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Abstract: Data duplicate detection is the process of identifying multiple representations of same or real world entities. Nowadays, data 
duplicate detection methods are needed to process larger datasets in shorter time: maintaining the quality of the datasets and also the 
entities duplicated becomes increasingly difficult. This application focus on the duplicates in hierarchical data’s like XML file. The data 
can be detected using the detection methods. Here the datasets are loaded in the applications and the processing, extraction, cleaning, 
separation and detection are carried out to remove the duplicated data. Comprehensive experiments show that our progressive 
algorithms can double the efficiency over time of traditional duplicate detection and significantly improve upon related work. 
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1. Introduction 

Data are among the most important assets of a company. But 
due to data changes and bad data entry, errors such as
duplicate entries might occur, making data cleansing and in
particular duplicate detection indispensable. Thus, the pure 
size of data renders duplicate detection processes expensive. 
Many industries and system s depends on the accurate 
datasets to carry out operations. Online retailers, for 
example, offer huge catalogues comprising a constantly 
growing set of items from many different suppliers. As
independent persons change the product portfolio, duplicates 
arise. Although there is an obvious need for reduplication, 
online shops without downtime cannot afford traditional 
reduplication. 

Progressive duplicate detection identifies most duplicate 
data in the detection process. Instead of reducing the overall 
time that is needed to finish the entire process, progressive 
approaches try to reduce the average time after which a 
duplicate is found. In this work  

Here, we have two methods to improve the efficiency and 
finding duplicates data. Initially we use the method 
progressive sorted neighborhood method (PSNM). It uses 
the progressive duplicate detection algorithms. In this we
sort the input data using predefined sorting key and only 
compare the records in sorted order. The second method is
progressive blocking (PB). It process large and very dirty 
datasets. It mainly satisfies the two conditions; first one is
improved early quality next is same eventual quality. So, 
both exchange the efficiency of duplicate detection even on
very large datasets. 

Improved early quality 
Let t be an arbitrary target time at which results are needed. 
Then the progressive algorithm discovers more duplicate 
pairs at t than the corresponding traditional algorithm. 
Typically, t is smaller than the overall runtime of the 
traditional algorithm.  

Same eventual quality: If both a traditional algorithm and 
its progressive version finish execution, without early 
termination at t, they produce the same results. 

2. Related Works 

Databases play an important role in today‟s IT-based 
economy. Many industries and systems depend on the 
accuracy of databases to carry out operations. Therefore, the 
quality of the information (or the lack thereof) stored in the 
databases can have significant cost implications to a system 
that relies on information to function and conduct business. 
Much research on duplicate detection, also known as entity 
resolution and by many other names focuses on pair 
selection algorithms that try to maximize recall on the one 
hand and efficiency on the other hand. Adaptive techniques 
are capable of estimating the quality of comparison 
candidates. The algorithms use this information to choose 
the comparison candidates more carefully. In the last few 
years, the economic need for progressive algorithms also 
initiated some concrete studies in this domain. For instance, 
pay-as-you-go algorithms for information integration on
large scale datasets have been presented. Other works 
introduced progressive data cleansing algorithms for the 
analysis of sensor data streams. However, these approaches 
cannot be applied to duplicate detection. 

2.1 Architecture Diagram 
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2.2 Dataset Collection 

To collect and/or retrieve data about activities, results, 
context and other factors. It is important to consider the type 
of information it want to gather from your participants and 
the ways you will analyze that information. The data set 
corresponds to the contents of a single database table, or a 
single statistical data matrix, where every column of the 
table represents a particular variable. After collecting the 
data to store the Database. 

Pre-processing Method 
Data pre-processing or Data cleaning, Data is cleansed 
through processes such as filling in missing values, 
smoothing the noisy data, or resolving the inconsistencies in
the data. And also used to removing the unwanted data. 
Commonly used as a preliminary data mining practice, data 
pre-processing transforms the data into a format that will be
more easily and effectively processed for the purpose of the 
user. 

