-Rank 
summarization technique for generating online summaries 
and historical summaries of arbitrary time durations. Finally, 
described a topic evolution detection method, which 
consumes online and historical summaries to produce 
timelines automatically from tweet streams [1]. 

2. Literature Review 

Television broadcasters are commencing to mix social micro-
blogging systems like Twitter with television to make social 
video experiences around events. Here checked out one such 
event, the primary U.S. presidential discussion in 2008, in 
conjunction with aggregate ratings of message sentiment 
from Twitter. Then start to develop an analytical 
methodology and visual representations that would facilitate 
a journalist or public affairs person higher perceive the 
temporal dynamics of sentiment in reaction to the 
controversy video. The demonstration of visuals and metrics 
which will be wont to find sentiment pulse, anomalies in this 
pulse and indications of debatable topics. which will not 
inform the planning of visual analytic systems for social 
media events[2]. 

Classic news summarization plays a very important role with 
the exponential document growth on the net. Several 
approaches are proposed to get summaries however rarely at 
the same time consider evolutionary characteristics of news 
and to traditional summary. Therefore, shown a unique 
framework for the web mining problem named evolutionary 
Timeline summarization (ETS). Given the huge collection of 
time-stamped web documents associated with a general news 
query. ETS aims to come back the evolution trajectory with 
the timeline, consisting of individual however correlate 
summaries of each date, relevancy, coverage, coherence and 
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cross-date diversity. ETS greatly facilitates quick news 
browsing and knowledge comprehension and therefore could 
be a necessity. They formulate the task as an improvement 
problem via repetitive substitution from a collection of 
sentences to a subset of sentences that satisfies the above 
necessities, balancing coherence/diversity measuring and 
local/global summary quality. The optimized substitution is 
iteratively conducted by incorporating many constraints till
convergence. Here newly developed experimental systems to 
gauge on six instinctively totally different datasets which has 
amounted to 10251 documents [3]. 

In this paper, study of data stream cluster problem within the 
context of text and categorical data domains is shown.
Whereas the cluster problem has been studied recently for 
numeric data streams. The issues of text and categorical data 
present completely different challenges because of the big 
and un-ordered nature of the corresponding attributes. 
Therefore,  proposed an algorithms for text and categorical 
data stream clustering. An approach for stream clustering that 
summarizes the stream into variety of fine grained cluster 
droplets. These summarized droplets are utilized with a 
variety of user queries to form the clusters for various input 
parameters. Thus, this provides an online analytical process 
approach to stream clustering. [4]. 

Here investigated one technique to provide a summary of an 
original text without requiring its full linguistics 
interpretation, however instead relying on a model of the 
topic progression within the text derived from lexical chains. 
Also present a new algorithm to form lexical chains during a 
text, merging many robust data sources, the WordNet 
thesaurus, shallow parser, a part-of-speech tagger for the 
identification of nominal groups, and a segmentation 
algorithm. Summarization occurs in four steps: the first text 
is segmental, lexical chains are made, strong chains are 
identified and important sentences are extracted. During this 
paper presented empirical results on the identification of 
robust chains and of significant sentences [5].

In this paper show that an easy procedure supported 
increasing the number of informative content-words can 
produce a number of the best reportable results for multi-
document summarization. Initially assign a score to every 
term within the document cluster, using only frequency and 
position information and then discover the set of sentences 
within the document cluster that maximizes the total of those 
scores, subject to length constraints. The overall results are 
the best reportable on the DUC-2004 summarization task for 
the ROUGE-1 score and are the most effective, but not 
statistically significantly different from the best system in 
MSE-2005[6].

We introduce a random graph-based methodology to 
compute relative importance of textual units for natural 
language process. We test the technique on the problem of 
Text summarization (TS). Extractive TS depends on the 
concept of sentence saliency to identify the foremost 
important sentences in an exceedingly document or set of
documents. Saliency is usually defined in terms of the 
presence of specific important words or in terms of similarity 
to a centroid pseudo-sentence [10].

