
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Progressive Detection of Duplicate Data
Deepa Bhattacharya1, Sapna Patle2

1Assistant Professor, Department of Computer Science and Engineering, Ballarpur Institute of Technology, Bamni,
Disnt. Chadrapur, Gondwana University

2Department of Computer Science and Engineering, Ballarpur Institute of Technology, Bamni
Dist. Chandrapur, Gondwana University

Abstract: Data duplicate detection is the process of identifying multiple representations of same or real world entities. Nowadays, data
duplicate detection methods are needed to process larger datasets in shorter time: maintaining the quality of the datasets and also the
entities duplicated becomes increasingly difficult. This application focus on the duplicates in hierarchical data’s like XML file. The data
can be detected using the detection methods. Here the datasets are loaded in the applications and the processing, extraction, cleaning,
separation and detection are carried out to remove the duplicated data. Comprehensive experiments show that our progressive
algorithms can double the efficiency over time of traditional duplicate detection and significantly improve upon related work.

Keywords: Duplicate detection, entity resolution, progressiveness, and data cleaning

1. Introduction

Data are among the most important assets of a company. But
due to data changes and bad data entry, errors such as
duplicate entries might occur, making data cleansing and in
particular duplicate detection indispensable. Thus, the pure
size of data renders duplicate detection processes expensive.
Many industries and system s depends on the accurate
datasets to carry out operations. Online retailers, for
example, offer huge catalogues comprising a constantly
growing set of items from many different suppliers. As
independent persons change the product portfolio, duplicates
arise. Although there is an obvious need for reduplication,
online shops without downtime cannot afford traditional
reduplication.

Progressive duplicate detection identifies most duplicate
data in the detection process. Instead of reducing the overall
time that is needed to finish the entire process, progressive
approaches try to reduce the average time after which a
duplicate is found. In this work

Here, we have two methods to improve the efficiency and
finding duplicates data. Initially we use the method
progressive sorted neighborhood method (PSNM). It uses
the progressive duplicate detection algorithms. In this we
sort the input data using predefined sorting key and only
compare the records in sorted order. The second method is
progressive blocking (PB). It process large and very dirty
datasets. It mainly satisfies the two conditions; first one is
improved early quality next is same eventual quality. So,
both exchange the efficiency of duplicate detection even on
very large datasets.

Improved early quality
Let t be an arbitrary target time at which results are needed.
Then the progressive algorithm discovers more duplicate
pairs at t than the corresponding traditional algorithm.
Typically, t is smaller than the overall runtime of the
traditional algorithm.

Same eventual quality: If both a traditional algorithm and
its progressive version finish execution, without early
termination at t, they produce the same results.

2. Related Works

Databases play an important role in today‟s IT-based
economy. Many industries and systems depend on the
accuracy of databases to carry out operations. Therefore, the
quality of the information (or the lack thereof) stored in the
databases can have significant cost implications to a system
that relies on information to function and conduct business.
Much research on duplicate detection, also known as entity
resolution and by many other names focuses on pair
selection algorithms that try to maximize recall on the one
hand and efficiency on the other hand. Adaptive techniques
are capable of estimating the quality of comparison
candidates. The algorithms use this information to choose
the comparison candidates more carefully. In the last few
years, the economic need for progressive algorithms also
initiated some concrete studies in this domain. For instance,
pay-as-you-go algorithms for information integration on
large scale datasets have been presented. Other works
introduced progressive data cleansing algorithms for the
analysis of sensor data streams. However, these approaches
cannot be applied to duplicate detection.

2.1 Architecture Diagram

Paper ID: 15011702 1647

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2.2 Dataset Collection

To collect and/or retrieve data about activities, results,
context and other factors. It is important to consider the type
of information it want to gather from your participants and
the ways you will analyze that information. The data set
corresponds to the contents of a single database table, or a
single statistical data matrix, where every column of the
table represents a particular variable. After collecting the
data to store the Database.

Pre-processing Method
Data pre-processing or Data cleaning, Data is cleansed
through processes such as filling in missing values,
smoothing the noisy data, or resolving the inconsistencies in
the data. And also used to removing the unwanted data.
Commonly used as a preliminary data mining practice, data
pre-processing transforms the data into a format that will be
more easily and effectively processed for the purpose of the
user.

