Changes in Minerals Content of Traditionally fermented Nile-Fish Product in Sudan

Elagba Mohamed1, Leelwa Al Hamadani2

1Natural History Museum, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum, Sudan
2Soil and Water Research Laboratory, College and Agriculture and Marine Sciences, Sultan Qaboos University, Sultanate of Oman

Abstract: The effect of fermenting process was evaluated by investigating the changes in minerals content of on the Nile tiger-fish (Hydrocynus spp), "fessiekh", the traditional fermented fish product in Sudan. Total minerals content was (48.5µg/g) in fresh and (44.75µg/g) in fermented fish. Significant change (P<0.05) was detected in phosphorous (P), from (41.8µg/g) in fresh to (34.6µg/g) in fermented fish, constituting (86% and 77%) of total minerals, respectively. Mn also decreased from (0.184 ± 0.16µg/g) to (0.162 ± 0.17µg/g), and Ti decreased from (0.029 ± 0.02µg/g) to (0.025 ± 0.0417µg/g). The contents of Ba, Fe, Zn, Al and B increased in fermented fish forming (8.4%, 4.4%, 3.8%, 3.3% and 1.5%) of total minerals, respectively, compared to (4.8%, 2.7%, 2.5%, 1.3% and 1.3%), respectively, in fresh fish. Although fermenting process lead to slight changes of some mineral contents, the results revealed that fermented fish ‘fessiekh’ is a rich source of macro and micro-elements for human nutrition and health and the consuming rate of fermented fish should be encouraged.

Keywords: Fermented fish, fessiekh, Hydrocynus, minerals, Sudan

1. Introduction

Fermentation is a popular traditional process used for fresh fish which flavor can be developed in the fish. Fermentation is known to cause some changes in quality of fish and in minerals contents[10][9][8][7][6][5][4]. The fish body usually contains small amount of these minerals, some of which are essential nutrients and components of many enzymes, system and metabolic mechanisms. The deficiency in these principal nutritional mineral elements induces a lot of malfunctioning; as it reduces productivity and causes disease[11]. Therefore, the present study was carried out to determine the change of minerals content in muscles of Sudanese fermented fish product "fessiekh" of Hydrocynus species compared to fresh fish, to ensure that it meet the requirements of food regulations and commercial specifications as agood source of healthy food.

2. Material and Methods

Sample collection and preparation
Fermented and fresh specimens of the Nile tigerfish (Hydrocynus species) were purchased from the fish market in Khartoum. Fish samples were transported to the laboratory, gutted, prepared as a fillet, washed with fresh water, minced into fine particles and kept in separate glass containers for analysis.

Minerals analysis
The concentration of minerals was determined after wet digestion with a mixture of nitric, sulphuric and hydrochloric acids, using Atomic Absorption Spectrophotometer (AAS Model SP9). Each analysis was carried out in triplicates. The results are provided as (µg/g wet weight).

3. Results and Discussion

The high level of phosphorous in both fermented and fresh fish are attributed to the fact that phosphorous is a component of protein and nucleotide[12]. Enzymatic degradation of nucleotides and nucleosides in the fish during fermentation and breakdown of protein result in subsequent release of phosphorous. A reduction of P contents in fermented fish was in accordance with the results reported by [13]in the traditional Ivorian fermented fish condiment Chloroscombrus chrysurus compared to fresh fish and with results reported in tilapia Oreochromis niloticus[14]. The change in other minerals content was not significant. The variations recorded in content of fermented compared to fresh fish could have been as a result of their concentrations in the local water body, and the ability of the fish to absorb these inorganic elements from their diets[16][15].

Variations observed could also, probably, be due to some micro-organisms capable of using these inorganic elements.
during their metabolism such as in nitrogen and phosphorous cycles. Fermentation may contribute positively to the development of flavour of the product, and the degradation process initiated by proteolytic bacteria is responsible for the characteristic odor of fermented fish.[17, 18] A general observation shows that fermentation does not adversely affect the minerals content of Sudanese fermented fish product "fessiekh". However, the content of minerals in the fermented fish was within the range recorded in other fresh Nile fish[19]. The present study, therefore, revealed that fermented fish products are generally good sources of minerals required for human health and encourages the consumption of "fessiekh" as a rich nutritive fish product.

References

Table 1: Mean mineral contents (µg/g dry weight) and percentage (%) in fresh and fermented tigerfish (Hydrocynus species).

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Fresh fish</th>
<th>Fermented fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>41.78 ± 3</td>
<td>34.55 ± 3.57</td>
</tr>
<tr>
<td>Ba</td>
<td>2.32 ± 0.19</td>
<td>3.74 ± 2.23</td>
</tr>
<tr>
<td>Fe</td>
<td>1.33 ± 0.62</td>
<td>1.98 ± 0.77</td>
</tr>
<tr>
<td>Zn</td>
<td>1.23 ± 0.55</td>
<td>1.71 ± 0.42</td>
</tr>
<tr>
<td>Al</td>
<td>0.63 ± 0.01</td>
<td>1.48 ± 1.30</td>
</tr>
<tr>
<td>B</td>
<td>0.60 ± 0.25</td>
<td>0.68 ± 0.16</td>
</tr>
<tr>
<td>Pb</td>
<td>0.22 ± 0.01</td>
<td>0.24 ± 0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>0.18 ± 0.16</td>
<td>0.16 ± 0.17</td>
</tr>
<tr>
<td>Cr</td>
<td>0.07 ± 0.02</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Co</td>
<td>0.03 ± 0.05</td>
<td>0.03 ± 0.04</td>
</tr>
<tr>
<td>Pb</td>
<td>0.01 ± 0.01</td>
<td>0.01 ± 0.04</td>
</tr>
<tr>
<td>Cu</td>
<td><0.0004</td>
<td><0.0004</td>
</tr>
<tr>
<td>Cd</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>Total minerals</td>
<td>48.50</td>
<td>44.7</td>
</tr>
</tbody>
</table>

Ligands
Figure 1. Percentage of mineral contents (%) in fresh and fermented tigerfish (Hydrocynus species).
Figure 2. Mean mineral contents (µg/g) in fresh and fermented tigerfish (Hydrocynus species).
Figure 3. The concentration of phosphorus (P) (µg/g) in fresh and fermented tigerfish (Hydrocynus species).
Figure 3