We consider a new approach, LexRank, which is used for 
computing sentence importance supported the conception of 
eigenvector centrality in a graph illustration of sentences. 
During this model, a connectivity matrix based on intra-
sentence cosine similarity is employed as the adjacency 
matrix of the graph illustration of sentences. Our system, 
based on LexRank ranked in 1st place in more than one task 
within the recent DUC 2004 analysis. in this paper we 
present a close analysis of our approach and apply it to a 
larger data set as well as data from earlier DUC evaluations. 
We discuss many methods to compute centrality using the 
similarity graph. The result shows that the degree-based 
methods (including LexRank) outperform each centroid-
based methods and different systems taking part in DUC in 
most of the cases. Furthermore, the LexRank with threshold 
methodology outperforms the other degree-based techniques 
together with continuous LexRank.[7]

3. Problem Definition 

The implementation of continuous tweet stream 
summarization is not an simple task, since a large variety of 
tweets are not important, irrelevant and noisy in nature, due 
to the social nature of tweeting. Further, tweets are fully 
related with their posted time. New tweets tend to arrive at a 
very quick rate. Consequently, a good solution for continuous 
summarization needs to address the subsequent 3 issues: 
1)Efficiency —tweet streams are forever very large in scale, 

hence the summarization algorithm need to be extremely 
efficient. 

2)Flexibility —it should give tweet summaries of arbitrary 
time durations.  

3)(3)Topic evolution — it automatically finds such sub-topic 
changes and the moments that they happen. But, the 
existing methods cannot satisfy the above 3 requirements 
because: 

 They highly focus on static and small-sized data sets, and 
hence are not that much efficient and scalable for huge data 
sets and data streams.  

 For providing summaries of discretional durations, they 
will need to perform iterative/recursive summarization for 
each possible time length, which is unacceptable.  

 Summary results are insensitive to time. Thus it is tough 
for them to discover topic evolution. 

In this project, we introduce a novel summarization 
framework called as Sumblr (continuous SUMmarization By 
stream cLusteRing) with k-prototype clustering. The 
framework consists of three main elements, namely the 
Tweet Stream clustering module, High-level Summarization 
module and the Timeline Generation module for deal with 
dynamic, fast incoming, and large-scale tweet streams [10]. 

4. Proposed Methodology 

Our framework consists of three main modules: the tweet 
stream clustering module, the high-level summarization 
module and the timeline generation module. 
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4.1 Tweet Stream Clustering 

The tweet stream clustering module maintains the on-line 
statistical data. Given a topic - based tweet stream able to 
efficiently cluster the tweets and maintain compact cluster 
information a scalable cluster framework that by selection 
stores necessary portions of the data, and compresses or 
discards other parts. CluStream is one of the foremost classic 
streams clustering ways. It consists of an on-line micro-
clustering element and an offline macro - clustering element. 
A variety of services on the online like news filtering, text 
crawling, and topic detecting etc. have posed needs for text 
stream clustering CluStream to generate duration - based 
cluster results for text and categorical data streams. However, 
this algorithm depends on an on-line phase to generate a 
large range of micro - clusters and an offline section to re - 
cluster them. In contrast, our tweet stream cluster algorithm 
is an on-line procedure with no extra offline clustering. And 
in the context of tweet summarization, we adapt the on-line 
cluster phase by incorporating the new structure TCV, 
restricting the variety of clusters to ensure efficiency and 
therefore the quality of TCVs. 

1) Tweet Stream Initialization 
2) Incremental cluster 
3) Deleting Outdated Clusters 
4) Merging Clusters 
Tweet Stream initialization 

4.1.1 Tweet Stream Initialization  
At the beginning of the stream, we collect a small range of 
tweets and use a k-prototype clustering algorithm (instead of 
k-means) to form the initial clusters. Next, the stream 
clustering process starts to update the TCVs incrementally 
whenever a new tweet arrives. 

4.1.2  Incremental Clustering 
Suppose a tweet t arrives at time ts, and there are N active 
clusters at available. The key problem is to make a decision 
whether to attract into one of the current in progress clusters 
or make t as a new cluster. We initially find the cluster whose 
centroid is the closest to t. Specifically, we get the centroid of 
every cluster, compute its cosine similarity to t, and find out 
the cluster Cp with the largest similarity. 

