
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Gaurav’s Theories and Laws on Programming and
Application Development

Gaurav Kumar Roy

EC - University, School Ethical Hacking and Software Security, Albuquerque, USA
Lovely Professional University, School of Computer Application and Engineering, Phagwara, India

Abstract: This research paper is mainly written to make few natural – digital laws and happenings clear to the software engineers,
which they unknowingly using but still unknown of the fact that even computer world also holds some theories and laws which are
universally correct in all fields of programming and software development or software engineering. I further requested the USA’s

Institute of Electrical and Electronics Engineering organization to take these laws for granted as these may prove useful universally in
all cases of software engineering. Moreover, these laws are shaped and thought by me based on the previous 6-7 years of experience in
this field and software engineering and programming methodologies and coding related book writers are welcome to add these laws to
their chapters to aware every one of the traditional and never-changing fact that these theories and laws will guide and mould a coder
or programmer well during upgrading or modifying any application.

Keywords: Laws of programming, coders, program, upgrade, complexity, software engineering, application maintenance

1. Introduction

Physics, biology, and medicine science have well - defined
public explanations of various laws and theories put forward
by many famous scientists. Even in simplified form, these
provide guidance to the next generation in their research and
scientific work. Furthermore, with the inauguration of such
theories and laws, physicists and biologists are able to follow
a specific path to approach in their respective field. Similarly,
in the field of software engineering also, the coders and
software developers need to take care and well aware of
certain protocols which are universal nature every software
or application by this way or that way follows in every field.
Even these theories and laws can be applicable to web
development also. There already exist some theoretical views
which are SEMAT (Software Engineering Method and
Theory) that drives a process to re-found software
engineering based on a solid theory, proven principles and
best practices. But the theories and laws I have put forward
are in the nature of every software or application which
programmers build with the change in time keeping in mind
that the technology or implementation tool(s) may change but
the theories and laws will be universally applicable with the
growing ages.

2. About the Theories and Laws

Theories and laws can address any problem since theories
and laws provide a platform based on some natural rules that
explain the digital world with the real world scenario at some
appropriate level of abstraction, but cheaply and without
causing any harm. Theories and laws of computer science can
provide answers to many questions that otherwise might be
prohibitively expensive or impossible to portray. A general
theory or law in software engineering field would ideally
advise the development or coding, against costly error before
the trial begins.

3. Software Engineering and its Branches

3.1 What is Software Engineering?

Software engineering is ultimately about psychology, how
humans manage complexities of software. So software
engineering principles are far more familiar to education and
management theories than physical principles. Some
software engineering background has solid math behind
them: O(n log n) sorts are faster than O(n^2) sorts, or time
complexity related concepts, etc. But mostly software
engineering is about how humans think about software. How
to organize things so that maintainers can anticipate what is
likely to change and what is not, preventing and detecting
human errors, etc. It's a branch of psychology, sociology, and
methodology.

3.2 What is Application Development?

The phrase Application Development can be defined as the
activity of computer programming that involves the process
of writing / coding and maintaining the source code and with
a broader sense, the term can be depicted as the art that
includes all that is involved between the conceptions of the
desired software application through initial to the final
manifestation of that application. Hence, you can say that
application development may include new development
methodologies, modification of source code, reuse the
program or the elements within it, re-engineering,
maintenance by updating or any other activities that outcome
in the semi - finished or finished application. So, it is
advantageous in the sense that application development
provides an organized flourish in delivering products in
faster, better and cheaper ways. There have been many
studies and suggestion in improving the development
process.

Application development projects are sometimes notorious
for frequently changing and upgrading initial planning and
specifications based on requirements of users. Also, after

Paper ID: 7011701 879

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

delivering the software product, updating and patching the
software is a never - changing de-facto in software
engineering, i.e. for better software development process, a
software must have to be maintain by updating and / or
patching that software. In order to identify the main reasons
for changing specification during the development stage of a
software product debates were started on LinkedIn project
management groups.

3.3 Application Maintenance

Application maintenance in software engineering is the up-
gradation or modification of an application after delivering
the product, mainly for correcting faults and for improving
performance and other attributes (like bringing down the
patches). In other words, Software maintenance in software
engineering is the alteration of an application product after
delivery to correct faults, loopholes in order to perk up
performance; a common perception of maintenance is that it
merely involves fixing defects or enhancing features.

3.4 Product Marketing

It is the overall process required in transmitting a good or
service to customers by proper marketing of product. Product
marketing comprises of defining the scope of the product
line, identifying potential markets for a better product,
determining the best & most favorable pricing for the
product, encouraging and attracting potential customers to
purchase the product finally finding and opting the best
distribution techniques and methodologies to deliver the
product to customers or to sales site.

