# Determination of Structural and Vibrational Spectroscopic Properties of 4-Amino-2, 2, 6, 6tetramethylpiperidine using FT-IR and FT-Raman Experimental Techniques and Quantum Chemical Calculations

# G. Mahalakshmi<sup>1</sup>, R. Suganya<sup>2</sup>, V. Balachandran<sup>3</sup>

<sup>1, 2</sup>Research Department of Physics, Government Arts College (Autonomou), Karur-639 001, India

<sup>3</sup>Research Department of Physics, A A Government Arts College, Musiri 621 211, India

Abstract: In this work, the molecular conformation and vibrational analysis of 4-Amino-2, 2, 6, 6-tetramethylpiperidine (abbreviated as ATMP) were presented for the ground state using experimental techniques (FT-IR and FT-Raman) and the spectra were interpreted with the aid of normal coordinate analysis based on ab initio Hartree–Fock (HF) and density functional theory (DFT/B3LYP) methods with 6-311+G (d, p) basis set level. The statistical thermodynamic functions (heat capacity, entropy change, enthalpy change and free energy change) were obtained. The polarizability, first hyperpolarizability, anisotropy polarizability invariant has been computed using quantum chemical calculations. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the experimental and theoretical spectra values provides important information about the ability of the computational method to describe the vibrational modes. UV-VIS spectral analyses of ATMP have been researched by theoretical calculations. In order to understand electronic transitions of the compound, TD-DFT calculations on electronic absorption spectra in gas phase and solvent (DMSO and Chloroform) were performed. The calculated frontier orbital energies, excitation energies (E), absorption wavelengths ( $\lambda$ ), os cillator strengths (f) and life span( $\tau$ ) for gas phase and solvent (DMSO and Chloroform) are also illustrated.

Keywords: Vibrational spectra, TD-DFT, Fukui function, NBO analysis, Thermodynamic functions

# 1. Introduction

Piperidine is widely used as a building block and chemical reagent in the synthesis of organic compounds including pharmaceuticals. It is used as a secondary amine and to convert ketone to enamines [1]. Enamines are derived from piperidine which are used in the stork enamines alkylatinereactions [2]. Piperidine can be converted to the chloroamines  $C_5H_{10}NCl$  with calcium hypochlorite [3]. It is also commonly used in chemical degradation reactions. Pyridine can also be reduced to piperidine by sodium in ethanol [4]. Piperidine and its derivatives are very important in industrial field as well as in biochemistry. The piperidine structural motives are present in numerous natural alkaloids. Piperidine itself has been obtained from black pepper, psilocaulonabsimile and N.E.Br (Aizoaceae) and in petrosimoniamonandra [5, 6, 7]. Other examples are the fire ant toxin solenopsin [8], the nicotin, analog anabasine of the tree tobacco (nicotianaglauca), lobeline of the Indian tobacco and the toxic alkaloid coniine from poison hemlock which was used to put Socrates to death [9].

Piperidine is used as solvent and as a base. The same is true for certain derivatives of N-formylpiperidine which is a polar aprotic solvent with better hydrocarbon solubility than other amide solvents and 2,2,6,6-tetramethyl piperidine is a highly sterically hindered base, useful because of its low nucleophilicity and high solubility in organic solvents. Piperidine, hexahydropyridine is a family of heterocyclic organic compounds derived from pyridine through hydrogenation. It has one nitrogen atom in the cycle. It has clear liquid with pepper like aroma. The major application of piperidine is the production of dipiperidinyldithiuramtetrasulphide used as a rubber vulcanization accelerator [10].

In pharmaceutical synthesis industries, it is a skeleton in some drugs such as methyl phenidate [central nervous system stimulant], budipine [antiparkinsonian drug], raloxifene, minoxidil [an oral drug to treat high blood pressure]. It is used as special solvent in solid base synthesis and protections to make crystal derivatives of aromatic nitrogen compounds containing nuclear halogen atoms. Ring system compounds with nitrogen which have basics property playing important roles of cyclic components in industrial field such as raw materials for hardness of epoxy resins. Corrosion inhibitor, insecticides, accelerators are used as rubber urethane catalysts antioxidants and as a catalyst for They silicone esters. are used in manufacturing pharmaceuticals.

The main objective of the present study is to investigate in detail about the conformational stability and vibrational spectra of 4-Amino-2, 2, 6, 6-tetramethylpiperidine (ATMP) using DFT methods which can presumably helps in understanding its dynamical behavior. The characterization of the normal modes using potential energy distribution is done with the MOLVIB-7.0 program. In the present work we have attempted to study the bonding nature of ATMP using B3LYP level of theory throughout with the 6-311+G(d,p) basis set implemented in the Gaussian 09

program [11] from the DFT calculation were then used to perform natural bond orbital (NBO) analysis.

Literature survey reveals that to the best of our knowledge, the spectroscopic characterization and quantum chemical calculations of charge transfer, MEP, thermo-chemical analysis and solvent effects on the title molecule have no reports. Therefore, the present investigation was undertaken to study the geometric structure and vibrational spectra of ATMP. The FT-IR and FT-Raman experimental techniques were recorded and interpreted in terms of calculated ones at DFT with B3LYP/6-311+G (d, p) level. A detailed interpretation of the vibrational spectra of title molecules was made on the basis of the calculated total energy distribution (TED) results.