4.1.3  Deleting outdated Clusters 
For most events (such as news, football matches and 
concerts) in tweet streams, timeliness is very important 
because they usually don't last for a long time. thus it is safe 
to delete the clusters representing these sub - topics once they 
are rarely discussed to search out out such clusters, an 
intuitive approach is to estimate the average arrival time 
(denoted as Avgp) of the last p percent of tweets in a cluster. 
However, storing p percent of tweets for each cluster can 
increase memory costs, particularly when clusters grow big. 
Thus, we use an approximate methodology to get Avgp. 

4.1.4  Merging Clusters 
If the number of clusters keeps increasing with few deletions, 
system memory is going to be exhausted. To avoid this, we 
specify an upper limit for the number of clusters as Nmax. 
Once the limit is reached, a merging process starts. The 

process merges clusters in a greedy approach. First, sort all 
cluster pairs by their similarities of centroid in a descending 
order. Then, beginning with the most similar pair, we try to 
merge two clusters in it. When the both clusters are single 
clusters that have not been merged with other clusters, thus 
they are merged into a new composite cluster. Once one of 
them belongs to a composite cluster (already it has been 
merged with others), the other is also merged into that 
composite cluster. When each of them are merged, if they 
belong to the same composite cluster, such pair is skipped; 
otherwise, the two composite clusters are merged. This 
process continues till there are only mc percentage of the 
original clusters left (mc is a merging coefficient that 
provides a balance between available memory space and the 
quality of remaining clusters). 

4.2 High - Level Summarization 

The module provides two kinds of summaries: on-line and 
historical summaries. An online summary describes what is 
presently discussed among the public. Thus, the input for 
generating on-line summaries is retrieved directly from the 
current clusters maintained in memory. On the other hand, a 
historical summary helps people to understand the main 
happenings in a specific period, which means to eliminate the 
influence of tweet contents from the outside of the period. As 
a result, retrieval of the required information for generating 
historical summaries is very much complicated, and this shall 
be our focus within the following discussion. Suppose the 
length of a user - defined time period is H, and the ending 
timestamp of the period is tse. 

4.2.1 Document/Microblog Summarization 
The Document summarization is categorized as extractive 
and abstractive. The previous selects sentences from the 
documents, whereas the latter may generate phrases and 
sentences that don't appear in the original documents. Now 
we are focusing extractive summarization. Extractive 
document summarization has received lots of recent 
attention. Most of assign salient scores to sentences of the 
documents, and select the top - ranked sentences. Some 
works attempt to extract summaries without such salient 
scores. The symmetric non - negative matrix factorization for 
cluster sentences and select sentences in each cluster for 
summarization. Projected to summarize documents for the 
perspective of data reconstruction, and choose sentences that 
can best reconstruct the original documents. In modeled 
documents (restaurant reviews) as multi - attribute uncertain 
data problem and optimized a probabilistic coverage of the 
summary. There have also been studies on microblogs 
summarizing for some specific forms of events, e.g., sports 
events are taken to identify the participants of events and 
generate summaries based on sub - events detected from each 
participant introduced by learning the underlying hidden state 
representation of the event, which has to learn from previous 
events (soccer game) with similar structure. As in the 
summarized events by exploiting "good reporters", depends 
on event - specific keywords which requires being in 
advance. In distinction, we aim to deal with general topic - 
relevant tweet streams without such previous knowledge. 
Moreover, their method stores all the tweets in every segment 
and selects one tweet as the summary, whereas our method 
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maintains distilled information in TCVs to reduce 
storage/computation cost, and generates many tweet 
summaries in terms of content coverage and novelty 
additionally to online summarization, our method supports 
historical summarization by maintaining TCV snapshots. 