Data Separation
After completing the pre-processing, the data separation to
be performed. The blocking algorithms assign each record to
a fixed group of similar records (the blocks) and then
compare all pairs of records within these groups. Each block
within the block comparison matrix represents the
comparisons of all records in one block with all records in
another block, the equidistant locking; all blocks have the
same size.

Duplicate Detection
The duplicate detection rules set by the administrator, the
system alerts the user about potential duplicateswhen the
user tries to create new records or update existing records.
To maintain data quality, you can schedule a duplicate
detection job to check for duplicates for all records that
match a certain criteria. You can clean the data by deleting,
deactivating, or merging the duplicates reported by a
duplicate detection.

Quality Measures
The quality of these systems is, hence, measured using a
cost-benefit calculation. Especially for traditional duplicate
detection processes, it is difficult to meet a budget
limitation, because their runtime is hard to predict. By
delivering as many duplicates as possible in a given amount
of time, progressive processes optimize the cost-benefit
ratio. In manufacturing, a measure of excellence or a state of
being free from defects, deficiencies and significant
variations. It is brought about by strict and consistent
commitment to certain standards that achieve uniformity of
product in order to satisfy specific customer or user
requirements.

3. Proposed System

In this work, however, we focus on progressive algorithms,
which try to report most matches early on, while possibly
slightly increasing their overall runtime. To achieve this,
they need to estimate the similarity of all comparison
candidates in order to compare most promising record pairs
first. We propose two novel, progressive duplicate detection

algorithms namely progressive sorted neighborhood method
(PSNM), which performs best on small and almost clean
datasets, and progressive blocking (PB), which performs
best on large and very dirty datasets. Both enhance the
efficiency of duplicate detection even on very large datasets.
We propose two dynamic progressive duplicate detection
algorithms, PSNM and PB, which expose different strengths
and outperform current approaches. We introduce a
concurrent progressive approach for the multi-pass method
and adapt an incremental transitive closure algorithm that
together forms the first complete progressive duplicate
detection workflow. We define a novel quality measure for
progressive duplicate detection to objectively rank the
performance of different approaches. We exhaustively
evaluate on several real-world datasets testing our own and
previous algorithms.

Advantages of proposed system
Improved early quality. Same eventual quality. Our
algorithms PSNM and PB dynamically adjust their
behaviour by automatically choosing optimal parameters,
e.g., window sizes, block sizes, and sorting keys, rendering
their manual specification superfluous. In this way, we
significantly ease the parameterization complexity for
duplicate detection in general and contribute to the
development of more user interactive applications.

4. Module Description

The following modules are present in the project.
1. Record addition
2. Attribute selection for duplication finding
3. Input parameter settings for psnm/pb.
4. Progressive sorted neighborhood method algorithm
5. Progressive blocking
6. Proposed system (psnm and progressive blocking)

1. Record addition
In this module, the records are added for the given columns
(Employees/Attendance). The records may contain any data.
The records are saved in „Employees‟ and „Attendance‟
table.

2. Attribute selection for duplication finding
In this module, which columns are selected for finding
duplicates in records.

3. Input parameter settings for psnm/pb Input
parameters (D, K, W, I, N)
In this module, input for the Algorithm PSNM is selected.
The algorithm takes five input parameters: D is a reference
to the data, which has not been loaded from disk yet. The
sorting key K defines the attribute or attributes combination
that should be used in the sorting step. W specifies the
maximum window size, which corresponds to the window
size of the traditional sorted neighborhood method. When
using early termination, this parameter can be set to an
optimistically high default value. Parameter I defines the
enlargement interval for the progressive iterations. N is the
number of records.

Paper ID: 15011702 1648

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 1, January 2017
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Input parameters (D, K, R, S, N)
In this module, input for the Algorithm PB is selected. The
algorithm takes five input parameters: D is a reference to the
data, which has not been loaded from disk yet. The sorting
key K defines the attribute or attributes combination that
should be used in the sorting step. R specifies the maximum
block range, S Block Size and N Total No. of Records.
When using early termination, this parameter can be set to
an optimistically high default value.

5. Progressive Sorted Neighborhood Method
Algorithm

The PSNM algorithm calculates an appropriate partition
size pSize, i.e., the maximum number of records that fit in
memory, using the pessimistic sampling function
calcPartitionSize(D) in Line 2: If the data is read from a
database, the function can calculate the size of a record
from the data types and match this to the available main
memory. Otherwise, it takes a sample of records and
estimates the size of a record with the largest values for
each field. The algorithm calculates the number of
necessary partitions pNum, while considering a partition
overlap of W - 1 records to slide the window across their
boundaries. Line 4 defines the order-array, which stores the
order of records with regard to the given key K. By storing
only record IDs in this array, we assume that it can be kept
in memory. To hold the actual records of a current partition,
PSNM declares the recs-array.