# 2. Methodology

# Experimental details

Samples in liquid form were purchased from the Lancaster Chemical Company (UK) with a purity of greater than 98%, and they were used as such without purification. FT-IR spectra of the compound was recorded in the region  $400-4000 \text{ cm}^{-1}$  on a BRUKER spectrophotometer equipped with an MCT detector, in KBr pellet. FT-Raman spectra of ATMP have been recorded in the region  $100-3500 \text{ cm}^{-1}$  on a BRUKER spectrophotometer equipped with Raman module accessory with Nd:YAG laser operating at 1.5 W powers continuously with 1064 nm excitation.

# Quantum chemical calculation (computational)

The first task for the computational work was to determine the optimized geometry, energy and vibrational frequencies of the compound have been calculated by using B3 [12] exchange functional combined with the LYP [13] correlation functional resulting in the B3LYP density functional method at 6-311+G (d, p) basis set. All the computations were performed using Gaussian 09W program [11] and Gauss-View molecular visualization program package on the personal computer [14]. Second, a comparison is made between the theoretically calculated wavenumbers and the experimentally measured wavenumbers. In this investigation we observed that the calculated wavenumbers were slightly greater than the fundamental wavenumbers. To improve the agreement between the predicted and observed wavenumbers, the computed harmonic wavenumbers are usually scaled for comparison. For this purpose the scaling of the force field was performed according to the SQMFF procedure [15]. The Cartesian representation of the force constants were transferred to a non-redundant set of local symmetry coordinates, chosen in accordance to recommendations of Pulay et al [16]. The descriptions of the predicted frequencies during the scaling process were followed by the total energy distribution (TED) matrix. The characterization of the normal modes using total energy distribution (TED) was done with the MOLVIB - 7.0 programs written by Sundius [17, 18]. The NBO calculations [19] were performed using NBO program as carried out in the Gaussian 09W [11] package at the DFT/B3LYP level to understand the intra-molecular delocalization or hyperconjugation.

The frontier molecular orbital energies, energy gap between various occupied and unoccupied molecular orbital's of ATMP are also calculated in the same method with different basis sets. NBO calculation is also performed on the ATMP with the same level of DFT theory with 6-311+G (d, p) basis set. For obtaining chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface is plotted over the optimized geometry of ATMP using Gaussian 09W software package [11]. The fitting point charges to electrostatic potential on each atom of the optimized geometry are compared with MEP surface. Moreover, Mulliken atomic charges of atoms and certain thermodynamic properties such as entropy, enthalpy, rotational constants, vibrational constants, and zero point vibrational energy of the title compound are also calculated at the same level of DFT calculation. Thermo chemical calculation was done by employing vibrational frequencies at B3LYP/6-311+G (d, p) level of theory.

Net atomic charges have been obtained using the natural population analysis scheme of Reed et al. [20]. The electronic structure and bonding features of the compounds studied were analyzed using natural bond orbital analysis [20, 21]. The natural bond orbital analysis allowed us to describe the bonding in terms of the natural hybrids centered on each atom. For estimation of the probable reactive sites in the systems studied, two molecular descriptors were used viz; MEP and Fukui functions. MEP is related to electronic density and is considered as a fundamental determinant of atomic and molecular properties. Therefore, MEP has largely been used as a molecular descriptor of the chemical reactivity of number of biological systems, which take part in both electrophilic and nucleophilic reactions as well as hydrogen bonding interactions [22, 23]. The molecular electrostatic potential V(r), at a given point r(x, y, z) in the vicinity of a molecule, is defined in terms of the interaction energy between the electrical charge generated from the molecule electrons and nuclei and a positive test charge (a proton) located at r. For the systems studied the MEP values were calculated using the equation [24].

$$V(\mathbf{r}) = \sum \frac{Z_A}{\left|R_A - r\right|} - \int \frac{\rho(r')}{\left|r' - r\right|} dr$$

where the summation runs over all the nuclei A in the compound and polarization and reorganization effects is neglected.  $Z_A$  is the charge of the nucleus A, located at  $R_A$  and  $\rho(r')$  is the electron density function of the molecule.

The electronic properties, such as HOMO-LUMO energies, absorption wavelengths and oscillator strengths were calculated using B3LYP method of the time dependent TD-DFT, basing on the optimized structure in solvent (DMSO and Chloroform) and gas phase. The changes in the thermodynamic functions such as the heat capacity, entropy, and enthalpy were investigated for the different temperatures from the vibrational frequency calculations of the title molecule.