4.3 Timeline Detection 

The demand for analyzing huge contents in social medias 
fuels the developments in visualization techniques. Timeline 
is one of these techniques which may make analysis tasks 
easier and faster. We have presented a timeline supported 
backchannel for conversations around events and proposed 
the evolutionary timeline summarization (ETS) to compute 
evolution timelines same to ours, that consists of a series of 
time stamped summaries. By a predefined timestamp set the 
dates of summaries are determined. In contrast, our 
methodology discovers the changing dates and generates 
timelines dynamically throughout the process of continuous 
summarization. Moreover, ETS does not focus on efficiency 
and scalability problems, which are important in our 
streaming context. Several systems detect important moments 
when fast increases or "spikes" in status update volume 
occurs. Developed an algorithm based on tcp congestion 
detection, employed a slope based method to find out spikes. 
After that, tweets from every moment are identified, and 
word clouds or summaries are selected which is different 
from this two step approach. Our method detects topic 
evolution and produces summaries/timelines in an online 
fashion. 

5. System Architecture 

 In this paper, we introduce a novel summarization 
framework called Sumblr (continuouSsUMmarizationBy 
stream cLusteRing). 

 The framework consists of three main components, 
specifically the Tweet Stream clustering module, the High-
level summarization module and Timeline Generation 
module. 

 We design an efficient tweet stream cluster algorithm in 
the tweet stream clustering module. It is an online 
algorithm allows effective clustering of tweets in only one 
pass over the data. At the beginning of the stream, we use 
k-prototype clustering that produce tighter clusters than k-
means clustering, especially if the clusters are globular. 

 The high-level summarization module supports generation 
of two forms of summaries: on-line and historical 
summaries. 

 A topic evolution detection algorithm is base of the 
timeline generation module that consumes online and 
historical summaries to produce real-time and range 
timelines. The algorithm monitors quantified variation 
during the course of stream process. 

 We load the Twitter data sets. as a result of tweets are 
being created and shared at an unprecedented rate. 

 Tweets, in their raw form, whereas being informative also 
can be overwhelming. 

 Through millions of tweets that contain huge amount of 
noise and redundancy. 

Fig 1. System Architecture[1]

 In this project, we propose a novel continuous 
summarization framework called as Sumblr to all eviate the 
problem. Therefore we load the dataset for continuous 
summarization and timeline generation. 

5.1 Tweet Stream Clustering

This module maintains the online statistical data. With a 
given topic - based tweet stream, it is ready to efficiently 
cluster the tweets and maintain compact cluster information a 
scalable cluster framework which selectively stores necessary 
parts of the data, and compresses or discards different 
portions.

It consists of four phases like 
1) Tweet Stream initialization
2) Incremental cluster 
3) Deleting outdated Clusters 
4) Merging Clusters

5.2 High-Level Summarization

The summarization module provides two types of summaries:
historical and online summaries. 
 The summarization module provides two types of 

summaries: historical and online summaries.  
 A historical summary helps people to understand the main 

happening during a specific period, means from the outside 
of that period we need to eliminate the influence of tweet 
contents. 

 On the other hand, an online summary describes what is 
currently discussed among the public. The input for 
generating online summaries is retrieved directly from the 
current clusters maintained in memory. 

 As a result, retrieval of the needed information for 
generating the historical summaries is more complicated, 
and this is the focus in this discussion. Suppose ending 
timestamp of the duration is tse and the length of a user - 
defined time duration is H.
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5.3 Timeline Detection 

 The increasing demand for analyzing huge contents in 
social media fuels the developments in visualization 
techniques. Timeline is one among these techniques can 
make analysis tasks easier and faster. 

 It has been presented a timeline - based mostly 
backchannel for conversations around events. It proposed 
the evolutionary timeline summarization (ETS) to compute 
evolution timelines similar to ours that consists of a series 
of time - stamped summaries. 

 The pre - defined timestamp set are used to determine the 
dates of summaries. In distinction, our methodology 
discovers the changing dates and generates timelines 
dynamically throughout the process of continuous 
summarization. Moreover, ETS does not specialize in 
efficiency and scalability problems that are important in 
our streaming context. 

 Several systems find important moments when fast 
increases or "spikes" in status update volume happen. 
Developed an algorithm based on tcp congestion detection, 
utilized a slope - based methodology to find spikes. 

 After that, tweets from each moment are known, and word 
clouds or summaries are selected completely different from 
this two - step approach, our methodologies detect topic 
evolution and generate summaries/timelines in an online 
fashion.

