
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

K Prototype Clustering with Efficient
Summarization for Topic Evolutionary Tweet

Stream Clustering
Swapnil Rajaram Ahire1, Lakshita Landge2

1, 2 Astral Institute of Technology and Research, RGPV University, Indore, Madya Pradesh, India

Abstract: Social media data reflects the lot of interests of virtual communities in a spontaneous and timely manner. Tweets are created
as short text message and shared for each users and information analysts. Twitter that receives over four hundred million tweets per
day has emerged as a useful supply of reports, blogs, opinions and additional. Our projected work consists of 3 parts. Tweet stream
clustering to cluster tweets with k-prototype cluster algorithm (Existing paper shows, k-means clustering algorithm wont to produce the
initial clusters. With globular clusters, it did not work well. Therefore in our projected work, we are using k-prototype algorithm to get
tighter clusters than k-means algorithm, particularly if the clusters area globular). Second is tweet cluster vector technique to get rank
summarization with greedy algorithm. Third to notice and monitors the outline – summary based and volume based variation to provide
timeline from tweet stream. Implementing continuous tweet stream reducing a text document is but not an easy task. Since a large
variety of tweets area trashy, unrelated and raucous in nature, owing to the social nature of tweeting. Further, tweets area powerfully
related with their announce instance and current tweets tend to reach an awfully quick rate. Efficiency - tweet streams are huge, thus
the summarization algorithm ought to be greatly capable and time efficient. Flexibility - it ought to offer tweet summaries of random
moment durations. Topic evolution - it ought to habitually notice sub - topic changes and therefore the moments that they happen.

Keywords: Tweet stream, summarization, timeline, summary, continuous tweet stream

1. Introduction

Twitter, Weibo, Tumblr such micro-blogging services has
resulted in the huge amount of short-text messages. Twitter,
which receives over millions tweets per day has emerged as
an invaluable source of blogs, news, opinions, and more.
Tweets, in their raw form, while more informative. For an
instance, search for a hot topic in Twitter may yield millions
of tweet. Even if filtering is allowed, so many tweets for
important contents are available. To make things worse, new
tweets satisfying the filtering criteria may arrive very fast,
continuously, at an unpredictable rate. One solution to
information overloading problem is summarization. The
summarization is restating of the main ideas of the text in as
few words as possible. A good summary should cover the
main topics also the subtopics and have diversity among the
sentences to reduce redundancy. Summarization is widely
used, especially when users surf the internet with their mobile
devices which have much smaller screens than PCs. The
Traditional document summarization approaches are not as
effective in the situation of tweets like the big size of tweets
and the fast and continuous nature of their arrival.

In this project, we propose continuous tweet summarization
as a solution to address this problem. Traditional documents
focus on static and small-scale data. Here we aim to deal with
dynamic, tweet streams and produce novel tweet streams. We
propose a novel prototype called Sumblr (SUMmarization By
stream cLusteRing) for tweet streams. We first use an online
tweet stream clustering algorithm to cluster tweets and
maintain distilled statistics called Tweet Cluster Vectors. In
existing base paper, k-means clustering algorithm was used
to create the initial clusters but with global cluster, it didn't
work well. In our proposed work, we use k-prototype
clustering to produce tighter clusters than k-means clustering,

especially if the clusters are globular. Then the TCV-Rank
summarization technique for generating online summaries
and historical summaries of arbitrary time durations. Finally,
described a topic evolution detection method, which
consumes online and historical summaries to produce
timelines automatically from tweet streams [1].

2. Literature Review

Television broadcasters are commencing to mix social micro-
blogging systems like Twitter with television to make social
video experiences around events. Here checked out one such
event, the primary U.S. presidential discussion in 2008, in
conjunction with aggregate ratings of message sentiment
from Twitter. Then start to develop an analytical
methodology and visual representations that would facilitate
a journalist or public affairs person higher perceive the
temporal dynamics of sentiment in reaction to the
controversy video. The demonstration of visuals and metrics
which will be wont to find sentiment pulse, anomalies in this
pulse and indications of debatable topics. which will not
inform the planning of visual analytic systems for social
media events[2].