#### The prediction of Raman intensities and hyperpolarizability

The Raman activity  $(S_i)$  calculated by Gaussian 09 and adjusted during scaling procedure with MOLVIB were

converted to relative Raman intensity  $(I_i)$  using the following relation from the basic theory of Raman scattering [25, 26].

$$I_{i} = \frac{f(v_{0} - v_{i})^{4} s_{i}}{v_{i} \left[1 - \exp\left(\frac{-hcv_{i}}{k_{b}T}\right)\right]}$$

Here  $v_0$  is the laser exciting frequency in cm<sup>-1</sup> units ( in this work, we have used the excitation wavenumber  $v_0 = 9398$  cm<sup>-1</sup>, which corresponds to the wavelength of 1064nm of a Nd: YAG laser),  $v_i$  is the vibrational wavenumbers of the  $i^{th}$  normal mode (cm<sup>-1</sup>): h,  $k_b$ , c are Planck, Boltzmann constants, speed of light, T is the temperature in Kelvin, and f (is a constant equal to  $10^{-12}$ ) is the suitably chosen common normalization factor for all the peak intensities.

Analysis of organic compounds having conjugated  $\pi$  electron systems and large hyper-polarizability using IR and Raman spectroscopy has evolved as a subject of research. The potential application of the title compound in the field of non-linear optics demands the investigation of its structural and bonding features contributing to the hyperpolarizability enhancement by analyzing the vibrational modes using IR and Raman spectroscopy. The B3LYP/6-311+G (d, p) method has been used for the prediction of first hyper-polarizability. The tensor components of the static first hyper-polarizability ( $\beta$ ) and second hyper-polarizability  $(\gamma)$  were analytically calculated by using the same method as mentioned above. From the computed tensorial components,  $\beta$  is the calculated for the title compound by taking into account, the Kleinman symmetry relations and the square norm of the Cartesian expression for the  $\beta$  tensor [27]. The relevant expressions used for the calculation are shown below.

 $\beta_{total} = \sqrt{\left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)}$ where,  $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$ ,  $\beta_y = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$ ,  $\beta_z = \beta_{zzz} + \beta_{xxz} + \beta_{yyz}$ . The equation for average second hyper-polarizability is

$$\left\langle \gamma \right\rangle = \frac{1}{5} \left( \gamma_{xxxx} + \gamma_{yyyy} + \gamma_{zzzz} + 2\gamma_{xxyy} + 2\gamma_{xxzz} + 2\gamma_{yyzz} \right)$$

The calculated values of  $\alpha$ ,  $\beta$  and  $\gamma$  and the corresponding components are given in Table 1. The calculated second order hyper-polarizability of ATMP is found to be ( $\gamma$ ) is  $-7.4715 \times 10^{-30}$  *e.s.u.* The total static dipole moment, polarizabilities, first order hyper-polarizabilities and second order hyper-polarizabilities of ATMP were calculated. Table 1 lists the values of the electric dipole moment (Debye) and dipole moment components, polarizabilities and hyperpolarizabilities (*e.s.u.*) of ATMP. In addition to the

**Table 1:** Calculated dipole moment, polarizabilities, first order and second order hyperpolarizabilities.

| Davamatars          | Values(a.u.)                    |                                                      |  |  |  |  |  |  |
|---------------------|---------------------------------|------------------------------------------------------|--|--|--|--|--|--|
| rarameters          | HF                              | DFT                                                  |  |  |  |  |  |  |
| μ <sub>x</sub>      | 1.0916                          | 0.7146                                               |  |  |  |  |  |  |
| μ <sub>v</sub>      | -0.1897                         | 1.1767                                               |  |  |  |  |  |  |
| μ <sub>z</sub>      | -0.8657                         | -0.4867                                              |  |  |  |  |  |  |
| μ                   | 1.8770                          | 1.4602                                               |  |  |  |  |  |  |
| $\alpha_{\rm xx}$   | -71.3427                        | 68.3560                                              |  |  |  |  |  |  |
| $\alpha_{vv}$       | -76.8587                        | -66.6131                                             |  |  |  |  |  |  |
| α <sub>zz</sub>     | -71.0626                        | -79.1191                                             |  |  |  |  |  |  |
| $\alpha_{\rm xv}$   | 4.2752                          | -1.4007                                              |  |  |  |  |  |  |
| α <sub>xz</sub>     | 0.5343                          | 1.4438                                               |  |  |  |  |  |  |
| $\alpha_{vz}$       | 1.5348                          | -1.7044                                              |  |  |  |  |  |  |
| α                   | -73.088e.s.u                    | -71.3627e.s.u                                        |  |  |  |  |  |  |
| Δα                  | 2.24x10 <sup>-37</sup> e.s.u    | 3.13831x10 <sup>-37</sup> e.s.u<br>4.3208<br>13.8748 |  |  |  |  |  |  |
| $\beta_{xxx}$       | -0.1506                         |                                                      |  |  |  |  |  |  |
| $\beta_{yyy}$       | -5.3271                         |                                                      |  |  |  |  |  |  |
| $\beta_{zzz}$       | -1.6175                         | -2.0873                                              |  |  |  |  |  |  |
| $\beta_{xyy}$       | 15.5888                         | 1.8773<br>6.7129                                     |  |  |  |  |  |  |
| $\beta_{xxy}$       | 1.8445                          |                                                      |  |  |  |  |  |  |
| $\beta_{xxz}$       | 0.9850                          | 5.6553                                               |  |  |  |  |  |  |
| $\beta_{xzz}$       | 0.0296                          | -2.6976                                              |  |  |  |  |  |  |
| $\beta_{vzz}$       | 2.2550                          | 4.4563                                               |  |  |  |  |  |  |
| $\beta_{vvz}$       | -4.2574                         | 10.9264                                              |  |  |  |  |  |  |
| $\beta_{xvz}$       | 1.7686                          | -2.5137                                              |  |  |  |  |  |  |
| $\beta_{tot}$       | 16.2687x10 <sup>-31</sup> e.s.u | 29.1469x10 <sup>-31</sup> e.s.u                      |  |  |  |  |  |  |
| $\gamma_{xxxx}$     | -1148.3306                      | -1212.2583                                           |  |  |  |  |  |  |
| $\gamma_{\rm vvvv}$ | -876.5076                       | -766.7312                                            |  |  |  |  |  |  |
| $\gamma_{zzzz}$     | -480.6541                       | -397.2509                                            |  |  |  |  |  |  |
| $\gamma_{xxyy}$     | -337.9411                       | -329.1180                                            |  |  |  |  |  |  |
| $\gamma_{xxzz}$     | -285.2038                       | -283.0523                                            |  |  |  |  |  |  |
| $\gamma_{yyzz}$     | -210.5042                       | -197.0511                                            |  |  |  |  |  |  |
| γ                   | -834.5581                       | 798.9366                                             |  |  |  |  |  |  |
|                     | -7.3398x10 <sup>-30</sup> e.s.u | -7.4715x10 <sup>-30</sup> e.s.u                      |  |  |  |  |  |  |