6. Algorithms 

6.1 K-Prototype Clustering:

1)Select k number of initial prototypes from a data set X and 
assign one for each cluster.  

2)Allocate every object in X to a cluster which has nearest 
prototype. After each allocation update the prototype of the 
cluster.  

3)After all the objects have been allocated to a cluster, test 
again the similarity of objects for the current prototype. If 
any of the objects found such that its nearest prototype 
belongs to the other cluster than its current cluster, then 
reallocate the object to the same cluster and update 
prototypes for both of the clusters.  

4)Repeat step 3) yet no object change clusters after testing 
full cycle of X. 

6.2 Incremental Tweet Stream Clustering

Input: a cluster set C set
Output: store C set in PTF
1) While! stream.end () do
2) Tweet t=stream. Next ();
3) Choose Cp in C set whose centre is the
Closest to t;
4) If MaxSim (t) < MBS then
5) Create a new cluster Cnew=ftg;
6) Cset.add (Cnew);
7) Else
8) update Cp with t;
9) If TScurrent %( ai) ==0 then
10) Store C set into PTF;

6.3 TCV-Rank Summarization 

Input: a cluster set D(c) 
Output: a summary set S 
1) S=0, T=fall the tweets in ft set of D(c)g; 
2) build a similarity graph on T; 
3) Compute LexRank score LR; 
4) Tc =ftweets with the highest LR in each cluster g; 
5) While jSj<L do 
6) For each tweet ti inTc�S do 
7) calculate vi according to Equation (2); 
8) select tmax with the highest vi ; 
9) S.add (tmax); 
10) While jSj< L do 
11) For each tweet i in Tc -S do 
12) Calculate v’ i according to Equation (2);

13) select tmax with the highest v’ i ;

14) S.add (t’max); 
15) Return S; 

6.4 Topic Evolution Detection 

Input: a tweet stream binned by time units 
Output: a timeline node set TN 
1) TN=0; 
2) While! stream.end () do 
3) Bin Ci=stream. Next (); 
4) If  hasLargeVariation ( ) then 
5) TN.add (i); 
6) return TN; 

7. Result and Analysis 

Input: 
1)We choose a twitter dataset, timelines for sport topics are 

relatively easier to build. The reference timelines can be 
manually produced. 

2)We search the particular topic i.e. query, which is entered
by user in twitter dataset. 

Output: 
1) Give the summarization of respective input query. 

System Boundaries: 
Deleting the old data which is rarely visited or followed by 
the twitter and the average timestamp of the latest 10 percent 
tweets is more than three days old, are considered as outdated 
and removed.
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For evaluating the performance of proposed system, we 
consider here the time required to produce the summarization 
of tweets & tweets of data size. For existing system, 
producing the summarization on tweets of data size 5Kb 
require 60 secs. The recommendation proposed system for 
producing the summarization on tweets of data size 5Kb is 
requires 20 secs. 

As the experimental result shows optimum performance of 
proposed system than that of existing system. The proposed 
system is protocol oriented and more time efficient, scalable 
than existing system. 

K Prototype clustering has more stability of clusters for 
tweets in it as compared to K means algorithm. Stability of K 
Means is reduced because, at the start it selects a random 
tweet in a cluster and make it as centroid. 

8. Conclusion 

In this paper, we proposed a tweet stream summarization 
framework, called Sumblr, to generate summaries and 
timelines in the context of streams. Sumblr employs a tweet
stream clustering algorithm for the purpose of compressing 
tweets into TCVs and also maintains them in an online 
fashion. Our proposed k-prototype clustering algorithm 
produced tighter clusters than k- means clustering, if the 
clusters are globular. We designed a novel data structure 
called TCV for stream processing, and proposed the TCV-
Rank algorithm for online and historical summarization. The 
topic evolution can be produced automatically, allowing 
Sumblr to produce dynamic timelines for tweet streams. The 
proposed K-prototype clustering algorithm can produce 
tighter clusters and time efficiently than K-Means clustering 
algorithm. 

9. Future Work 

Future work is to develop a multi-topic version of 
summarization in a distributed system, and evaluate same on 
more complete and large-scale data sets. 
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