Data Separation 
After completing the pre-processing, the data separation to
be performed. The blocking algorithms assign each record to
a fixed group of similar records (the blocks) and then 
compare all pairs of records within these groups. Each block 
within the block comparison matrix represents the 
comparisons of all records in one block with all records in
another block, the equidistant locking; all blocks have the 
same size. 

Duplicate Detection 
The duplicate detection rules set by the administrator, the 
system alerts the user about potential duplicateswhen the 
user tries to create new records or update existing records. 
To maintain data quality, you can schedule a duplicate 
detection job to check for duplicates for all records that 
match a certain criteria. You can clean the data by deleting, 
deactivating, or merging the duplicates reported by a 
duplicate detection. 

Quality Measures 
The quality of these systems is, hence, measured using a 
cost-benefit calculation. Especially for traditional duplicate 
detection processes, it is difficult to meet a budget 
limitation, because their runtime is hard to predict. By
delivering as many duplicates as possible in a given amount 
of time, progressive processes optimize the cost-benefit 
ratio. In manufacturing, a measure of excellence or a state of
being free from defects, deficiencies and significant 
variations. It is brought about by strict and consistent 
commitment to certain standards that achieve uniformity of
product in order to satisfy specific customer or user 
requirements. 

3. Proposed System  

In this work, however, we focus on progressive algorithms, 
which try to report most matches early on, while possibly 
slightly increasing their overall runtime. To achieve this, 
they need to estimate the similarity of all comparison 
candidates in order to compare most promising record pairs 
first. We propose two novel, progressive duplicate detection 

algorithms namely progressive sorted neighborhood method 
(PSNM), which performs best on small and almost clean 
datasets, and progressive blocking (PB), which performs 
best on large and very dirty datasets. Both enhance the 
efficiency of duplicate detection even on very large datasets. 
We propose two dynamic progressive duplicate detection 
algorithms, PSNM and PB, which expose different strengths 
and outperform current approaches. We introduce a 
concurrent progressive approach for the multi-pass method 
and adapt an incremental transitive closure algorithm that 
together forms the first complete progressive duplicate 
detection workflow. We define a novel quality measure for 
progressive duplicate detection to objectively rank the 
performance of different approaches. We exhaustively 
evaluate on several real-world datasets testing our own and 
previous algorithms. 

Advantages of proposed system 
Improved early quality. Same eventual quality. Our 
algorithms PSNM and PB dynamically adjust their 
behaviour by automatically choosing optimal parameters, 
e.g., window sizes, block sizes, and sorting keys, rendering 
their manual specification superfluous. In this way, we
significantly ease the parameterization complexity for 
duplicate detection in general and contribute to the 
development of more user interactive applications. 

4. Module Description 

The following modules are present in the project.  
1. Record addition  
2. Attribute selection for duplication finding  
3. Input parameter settings for psnm/pb. 
4. Progressive sorted neighborhood method algorithm  
5. Progressive blocking  
6. Proposed system (psnm and progressive blocking)  

1. Record addition 
In this module, the records are added for the given columns 
(Employees/Attendance). The records may contain any data. 
The records are saved in „Employees‟ and „Attendance‟
table. 

2. Attribute selection for duplication finding 
In this module, which columns are selected for finding 
duplicates in records.  

3. Input parameter settings for psnm/pb Input 
parameters (D, K, W, I, N)
In this module, input for the Algorithm PSNM is selected. 
The algorithm takes five input parameters: D is a reference 
to the data, which has not been loaded from disk yet. The 
sorting key K defines the attribute or attributes combination 
that should be used in the sorting step. W specifies the 
maximum window size, which corresponds to the window 
size of the traditional sorted neighborhood method. When 
using early termination, this parameter can be set to an
optimistically high default value. Parameter I defines the 
enlargement interval for the progressive iterations. N is the 
number of records. 
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Input parameters (D, K, R, S, N)  
In this module, input for the Algorithm PB is selected. The 
algorithm takes five input parameters: D is a reference to the 
data, which has not been loaded from disk yet. The sorting 
key K defines the attribute or attributes combination that 
should be used in the sorting step. R specifies the maximum 
block range, S Block Size and N Total No. of Records. 
When using early termination, this parameter can be set to
an optimistically high default value.  