isotropic polarizabilities anisotropy invariant and average second order hyper-polarizability were also calculated. The polarizabilities and first hyper-polarizabilities of ATMP are -72.088, -71.3627 *e.s.u.* and 2.2422,  $3.1383x10^{-37}e.s.u.$  by HF/6-311+G (d, p) and B3LYP/6-311+G (d, p) levels. The calculated second order hyper-polarizability of ATMP is found to be ( $\gamma$ ) is -7.3398 and -7.4715x10<sup>-30</sup> *e.s.u.* by HF/6-311+G (d, p) and B3LYP/6-311+G (d, p) levels. According to the magnitude of the first hyper-polarizability, the title compound may be a potential applicant in the development of NLO materials.

# 3. Results and Discussion

#### **Molecular Geometry**

The present compounds under investigation has become a greater interest because it contains two different substituent's namely methyl and amino group. In order to find out the most optimized geometry, the energy calculations were carried out for various possible conformers. The possible four conformer's *cis-cis* (I), *cis-trans* (II), *trans-cis* (III), *trans-trans* (IV) and their corresponding relative energies of ATMP are shown in Fig.1. It is clear from Fig. 1 that the conformer *trans-trans* (IV) have produced the global energy minimum. The most optimized geometrical parameters were calculated for ATMP of *trans-trans* (IV) conformer by B3LYP method with 6-311+G (d, p) basis set. The bond lengths and bond angles are determined from geometrical parameters obtained

Volume 5 Issue 9, September 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

from DFT method. The optimized structure can be compared with other similar systems [28] for which the crystal structures have been solved. Therefore optimized geometrical parameters of ATMP are compared with the experimented data of similar kind of molecules [28]. The geometrical parameters obtained from DFT method are seen in good agreement with experimental values of X-ray data [28] and the deviations are due to the presence of amino and methyl groups. Therefore, the experimental X-ray data compared with the DFT method and they are summarized in Table 2. It is known that the six-membered cyclic molecule piperidine and 4-methyl piperidine ring exist in chair forms to can in principle as conformers with NH and NH2 being equatorial (E) and axial (A) [29,30]. Other conformations that differ from the chair (boat, envelope or twist boat) were not considered because of their high energy [29, 30]. It is also known that ATMP is an interesting flexible amino methyl group that can adopt four discrete conformations. The numbering of atoms in ATMP is given in Fig. 2. The calculated structural parameters are presented in Table 2.

**Table 2:** Optimized geometrical parameters of ATMP bond length(Å), angle( $^{0}$ ) and dihedral angle( $^{0}$ ) by DFT method