Classic news summarization plays a very important role with
the exponential document growth on the net. Several
approaches are proposed to get summaries however rarely at
the same time consider evolutionary characteristics of news
and to traditional summary. Therefore, shown a unique
framework for the web mining problem named evolutionary
Timeline summarization (ETS). Given the huge collection of
time-stamped web documents associated with a general news
query. ETS aims to come back the evolution trajectory with
the timeline, consisting of individual however correlate
summaries of each date, relevancy, coverage, coherence and

Paper ID: ART20164057 769

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

cross-date diversity. ETS greatly facilitates quick news
browsing and knowledge comprehension and therefore could
be a necessity. They formulate the task as an improvement
problem via repetitive substitution from a collection of
sentences to a subset of sentences that satisfies the above
necessities, balancing coherence/diversity measuring and
local/global summary quality. The optimized substitution is
iteratively conducted by incorporating many constraints till
convergence. Here newly developed experimental systems to
gauge on six instinctively totally different datasets which has
amounted to 10251 documents [3].

In this paper, study of data stream cluster problem within the
context of text and categorical data domains is shown.
Whereas the cluster problem has been studied recently for
numeric data streams. The issues of text and categorical data
present completely different challenges because of the big
and un-ordered nature of the corresponding attributes.
Therefore, proposed an algorithms for text and categorical
data stream clustering. An approach for stream clustering that
summarizes the stream into variety of fine grained cluster
droplets. These summarized droplets are utilized with a
variety of user queries to form the clusters for various input
parameters. Thus, this provides an online analytical process
approach to stream clustering. [4].

Here investigated one technique to provide a summary of an
original text without requiring its full linguistics
interpretation, however instead relying on a model of the
topic progression within the text derived from lexical chains.
Also present a new algorithm to form lexical chains during a
text, merging many robust data sources, the WordNet
thesaurus, shallow parser, a part-of-speech tagger for the
identification of nominal groups, and a segmentation
algorithm. Summarization occurs in four steps: the first text
is segmental, lexical chains are made, strong chains are
identified and important sentences are extracted. During this
paper presented empirical results on the identification of
robust chains and of significant sentences [5].

In this paper show that an easy procedure supported
increasing the number of informative content-words can
produce a number of the best reportable results for multi-
document summarization. Initially assign a score to every
term within the document cluster, using only frequency and
position information and then discover the set of sentences
within the document cluster that maximizes the total of those
scores, subject to length constraints. The overall results are
the best reportable on the DUC-2004 summarization task for
the ROUGE-1 score and are the most effective, but not
statistically significantly different from the best system in
MSE-2005[6].

We introduce a random graph-based methodology to
compute relative importance of textual units for natural
language process. We test the technique on the problem of
Text summarization (TS). Extractive TS depends on the
concept of sentence saliency to identify the foremost
important sentences in an exceedingly document or set of
documents. Saliency is usually defined in terms of the
presence of specific important words or in terms of similarity
to a centroid pseudo-sentence [10].

We consider a new approach, LexRank, which is used for
computing sentence importance supported the conception of
eigenvector centrality in a graph illustration of sentences.
During this model, a connectivity matrix based on intra-
sentence cosine similarity is employed as the adjacency
matrix of the graph illustration of sentences. Our system,
based on LexRank ranked in 1st place in more than one task
within the recent DUC 2004 analysis. in this paper we
present a close analysis of our approach and apply it to a
larger data set as well as data from earlier DUC evaluations.
We discuss many methods to compute centrality using the
similarity graph. The result shows that the degree-based
methods (including LexRank) outperform each centroid-
based methods and different systems taking part in DUC in
most of the cases. Furthermore, the LexRank with threshold
methodology outperforms the other degree-based techniques
together with continuous LexRank.[7]

3. Problem Definition

The implementation of continuous tweet stream
summarization is not an simple task, since a large variety of
tweets are not important, irrelevant and noisy in nature, due
to the social nature of tweeting. Further, tweets are fully
related with their posted time. New tweets tend to arrive at a
very quick rate. Consequently, a good solution for continuous
summarization needs to address the subsequent 3 issues:
1)Efficiency —tweet streams are forever very large in scale,

hence the summarization algorithm need to be extremely
efficient.