5. Progressive Sorted Neighborhood Method 
Algorithm  

The PSNM algorithm calculates an appropriate partition 
size pSize, i.e., the maximum number of records that fit in
memory, using the pessimistic sampling function 
calcPartitionSize(D) in Line 2: If the data is read from a 
database, the function can calculate the size of a record 
from the data types and match this to the available main 
memory. Otherwise, it takes a sample of records and 
estimates the size of a record with the largest values for 
each field. The algorithm calculates the number of
necessary partitions pNum, while considering a partition 
overlap of W - 1 records to slide the window across their 
boundaries. Line 4 defines the order-array, which stores the 
order of records with regard to the given key K. By storing 
only record IDs in this array, we assume that it can be kept 
in memory. To hold the actual records of a current partition, 
PSNM declares the recs-array.  

Algorithm 1.Progresive Sorted Neighbourhood 
Require: dataset reference D, sorting key K, window size 
W, enlargement interval size I, number of record N 
1:procedurePSNM(D,K,W,I,N) 
2:pSize calcPartationSize(D) 
3:pNum [N/(pSize-W+1)] 
4: array order size N as Integer 
5:array recs size pSize as Record 
6:order sortProgressive(D,K,I,pSize,pNum) 
7:for currentI2 to [W/I] do
8: forcurrent1 to pNum do
9: recs loadPartition(D,currentP) 
10:fordist€range(currentI,I,W) do
11:for i0 to |recs|-dist do
12: pair<recs[i],recs[i+dist]> 
13: if campare(pair)then
14: emit(pair) 
15: lookAhead(pair) 

6. Progressive blocking

In this module, dataset references D, key attribute K,
maximum block range R, block size S and record number N 
are given as input. The algorithm accepts five input 
parameters: The dataset reference D specifies the dataset to
be cleaned and the key attribute or key attribute combination 
K defines the sorting. The parameter R limits the maximum 
block range, which is the maximum rank-distance of two 
blocks in a block pair, and S specifies the size of the blocks. 
Finally, N is the size of the input dataset. At first, PB
calculates the number of records per partition pSize by using 
a pessimistic sampling function in Line 2. The algorithm 

also calculates the number of loadable blocks per partition 
bPerP, the total number of blocks bNum, and the total 
number of partitions pNum 

Algorithm2: Progressive Blocking

Require: dataset reference D, key attribute K, maximum 
block range R, block size S and record number N
1: procedure PB(D,K,R,S,N) 
2: pSize  calcPartitionSize(D) 
3: bPerP  [pSize/S] 
4: bNum  [N/S] 
5: pNum  [bNum/bPerP] 
6: array order sizeN as Integer 
7:array blocks size bPerP as <Integer, Record[]> 
8:priority queuebPairs as<Integer, Integer, Integer> 
9: bPairs {<1, 1, ->,….,<bNum, bNum, ->}
10:ordersortProgressive(D, K, S, bPerP, bPairs) 
11: fori 0 topNum – 1 do
12: pBPs  get(bPairs, i.bPerP, (i+1).bPerP) 
13: blocks  loadBlocks(pBPs, S, order) 
14: compare(blocks, pBPs, order ) 
15: while bPairs is not empty do
16: pBPs  {}
17: bestBPs  takeBest([bPerP/4], bPairs, R)
18: forbestBP € bestBPs do
19: ifbestBP [1]- bestBP[0]<R then 
20: pBPs  pBPs U extend(bestBP) 
21: blocks  loadBlocks(pBPs, S , order) 
22: compare(blocks, pBPs, order) 
23: bPairs  bPairs U pBPs 
24: procedure compare(blocks, pBPs, order) 
25: forpBP € pBPs do
26: <dPairs, cNum> comp(pBP, blocks, order) 
27: emit(dPairs) 
28: pBP[2] |dPairs|/cNum 
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