|                | Valu  | e(Å)               | 8() 5           |                       |  |
|----------------|-------|--------------------|-----------------|-----------------------|--|
| Bond lengths   | a     | Exp <sup>b</sup>   | Dihedral angles | Value( <sup>0</sup> ) |  |
| N1 – C2        | 1.48  | 1.51               | C6-N1-C2-C3     | -51.6                 |  |
| N1 - C6        | 1.48  | 1.51               | C6-N1-C2-C8     | -167.6                |  |
| N1 - H7        | 1.02  | 1.37               | C6-N1-C2-C12    | 73.9                  |  |
| C2 - C3        | 1.54  | 1.53               | H7-N1-C2-C3     | 177.2                 |  |
| C2 - C8        | 1.54  | 1.54               | H7-N1-C2-C8     | 61.2                  |  |
| C2 - C12       | 1.55  | 1.53               | H7-N1-C2-C12    | -57.4                 |  |
| C3 - C4        | 1.54  | 1.53               | C2-N1-C6-C5     | 51.6                  |  |
| C3 - H16       | 1.10  | 0.99               | C2-N1-C6-C24    | 167.6                 |  |
| C3 - H17       | 1.10  | 0.99               | C2-N1-C6-C28    | -73.9                 |  |
| C4 - C5        | 1.54  | 1.54               | H7-N1-C6-C5     | -177.2                |  |
| C4 - N18       | 1.10  | 1.46               | H7-N1-C6-C24    | -61.2                 |  |
| C4 - H19       | 1.48  | 1.00               | H7-N1-C6-C28    | 57.4                  |  |
| C5 - C6        | 1.54  | 1.53               | N1-C2-C3-C4     | 47.9                  |  |
| C5 - H22       | 1.10  | 0.99               | N1-C2-C3-H16    | 172.7                 |  |
| С5 - Н23       | 1.10  | 0.99               | N1-C2-C3-H17    | -71.9                 |  |
| C6 - C24       | 1.54  | 1.54               | C8-C2-C3-C4     | 162.3                 |  |
| C6 - C28       | 1.55  | 1.53               | C8-C2-C3-H16    | -73.0                 |  |
| C8 - H9        | 1.09  | 0.98               | C8-C2-C3-H17    | 42.5                  |  |
| C8 - H10       | 1.10  | 0.98               | C12-C2-C3-C4    | -79.3                 |  |
| C8 - H11       | 1.09  | 0.98               | C12-C2-C3-H16   | 45.5                  |  |
| C28 - H29      | 1.09  | 0.98               | C12-C2-C8-H10   | 58.9                  |  |
| C28 - H30      | 1.10  | 0.98               | C12-C2-C8-H11   | 178.6                 |  |
| C28 - H31      | 1.10  | 0.98               | N1-C2-C12-H13   | 53.0                  |  |
| Destaute       | Valu  | 1e( <sup>0</sup> ) | N1-C2-C12-H14   | 171.4                 |  |
| Bond angles    | a     | Exp <sup>b</sup>   | N1-C2-C12-H15   | -68.5                 |  |
| C2 - N1 - C6   | 121.9 | 119.6              | С3-С2-С12-Н13   | 176.3                 |  |
| C2 - N1 - H7   | 110.1 | 117.7              | C8-C2-C12-H14   | 53.7                  |  |
| C6 - N1 - H7   | 110.1 | 112.3              | C8-C2-C12-H15   | 173.8                 |  |
| N1 - C2 - C3   | 107.8 | 108.6              | C2-C3-C4-C5     | -48.8                 |  |
| N1 - C2 - C8   | 106.0 | 110.1              | H16-C3-C4-C5    | -173.4                |  |
| N1 - C2 - C12  | 114.8 | 110.8              | H17-C3-C4-C5    | 71.3                  |  |
| C3 - C2 - C8   | 108.5 | 105.5              | C3-C4-C5-C6     | 48.8                  |  |
| C3 - C2 - C12  | 111.9 | 111.2              | C3-C4-C5-H22    | -71.3                 |  |
| C8 - C2 - C12  | 107.6 | 106.5              | C3-C4-C5-H23    | 173.4                 |  |
| C2 - C3 - C4   | 115.9 | 113.1              | N18-C4-C5-C6    | 164.1                 |  |
| C2 - C3 - H16  | 109.3 | 109.0              | N18-C4-C5-H22   | 43.9                  |  |
| C2 - C3 - H17  | 107.7 | 109.0              | N18-C4-C5-H23   | -71.4                 |  |
| C4 - 3C - H16  | 109.8 | 109.0              | N18-C4-H19-H20  | -58.8                 |  |
| C4 - C3 - H17  | 107.0 | 109.0              | N18-C4-H19-H21  | 58.8                  |  |
| H16 - C3 - H17 | 106.6 | 107.8              | C4-C5-C6-N1     | -47.9                 |  |

| C3 - C4 - C5    | 110.2 | 109.6 | N1-C6-C28-H29 | 68 5   |
|-----------------|-------|-------|---------------|--------|
| C3 - C4 - N18   | 106.6 | 110.5 | N1-C6-C28-H30 | -171.4 |
| C3 - C4 - H19   | 111.3 | 107.9 | N1-C6-C28-H31 | -53.0  |
| C5 - C4 - N18   | 106.6 | 112.9 |               |        |
| C5 - C4 - H19   | 111.3 | 107.9 |               |        |
| N1 - C6 - C24   | 106.0 | 111.7 |               |        |
| N1 - C6 - C28   | 114.8 | 111.2 |               |        |
| C5 - C6 - C24   | 108.5 | 111.4 |               |        |
| C5 - C6 - C28   | 111.9 | 104.2 |               |        |
| C24 - C6 - C28  | 107.6 | 109.8 |               |        |
| C2 - C8 - H9    | 111.0 | 109.5 |               |        |
| H9 - C8 - H11   | 109.0 | 109.5 |               |        |
| H10 - C8 - H11  | 108.1 | 109.5 |               |        |
| C2 - C12 - H13  | 110.0 | 109.5 |               |        |
| H13 - C12 - H14 | 107.5 | 109.5 |               |        |
| C4 - H19 - H20  | 110.3 | -     |               |        |
| C6 - C24 - H25  | 111.0 | 109.5 |               |        |
| C6 - C24 - H26  | 110.6 | 109.5 |               |        |
| C6 - C24 - H27  | 110.6 | 109.5 |               |        |
| H25 - C24 - H26 | 108.9 | 109.5 |               |        |
| H25 - C24 - H27 | 107.5 | 109.5 |               |        |
| H26 - C24 - H27 | 108.1 | 109.5 |               |        |