2)Flexibility —it should give tweet summaries of arbitrary
time durations.

3)(3)Topic evolution — it automatically finds such sub-topic
changes and the moments that they happen. But, the
existing methods cannot satisfy the above 3 requirements
because:

 They highly focus on static and small-sized data sets, and
hence are not that much efficient and scalable for huge data
sets and data streams.

 For providing summaries of discretional durations, they
will need to perform iterative/recursive summarization for
each possible time length, which is unacceptable.

 Summary results are insensitive to time. Thus it is tough
for them to discover topic evolution.

In this project, we introduce a novel summarization
framework called as Sumblr (continuous SUMmarization By
stream cLusteRing) with k-prototype clustering. The
framework consists of three main elements, namely the
Tweet Stream clustering module, High-level Summarization
module and the Timeline Generation module for deal with
dynamic, fast incoming, and large-scale tweet streams [10].

4. Proposed Methodology

Our framework consists of three main modules: the tweet
stream clustering module, the high-level summarization
module and the timeline generation module.

Paper ID: ART20164057 770

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4.1 Tweet Stream Clustering

The tweet stream clustering module maintains the on-line
statistical data. Given a topic - based tweet stream able to
efficiently cluster the tweets and maintain compact cluster
information a scalable cluster framework that by selection
stores necessary portions of the data, and compresses or
discards other parts. CluStream is one of the foremost classic
streams clustering ways. It consists of an on-line micro-
clustering element and an offline macro - clustering element.
A variety of services on the online like news filtering, text
crawling, and topic detecting etc. have posed needs for text
stream clustering CluStream to generate duration - based
cluster results for text and categorical data streams. However,
this algorithm depends on an on-line phase to generate a
large range of micro - clusters and an offline section to re -
cluster them. In contrast, our tweet stream cluster algorithm
is an on-line procedure with no extra offline clustering. And
in the context of tweet summarization, we adapt the on-line
cluster phase by incorporating the new structure TCV,
restricting the variety of clusters to ensure efficiency and
therefore the quality of TCVs.

1) Tweet Stream Initialization
2) Incremental cluster
3) Deleting Outdated Clusters
4) Merging Clusters
Tweet Stream initialization

4.1.1 Tweet Stream Initialization
At the beginning of the stream, we collect a small range of
tweets and use a k-prototype clustering algorithm (instead of
k-means) to form the initial clusters. Next, the stream
clustering process starts to update the TCVs incrementally
whenever a new tweet arrives.

4.1.2 Incremental Clustering
Suppose a tweet t arrives at time ts, and there are N active
clusters at available. The key problem is to make a decision
whether to attract into one of the current in progress clusters
or make t as a new cluster. We initially find the cluster whose
centroid is the closest to t. Specifically, we get the centroid of
every cluster, compute its cosine similarity to t, and find out
the cluster Cp with the largest similarity.

4.1.3 Deleting outdated Clusters
For most events (such as news, football matches and
concerts) in tweet streams, timeliness is very important
because they usually don't last for a long time. thus it is safe
to delete the clusters representing these sub - topics once they
are rarely discussed to search out out such clusters, an
intuitive approach is to estimate the average arrival time
(denoted as Avgp) of the last p percent of tweets in a cluster.
However, storing p percent of tweets for each cluster can
increase memory costs, particularly when clusters grow big.
Thus, we use an approximate methodology to get Avgp.

4.1.4 Merging Clusters
If the number of clusters keeps increasing with few deletions,
system memory is going to be exhausted. To avoid this, we
specify an upper limit for the number of clusters as Nmax.
Once the limit is reached, a merging process starts. The

process merges clusters in a greedy approach. First, sort all
cluster pairs by their similarities of centroid in a descending
order. Then, beginning with the most similar pair, we try to
merge two clusters in it. When the both clusters are single
clusters that have not been merged with other clusters, thus
they are merged into a new composite cluster. Once one of
them belongs to a composite cluster (already it has been
merged with others), the other is also merged into that
composite cluster. When each of them are merged, if they
belong to the same composite cluster, such pair is skipped;
otherwise, the two composite clusters are merged. This
process continues till there are only mc percentage of the
original clusters left (mc is a merging coefficient that
provides a balance between available memory space and the
quality of remaining clusters).