You might be thinking that why am I discussing about
business management topics and expressing marketing
strategy. The thing is my 4th law on Programming &
Application Development is based on the attraction and
natural selection of product which can sustain in the market
for long time.

3.5 Product Marketing Strategies

An effective marketing strategy will help software vendors to
define the overall direction and goals for marketing the
application. The strategy should eloquent how you are going
to deliver your products or services in ways that will and
should satisfy your customers’ need and requirements. Once

you have defined and structure your customers or target
market (software market), you need to start developing and
implementing tactics or ways to reach them. The marketing
mix will make up the tactical elements you will use to carry
out your strategy and reach your target market.

The prime focus in making strategy of product marketing will
be -
 Quality of your product or service
 The pricing of your product or service
 The promotion of your product of service
 Dealing with Product consumers
 Delivering of proper updates and patches

3.6 Software Anthropology

It is a termed coined by the writer himself, which depicts the
behavior and study of various aspects of humans within past
and present experience with any software and how the taste
of users varies with time when using any specific software or
what are the future requirements that the user is going to
need, and why this variation took place and how can things
be modified from the past experience both look-wise or
design-wise and performance-wise or facility-based.

4. Theories and Laws proposed by Gaurav

The theories and laws on coding and application
development proposed by the writer of this research thesis
ranges it’s universal nature and meaning from application

coding and development phase to its upgrading and
deployment phase either in case of marketing the software
product or after delivering to an organization or individual.

The writer of this research thesis proposed five (5) Universal
Laws of Application Development and its programming
which are common principles an application follows and as
the nature of any application prevails as it continues its
legacy. The Theories and Laws are described as follows –

4.1 1st Law on Programming and Application

It states that for every upgrading in a source code (for
refinement and making its functionality better), there is an
equal i.e. positive and opposite i.e. negative consequences.
Positive effect can be derived in the sense that with the
gradual upgrading of any source code within an application,
the capability and working flexibility / choices and
advantages may / will increase, with the decrease in
simplicity of code i.e. the increase in complexity (both time
and space) until and unless a proper measures or set of
measures are taken to reduce complexity. Negative effect can
be derived in the sense that with the upgrading of any source
code, its source code may have increase in time and space
complexity which can eventually give rise to slow
compilation or slow performance and can even lead to
increase / upgrade in the hardware infrastructure of the
system, which may not be possible in all cases. There is a say
that “Every good thing comes with something bad”. So

application developers can remove or eliminate those
complexities and other disadvantages by taking proper
measures.

In other words, a short derivation of this law can be like this
– Programming and Application Development’s 1

st law states
that for every up-gradation of any source code of any
application, there is an equal and opposite consequences;
which a developer should keep in mind.

4.2 2nd Law on Application Development

It states that the code of any program as and when gets
updated, the later source code (after modifying the code)
should to be familiar with the previous source code (before
modifying the code) where there can be slight or heavy

Paper ID: 7011701 880

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

refinement in source code and addition of features, along
with the similarity in logic with respect to previous one. The
relationship & familiarity should be maintained as per the
requirement of the user and this proves to be a universal and
natural fact in application development world at the time any
source code gets upgraded.

In other words, a short derivation of this law can be like this
– the Programming and Application Development’s 2

nd law
states that with the up-gradation of a source code, there
remains a perpetual relation as well as familiarity between
the old or previous source codes with the upgraded or
modified source code.

4.3 3rd Law on Programming & Application
Development: -

It says that, behind every creation and / or up-gradation of
application, the application has a correlation in parallel with
the hardware requirements as well as existence of hardware
architecture and the platform on which it will run. So,
basically the programmer should think, about whether the
developed product will run on that particular architecture for
which it is intended and must think beyond about the user
who is going to use it is comfortable with the intended
product (i.e. user can able to handle with ease or not) every
time before developing and upgrading the code of an
application.

There are two options here, either you build a product in such
a manner that it runs on every platform irrespective of the
hardware and platform architecture (like Java, C++, Linux
OS, Atom etc) or the application developer have to keep in
mind about the existing platform on which the application
will run.

So, this becomes a natural phenomenon of every application
that an application will always be made to work on a
particular system (IBM-370 or Macintosh) or hardware or
OS or platform and thing may or may not initially come to
the developer’s mind but either intentionally or

unintentionally this becomes a major and universal fact
behind every application.

In other words, a short derivation of this law can be like this
– the Programming and Application Development’s 3

rd law
states that behind the development or up-gradation of an
application, the application must have a correlation with the
hardware or the platform on which it will run (perform its
tasks) either intentionally or unintentionally.