<sup>a</sup> Calculated by B3LYP/6311+G(d,p)

<sup>b</sup> S. K. Goswami, L. R. Hanton, C. J. McAdam, S. C. Morattiand J. Simpson, *ActaCryst.* (2011). E67, o3024-o3025

Generally, the C-N-C bond angles are slightly longer and shorter than the C-C-C or N-C-C bond angles [26]. Gundersen and Rankin reported the C-N-C (110.7<sup>0</sup>), C-C-C  $(109.6^{\circ})$  and N-C-C  $(110.5^{\circ})$  bond angles by using electron diffraction technique [28]. In the present study, the bond angles of C-N-C  $(121.9^{\circ})$ , C-C-C  $(108.5^{\circ})$  and N-C-C  $(107.8^{\circ})$  by B3LYP method are depicted, in Table 2. The C-N bond lengths are predicted to be slightly shorter than the C-C bond lengths. Gundersen and Rankin [31] reported N-C (1.469 Å) and C-C (1.530 Å) by using electron diffraction technique. In ATMP, the calculated bond length N-C (1.48 Å) and C-C (1.54 Å) by B3LYP/6-311+G (d, p) method have been noticed that the DFT calculations are consistent with the results of electron diffraction data [28]. The ATMP exhibits the chair conformation with computed values of dihedral angles C6-N1-C2-C3, C2-N1-C6-C5, N1-C2-C3-C4, C2-C3-C4-C5, C3-C4-C5-C6 and C4-C5-C6-N1 are -51.6°, -51.6°, 47.9°, -48.8°, 48.8° and -47.9° respectively. It can be concluded that the chair form arises due to the van der Waals repulsion between the hydrogen atoms belonging to neighboring carbon atoms.

# Vibrational analysis

The ATMP contains 31 atoms, it assuming C<sub>1</sub> symmetry point group. A detailed description of vibrational modes can be given by means of normal coordinate analysis. All vibrations are active both in Raman and infrared absorption. For this purpose, a full set off 107 standard internal coordinates containing 20 redundancies were defined as given in Table 3. From these, a non-redundant set of local symmetry coordinates were constructed by suitable linear combinations of internal coordinates following the recommendations of Pulay et al., and they are presented in Table 4. While both the observed FTIR and FT Raman spectra are rich in bands, there are bonds missing corresponding to the some fundamentals. These fundamentals as well as those corresponding to the observed

bands have been computed at HF and B3LYP levels using the triple split valance basis set along with diffuse and polarization functions, 6-311+G (d, p). The harmonic vibrational frequencies calculated for ATMP at HF and B3LYP levels have been collected in Table5 .All the assignments were subsequently confirmed in the MOLVIB package [17, 18, 32] using HF and B3LYP calculations. By the help of the calculated potential energy distribution (PED), we assigned the vibrational frequencies of the studied molecule. The calculated frequencies are usually higher than the corresponding experimental quantities, due to the combination of electron correlation effects and basis set deficiencies. After applying the scaling factors, the theoretical calculations reproduce the experimental data well in agreement.

#### Comparative vibrational frequency analysis

The frequency values computed at HF/6-311+G (d, p) and B3LYP/6-311+G (d, p) basis set contains known systematic error due to negligence of electron correlation. Therefore a linearity can be estimated by plotting the calculated versus experimental frequencies (Fig.3, 4). From the figure 3 and 4, it is found that the calculated (scaled) frequencies by B3LYP with 6-311+G (d, p) basis set are closer to the experimental frequencies than HF method with 6-311+G (d, p) basis set. Certain values obtained by HF and DFT method, are strongly under estimated. If the variations are omitted, the both HF and B3LYP calculations provide good linearity between the calculated and experimental frequencies. The small difference between the experimental and calculated vibrational modes is observed. This discrepancy is from the environment of sample.