4.2 High - Level Summarization

The module provides two kinds of summaries: on-line and
historical summaries. An online summary describes what is
presently discussed among the public. Thus, the input for
generating on-line summaries is retrieved directly from the
current clusters maintained in memory. On the other hand, a
historical summary helps people to understand the main
happenings in a specific period, which means to eliminate the
influence of tweet contents from the outside of the period. As
a result, retrieval of the required information for generating
historical summaries is very much complicated, and this shall
be our focus within the following discussion. Suppose the
length of a user - defined time period is H, and the ending
timestamp of the period is tse.

4.2.1 Document/Microblog Summarization
The Document summarization is categorized as extractive
and abstractive. The previous selects sentences from the
documents, whereas the latter may generate phrases and
sentences that don't appear in the original documents. Now
we are focusing extractive summarization. Extractive
document summarization has received lots of recent
attention. Most of assign salient scores to sentences of the
documents, and select the top - ranked sentences. Some
works attempt to extract summaries without such salient
scores. The symmetric non - negative matrix factorization for
cluster sentences and select sentences in each cluster for
summarization. Projected to summarize documents for the
perspective of data reconstruction, and choose sentences that
can best reconstruct the original documents. In modeled
documents (restaurant reviews) as multi - attribute uncertain
data problem and optimized a probabilistic coverage of the
summary. There have also been studies on microblogs
summarizing for some specific forms of events, e.g., sports
events are taken to identify the participants of events and
generate summaries based on sub - events detected from each
participant introduced by learning the underlying hidden state
representation of the event, which has to learn from previous
events (soccer game) with similar structure. As in the
summarized events by exploiting "good reporters", depends
on event - specific keywords which requires being in
advance. In distinction, we aim to deal with general topic -
relevant tweet streams without such previous knowledge.
Moreover, their method stores all the tweets in every segment
and selects one tweet as the summary, whereas our method

Paper ID: ART20164057 771

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

maintains distilled information in TCVs to reduce
storage/computation cost, and generates many tweet
summaries in terms of content coverage and novelty
additionally to online summarization, our method supports
historical summarization by maintaining TCV snapshots.

4.3 Timeline Detection

The demand for analyzing huge contents in social medias
fuels the developments in visualization techniques. Timeline
is one of these techniques which may make analysis tasks
easier and faster. We have presented a timeline supported
backchannel for conversations around events and proposed
the evolutionary timeline summarization (ETS) to compute
evolution timelines same to ours, that consists of a series of
time stamped summaries. By a predefined timestamp set the
dates of summaries are determined. In contrast, our
methodology discovers the changing dates and generates
timelines dynamically throughout the process of continuous
summarization. Moreover, ETS does not focus on efficiency
and scalability problems, which are important in our
streaming context. Several systems detect important moments
when fast increases or "spikes" in status update volume
occurs. Developed an algorithm based on tcp congestion
detection, employed a slope based method to find out spikes.
After that, tweets from every moment are identified, and
word clouds or summaries are selected which is different
from this two step approach. Our method detects topic
evolution and produces summaries/timelines in an online
fashion.

5. System Architecture

 In this paper, we introduce a novel summarization
framework called Sumblr (continuouSsUMmarizationBy
stream cLusteRing).

 The framework consists of three main components,
specifically the Tweet Stream clustering module, the High-
level summarization module and Timeline Generation
module.

 We design an efficient tweet stream cluster algorithm in
the tweet stream clustering module. It is an online
algorithm allows effective clustering of tweets in only one
pass over the data. At the beginning of the stream, we use
k-prototype clustering that produce tighter clusters than k-
means clustering, especially if the clusters are globular.

 The high-level summarization module supports generation
of two forms of summaries: on-line and historical
summaries.

 A topic evolution detection algorithm is base of the
timeline generation module that consumes online and
historical summaries to produce real-time and range
timelines. The algorithm monitors quantified variation
during the course of stream process.

 We load the Twitter data sets. as a result of tweets are
being created and shared at an unprecedented rate.

 Tweets, in their raw form, whereas being informative also
can be overwhelming.