4.4 4th Law on Application Development and product
marketing: -

Though the theory of “Natural Selection” was proposed by

Charles Darwin in his theory of evolution which was first
formulated in Darwin's book "On the Origin of Species" in
1859, where it states that the process by which organisms
change over time as a result of changes in heritable physical
or behavioral traits. Changes that allow an organism to better
adapt to its environment will help it survive and have more
offspring, i.e. “Survival of the Fittest”. Natural selection acts

in preserving and accumulating minor advantageous genetic
mutations. Suppose a member of a species developed a
functional advantage (it grew wings and learned to fly). Its
offspring would inherit that advantage and pass it on to their
offspring. The inferior (disadvantaged) members of the same
species would gradually die out, leaving only the superior
(advantaged) members of the species.

Evolution by natural selection is one of the best substantiated
theories produced, supported by evidence from a wide
variety of scientific disciplines, including paleontology,
geology, genetics and developmental biology. I have taken
support of Sir Darwin’s proposed theory and come out with

the conclusion that even software applications also follow
this law to sustain in the software market.

The natural selection also becomes applicable in case of
software development and marketing when it comes to a note
that the software which can adopt to the environment and
possible requirements of the market can continue its legacy
(like: Windows OS, Linux, Microsoft Office, Adobe
Products etc) and the ones which are unable to satisfy
consumer needs and requirements in the long run will
eventually come to a termination. This is also an universal
truth of the software market, where the quality of the product,
optimization in pricing, time-to-time deliberation of updates
and patches are the primary focus which are kept in mind
while selecting a product.

The statement “Natural selection is the preservation of a
functional advantage that enables a species to compete better
in the wild” can be applied in case of software product

marketing also. According to the 4th law, natural selection
goes on preserving the best application that enables the user
to facilitate better in all respect (price-wise, quality-wise,
performance-wise, multi-requirement wise) and compete in
the fast growing viable software market.

4.5 5th Law of Application Security: -

It states that for developing every good application, there
remains some security postures, which need time-to-time
updating and patching when any bug encounters.

Moreover, software engineering must incorporate the fact
that when an application is having an admin-user scenario or
multi-admin with multi-user application structure, then there
must need to have some proper layers of security within that
application, which can make secure connection and increases
the liability of application for better marketing facility.

Though today’s most of the application is having security

measures already taken, but security is obscurity, so it need
timely checkup and with the upgrading of architecture, the
security measures should have to be properly upgrading.

5. Other Recommendations

These laws may be followed by application developers or
programmers but unknowingly. So, now applying these laws,
application developers can construct or develop their

Paper ID: 7011701 881

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

application with the thing in mind that these universal laws
with or without developers’ conscious will run in this nature

of every application and man make things better if the
developer kept these in minds while developing any
application.

References

[1] Victor R. Basili. The experimental paradigm in software
engineering. In Experimental Software Engineering
Issues: Critical Assessment and Future Directives. Proc of
DagstuhlWorkshop, H. Dieter Rombach, Victor R. Basili,
and Richard Selby (eds), published as Lecture Notes in
Computer Science #706, Springer-Verlag 1993.

[2] Mary Shaw. Prospects for an engineering discipline of
software. IEEE Software, November 1990, pp. 15-24.

[3] Wohlin C. An analysis of the most cited articles in
software engineering journals-2000. Information and
Software Technology, 2007

[4] Buse R P L, Sadowski C, Weimer W. Benefits and
barriers of user evaluation in software engineering
research. ACM SIGPLAN Notices, 2011

Author Profile

Gaurav Kumar Roy received his Diploma in
Computer Analyst & graduation in Computer
Application from Assam University, Assam. He did
C|EH, CH|FI, E|CSA from EC University, Sun Ave

NEc, Albuquerque, USA; CCNA and OWASP10 from Byte-Code
Cyber Security, Delhi and pursuing MCA with specialization in
Software Development and Game Engineering from Lovely
Professional University, Punjab, India. During the last two years he
is working as an independent researcher on computer security and
hacking plus software development. He wrote 5 more research
papers like: A study on Torrent Based Attack, A Study on Safety &
Modern-Anonymity, The Standard: C++17g, A Study On
Generation & Re-Generation of Alpha-numeric Security (Project
GRAS) etc. For last one year he worked as a trainer of C, C++,
Ethical Hacking and Cyber Security in many institutes of Delhi. He
is now working as the Senior Tutorial Writer with the famous
tutorial websites: w3schools and TutorialsCloud.

Paper ID: 7011701 882