*Computed IR intensity and Raman activity analysis* Computed vibrational spectral IR intensities and Raman activities of the ATMP molecule for corresponding wave numbers by HF and DFT (B3LYP) methods at 6-311+G (d, p) basis set have been collected in the Table 5. Comparison of IR intensities and Raman activities calculated by HF and DFT (B3LYP) at 6-311+G (d, p) level with experimental values exposes the variation of IR intensities and Raman activities. In most of the cases, the values of IR intensity by HF are found to be higher than B3LYP at 6-311+G (d, p) level

#### NH2 vibrations

The methylene and amino groups are generally referred to as electron donating substituents in aromatic ring system [33]. CH2 interacts with nearby  $\pi$  -systems via The hyperconjugation, while the NH2 share its lone pair of electrons with the  $\pi$ -electrons in a ring. Both mechanisms imply electronic delocalization is taken into account by the molecular orbital approach. According to Socrates the observed bands 3500-3300 cm<sup>-1</sup> was assigned to the NH2 stretching modes [34]. The NH2 symmetric and asymmetric vibrations which are assigned to medium strong FTIR band around 3360 cm<sup>-1</sup> (PED 100%), weak FT Raman band observed at 3310 cm<sup>-1</sup> (PED 100%) and a medium FTIR around 3288 cm<sup>-1</sup> (PED 100%), which are very pure mode. Those modes are in good agreement with computed values by HF and B3LYP levels, respectively. The frequencies of amino group appear around 1700-1600 cm<sup>-1</sup> for scissoring and 1150-900 cm<sup>-1</sup> for rocking deformations [34]<sup>-</sup> Hence in the present work, medium strong FTIR bands identified at 1584 cm<sup>-1</sup> (PED 60%) and 916 cm<sup>-1</sup> (PED 44%), both band gives PED contribution to ring and scissoring (CH<sub>2</sub>). These vibrations show good agreement with theoretically





cis - trans (II)

trans - trans (IV) Fig. 1. Possible conformers of ATMP



Figure 2: Optimized molecular structure of ATMP





Table 3: Definition of internal symmetry coordinates of

| ATMP  |                  |                           |                                  |  |  |  |  |  |  |  |  |  |
|-------|------------------|---------------------------|----------------------------------|--|--|--|--|--|--|--|--|--|
| No.   | Symbols          | Туре                      | Definition                       |  |  |  |  |  |  |  |  |  |
|       | Stretching       |                           |                                  |  |  |  |  |  |  |  |  |  |
| 1-3   | R <sub>i</sub>   | N-C                       | $N_1-C_2, N1-C_6$                |  |  |  |  |  |  |  |  |  |
|       | R <sub>i</sub>   | N-H                       | N1-H7                            |  |  |  |  |  |  |  |  |  |
| 4-7   | $\mathbf{P}_{i}$ | C-C                       | C2 - C3, C2 - C8, C2 - C12, C3 - |  |  |  |  |  |  |  |  |  |
|       |                  |                           | C4                               |  |  |  |  |  |  |  |  |  |
| 8-9   | Qi               | C-H <sub>(aromatic)</sub> | C3 - H16, C3 - H17               |  |  |  |  |  |  |  |  |  |
| 10    | Pi               | C-C                       | C4 - C5                          |  |  |  |  |  |  |  |  |  |
| 11    | Ri               | C-N                       | C4 - N18                         |  |  |  |  |  |  |  |  |  |
| 12    | Qi               | C-H                       | C4 - H19                         |  |  |  |  |  |  |  |  |  |
| 13    | Pi               | C-C                       | C5 - C6                          |  |  |  |  |  |  |  |  |  |
| 14-15 | Qi               | C-H <sub>(aromatic)</sub> | C5 - H22, C5 - H23               |  |  |  |  |  |  |  |  |  |
| 16-17 | Pi               | C-C                       | C6 - C24, C6 - C28               |  |  |  |  |  |  |  |  |  |
| 18-23 | Qi               | C-H <sub>(me 1)</sub>     | C8 - H9, C8 - H10, C8 - H11,     |  |  |  |  |  |  |  |  |  |
|       |                  | C-H <sub>(me 2)</sub>     | C12 - H13, C12 - H14, C12 - H15  |  |  |  |  |  |  |  |  |  |
| 24-25 | R <sub>i</sub>   | N-H                       | N19 - H20, N19 - H21             |  |  |  |  |  |  |  |  |  |
| 26-31 | Qi               | C-H <sub>(me 3)</sub>     | C24 - H25, C24 - H26, C24 - H27  |  |  |  |  |  |  |  |  |  |
|       |                  | C-H(me 4)                 | C28 - H29, C28 - H30, C28 - H31  |  |  |  |  |  |  |  |  |  |
|       |                  | In-pla                    | ne bending                       |  |  |  |  |  |  |  |  |  |