 Through millions of tweets that contain huge amount of
noise and redundancy.

Fig 1. System Architecture[1]

 In this project, we propose a novel continuous
summarization framework called as Sumblr to all eviate the
problem. Therefore we load the dataset for continuous
summarization and timeline generation.

5.1 Tweet Stream Clustering

This module maintains the online statistical data. With a
given topic - based tweet stream, it is ready to efficiently
cluster the tweets and maintain compact cluster information a
scalable cluster framework which selectively stores necessary
parts of the data, and compresses or discards different
portions.

It consists of four phases like
1) Tweet Stream initialization
2) Incremental cluster
3) Deleting outdated Clusters
4) Merging Clusters

5.2 High-Level Summarization

The summarization module provides two types of summaries:
historical and online summaries.
 The summarization module provides two types of

summaries: historical and online summaries.
 A historical summary helps people to understand the main

happening during a specific period, means from the outside
of that period we need to eliminate the influence of tweet
contents.

 On the other hand, an online summary describes what is
currently discussed among the public. The input for
generating online summaries is retrieved directly from the
current clusters maintained in memory.

 As a result, retrieval of the needed information for
generating the historical summaries is more complicated,
and this is the focus in this discussion. Suppose ending
timestamp of the duration is tse and the length of a user -
defined time duration is H.

Paper ID: ART20164057 772

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5.3 Timeline Detection

 The increasing demand for analyzing huge contents in
social media fuels the developments in visualization
techniques. Timeline is one among these techniques can
make analysis tasks easier and faster.

 It has been presented a timeline - based mostly
backchannel for conversations around events. It proposed
the evolutionary timeline summarization (ETS) to compute
evolution timelines similar to ours that consists of a series
of time - stamped summaries.

 The pre - defined timestamp set are used to determine the
dates of summaries. In distinction, our methodology
discovers the changing dates and generates timelines
dynamically throughout the process of continuous
summarization. Moreover, ETS does not specialize in
efficiency and scalability problems that are important in
our streaming context.

 Several systems find important moments when fast
increases or "spikes" in status update volume happen.
Developed an algorithm based on tcp congestion detection,
utilized a slope - based methodology to find spikes.

 After that, tweets from each moment are known, and word
clouds or summaries are selected completely different from
this two - step approach, our methodologies detect topic
evolution and generate summaries/timelines in an online
fashion.

6. Algorithms

6.1 K-Prototype Clustering:

1)Select k number of initial prototypes from a data set X and
assign one for each cluster.

2)Allocate every object in X to a cluster which has nearest
prototype. After each allocation update the prototype of the
cluster.

3)After all the objects have been allocated to a cluster, test
again the similarity of objects for the current prototype. If
any of the objects found such that its nearest prototype
belongs to the other cluster than its current cluster, then
reallocate the object to the same cluster and update
prototypes for both of the clusters.

4)Repeat step 3) yet no object change clusters after testing
full cycle of X.

6.2 Incremental Tweet Stream Clustering

Input: a cluster set C set
Output: store C set in PTF
1) While! stream.end () do
2) Tweet t=stream. Next ();
3) Choose Cp in C set whose centre is the
Closest to t;
4) If MaxSim (t) < MBS then
5) Create a new cluster Cnew=ftg;
6) Cset.add (Cnew);
7) Else
8) update Cp with t;
9) If TScurrent %(ai) ==0 then
10) Store C set into PTF;

6.3 TCV-Rank Summarization

Input: a cluster set D(c)
Output: a summary set S
1) S=0, T=fall the tweets in ft set of D(c)g;
2) build a similarity graph on T;
3) Compute LexRank score LR;
4) Tc =ftweets with the highest LR in each cluster g;
5) While jSj<L do
6) For each tweet ti inTc�S do
7) calculate vi according to Equation (2);
8) select tmax with the highest vi ;
9) S.add (tmax);
10) While jSj< L do
11) For each tweet i in Tc -S do
12) Calculate v’ i according to Equation (2);

13) select tmax with the highest v’ i ;

14) S.add (t’max);
15) Return S;

6.4 Topic Evolution Detection

Input: a tweet stream binned by time units
Output: a timeline node set TN
1) TN=0;
2) While! stream.end () do
3) Bin Ci=stream. Next ();
4) If hasLargeVariation () then
5) TN.add (i);
6) return TN;

7. Result and Analysis

Input:
1)We choose a twitter dataset, timelines for sport topics are

relatively easier to build. The reference timelines can be
manually produced.