Algorithm 1.Progresive Sorted Neighbourhood
Require: dataset reference D, sorting key K, window size
W, enlargement interval size I, number of record N
1:procedurePSNM(D,K,W,I,N)
2:pSize calcPartationSize(D)
3:pNum [N/(pSize-W+1)]
4: array order size N as Integer
5:array recs size pSize as Record
6:order sortProgressive(D,K,I,pSize,pNum)
7:for currentI2 to [W/I] do
8: forcurrent1 to pNum do
9: recs loadPartition(D,currentP)
10:fordist€range(currentI,I,W) do
11:for i0 to |recs|-dist do
12: pair<recs[i],recs[i+dist]>
13: if campare(pair)then
14: emit(pair)
15: lookAhead(pair)

6. Progressive blocking

In this module, dataset references D, key attribute K,
maximum block range R, block size S and record number N
are given as input. The algorithm accepts five input
parameters: The dataset reference D specifies the dataset to
be cleaned and the key attribute or key attribute combination
K defines the sorting. The parameter R limits the maximum
block range, which is the maximum rank-distance of two
blocks in a block pair, and S specifies the size of the blocks.
Finally, N is the size of the input dataset. At first, PB
calculates the number of records per partition pSize by using
a pessimistic sampling function in Line 2. The algorithm

also calculates the number of loadable blocks per partition
bPerP, the total number of blocks bNum, and the total
number of partitions pNum

Algorithm2: Progressive Blocking

Require: dataset reference D, key attribute K, maximum
block range R, block size S and record number N
1: procedure PB(D,K,R,S,N)
2: pSize  calcPartitionSize(D)
3: bPerP  [pSize/S]
4: bNum  [N/S]
5: pNum  [bNum/bPerP]
6: array order sizeN as Integer
7:array blocks size bPerP as <Integer, Record[]>
8:priority queuebPairs as<Integer, Integer, Integer>
9: bPairs {<1, 1, ->,….,<bNum, bNum, ->}
10:ordersortProgressive(D, K, S, bPerP, bPairs)
11: fori 0 topNum – 1 do
12: pBPs  get(bPairs, i.bPerP, (i+1).bPerP)
13: blocks  loadBlocks(pBPs, S, order)
14: compare(blocks, pBPs, order)
15: while bPairs is not empty do
16: pBPs  {}
17: bestBPs  takeBest([bPerP/4], bPairs, R)
18: forbestBP € bestBPs do
19: ifbestBP [1]- bestBP[0]<R then
20: pBPs  pBPs U extend(bestBP)
21: blocks  loadBlocks(pBPs, S , order)
22: compare(blocks, pBPs, order)
23: bPairs  bPairs U pBPs
24: procedure compare(blocks, pBPs, order)
25: forpBP € pBPs do
26: <dPairs, cNum> comp(pBP, blocks, order)
27: emit(dPairs)
28: pBP[2] |dPairs|/cNum

Reference

[1] Thorsten Papenbrock, Arvid Heise, and Felix Naumann,
“Progressive Duplicate Detection”, Ieee Transactions on
Knowledge and Data Engineering, Vol. 27, No. 5, May
2015.

[2] S.ramya and C. palaninehru ,” A Study of Progressive
Techniques for Efficient Duplicate Detection ”
International Journal of Advanced Research in Computer
Science and Software Engineering , Volume 5, Issue 11,
November 2015.

[3] Dr.M.Mayilvaganan, M.Saipriyanka, “Efficient and
Effective Duplicate Detection Evaluating Multiple Data
using Genetic Algorithm” International Journal of
Innovative Research in Computer and Communication
Engineering,Vol. 3, Issue 9, September 2015.

[4] www.ijarcsse.com
[5] S. E. Whang, D. Marmaros, and H. Garcia-Molina, “Pay-

as-you-go entity resolution,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 5, pp. 1111–1124, May 2012

[6] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg,
“Adaptive windows for duplicate detection,” in Proc.
IEEE 28th Int. Conf. Data Eng., 2012, pp. 1073–1083.

Paper ID: 15011702 1649

http://www.ijarcsse.com/