2)We search the particular topic i.e. query, which is entered
by user in twitter dataset.

Output:
1) Give the summarization of respective input query.

System Boundaries:
Deleting the old data which is rarely visited or followed by
the twitter and the average timestamp of the latest 10 percent
tweets is more than three days old, are considered as outdated
and removed.

0

10

20

30

40

50

60

0 1 2 3 4 5

T
im

e
in

 S
ec

on
ds

Tweets of Data
(Kb)

Existing System Proposed System

Figure 2: Scalability of data with time

Paper ID: ART20164057 773

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

For evaluating the performance of proposed system, we
consider here the time required to produce the summarization
of tweets & tweets of data size. For existing system,
producing the summarization on tweets of data size 5Kb
require 60 secs. The recommendation proposed system for
producing the summarization on tweets of data size 5Kb is
requires 20 secs.

As the experimental result shows optimum performance of
proposed system than that of existing system. The proposed
system is protocol oriented and more time efficient, scalable
than existing system.

K Prototype clustering has more stability of clusters for
tweets in it as compared to K means algorithm. Stability of K
Means is reduced because, at the start it selects a random
tweet in a cluster and make it as centroid.

8. Conclusion

In this paper, we proposed a tweet stream summarization
framework, called Sumblr, to generate summaries and
timelines in the context of streams. Sumblr employs a tweet
stream clustering algorithm for the purpose of compressing
tweets into TCVs and also maintains them in an online
fashion. Our proposed k-prototype clustering algorithm
produced tighter clusters than k- means clustering, if the
clusters are globular. We designed a novel data structure
called TCV for stream processing, and proposed the TCV-
Rank algorithm for online and historical summarization. The
topic evolution can be produced automatically, allowing
Sumblr to produce dynamic timelines for tweet streams. The
proposed K-prototype clustering algorithm can produce
tighter clusters and time efficiently than K-Means clustering
algorithm.

9. Future Work

Future work is to develop a multi-topic version of
summarization in a distributed system, and evaluate same on
more complete and large-scale data sets.

References

[1] Zhenhua Wang, Lidan Shou, Ke Chen, Gang Chen, and
Sharad Mehrotra, ―On Summarization and Timeline
Generation for Evolutionary Tweet Streams,‖ IEEE
Transactions On Knowledge And Data Engineering,
vol. 27, no. 5, May 2015 pp. 1301-1315.

[2] N. A. Diakopoulos and D. A. Shamma, ―Characterizing

debate performance via aggregated twitter sentiment,‖

in Proc. SIGCHI Conf. Human Factors Comput. Syst.,
2010, pp. 1195–1198.

[3] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y.
Zhang, ―Evolutionary timeline summarization: A

balanced optimization framework via iterative
substitution,‖ in Proc. 34th Int. ACM SIGIR Conf. Res.

Develop. Inf. Retrieval, 2011, pp. 745–754.
[4] C. C. Aggarwal and P. S. Yu, ―On clustering massive

text and cate-gorical data streams,‖ Knowl. Inf. Syst.,

vol. 24, no. 2, pp. 171–196, 2010.

[5] R. Barzilay and M. Elhadad, ―Using lexical chains for

text summa-rization,‖ in Proc. ACL Workshop Intell.

Scalable Text Summarization , 1997, pp. 10–17.
[6] W.-T. Yih, J. Goodman, L. Vanderwende, and H.

Suzuki, ―Multi-document summarization by maximizing
informative content-words,‖ in Proc. 20th Int. Joint

Conf. Artif. Intell., 2007, pp. 1776–1782.
[7] G. Erkan and D. R. Radev, ―LexRank: Graph-based

lexical central-ity as salience in text summarization,‖ J.

Artif. Int. Res., vol. 22, no. 1, pp. 457–479, 2004.

Paper ID: ART20164057 774