|         |                | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32      | $\beta_i$      | CNC <sub>(ring)</sub>      | C2 - N1 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 33-34   | $\alpha_{i}$   | CNH                        | C2 - N1 - H7,C6 - N1 - H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35      | β <sub>i</sub> | NCC <sub>(ring)</sub>      | N1 - C2 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 36-37   | α              | NCC                        | N1 - C2 - C8, N1 - C2 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38-39   | α;             | CCC                        | C3 - C2 - C8.C3 - C2 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40-41   | β.             | CCC                        | $C_{8} - C_{2} - C_{12} - C_{2} - C_{3} - C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 42.46   | P1             | CCU                        | $C_{12}^{2} = C_{12}^{2} + C_{$ |
| 42-40   | α <sub>i</sub> | CCn <sub>(aromatic)</sub>  | $C_2 - C_3 - H10, C_2 - C_3 - H17, C_4 - C_2 - C_5 - H17, C_4 - C_2 - C_2 - C_3 - H17, C_4 -$ |
|         |                |                            | 3С -н10,С4 - С3 -н17, н10 -С3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                |                            | HI7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47      | $\beta_i$      | CCC <sub>(ring)</sub>      | C3 - C4 - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 48-52   | $\alpha_i$     | CCH, CCN                   | C3 -C4 -H18,C3 -C4 -N19,C5 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                |                            | - H18,C5 -C4 - N19,H18 -C4 -N19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53      | βi             | CCC <sub>(ring)</sub>      | C4 - C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 54-58   | α;             | CCH <sub>(aramatia</sub> ) | C4 -C5 -H22.C4 - C5 - H23.C6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 1              | (aromatic)                 | C5-H22 C6 -C5 - H23 H22 -C5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |                            | Н23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 50      | Q              | NCC                        | N1 C6 C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39      | p <sub>i</sub> | NCC <sub>(ring)</sub>      | NI - C0 - C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 60-64   | $\alpha_i$     | NCC                        | NI -C6 -C24,NI -C6 -C28,C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                |                            | <u>- C24,C5-C6 -C28,C24 -C6 - C28</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65-67   | α <sub>i</sub> | CCH <sub>3(me 1)</sub>     | C2 - C8 - H9,C2 - C8 - H10,C2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                | HCH                        | C8 - H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 68-70   | α              |                            | H9 - C8 - H10, H9 - C8 - H11,H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 1              |                            | - C8 - H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 71-73   | a.             | CCH <sub>2</sub>           | $C_{2}^{2} - C_{12}^{12} - H_{13}^{13} - C_{2}^{2} - C_{12}^{12} - H_{14}^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /1-/5   | u <sub>1</sub> |                            | $C_2 = C_{12} = 1115, C_2 = C_{12} = 1114,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7476    | 0              | nen                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /4-/6   | p <sub>i</sub> |                            | H13 - C12 - H14,H13 - C12 - H15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                |                            | H14 - C12 - H15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77-79   | $\beta_i$      | NH <sub>2(aromatic)</sub>  | C4 - N19 - H20,C4 - N19 - H21,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                |                            | H20-N19-H21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 80-82   | $\beta_i$      | CCH <sub>3(me 3)</sub>     | C6 - C24 - H25, C6 - C24 - H26,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                | HCH                        | С6 - С24 - Н27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 83-85   | β;             |                            | H25 - C24 - H26, H25 - C24 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 11             |                            | H27, H26 - C24 - H27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 86-88   | ß.             | CCH                        | C6 - C28 - H29 - C6 - C28 - C6 - C28 - C   |
| 00-00   | $P_1$          | CCI13(me 4)                | H30 C6 - C28 - H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 80.01   | Q              | UCU                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 89-91   | $p_i$          | псп                        | 129 - C28 - H30, H29 - C28 - H31,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                |                            | H30 - C28 - H31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92-93   |                | CNH                        | C4-N1-H21, C4-N1-H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | -              | Out-of-p                   | plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 94-95   | $\tau_{i}$     | $C(CH_3)_{2(1)}$           | (C6,H7)N1-C2-C3(C8, C12), (C2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |                |                            | H7)-N1-C6-(C5, C24, C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 96      | τ;             | $CH_{2(1)}$                | (N1, C8,C12)-C2-C3-(C4, H16,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 1              | 2(1)                       | H17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 97      | <i>τ</i> .     | CHart                      | (N1 C3 C12)-C2-C8-(H9 H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ,,      | •1             | 0113(1)                    | H11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 08      | -              | СЦ                         | (N1 C2 C2) C2 C12 (U12 U14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 90      | $\iota_i$      | $C\Pi_{3(2)}$              | $(N1, C3, C6)$ - C2-C12-( $\Pi13, \Pi14, U15$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                | 0.111                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99      | $\tau_i$       | CNH                        | (C2, H16, H17)- C3-C4-(C5, H18,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                |                            | N19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100     | $\tau_i$       | NH <sub>2</sub>            | (C3, C5, H18)-C4-N19-(H20, H21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101     | τ <sub>i</sub> | $C(CH_3)_{2(2)}$           | (C4, H22, H23)-C5-C6-(N1, C24,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | •              | ( 3)2(2)                   | C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 102     | τ:             | CH <sub>2</sub> (2)        | (N1 C5 C28)-C6-C24-(H25 H26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 102     | -1             |                            | H27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 102     | <b>.</b>       | СЧ                         | (N1 C5 C24) C6 C29 (U20 U20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 105     | ι <sub>i</sub> | Uf1 <sub>3(4)</sub>        | $(111, C3, C24)-C0-C20-(\Pi 29, \Pi 30, \Pi 21)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 104 100 |                | D.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 104-109 | $\tau_i$       | Ring                       | Co-N1-C2-C3, N1-C2-C3-C4, C2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                |                            | C3-C4-C5, C3-C4-C5-C6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                |                            | C4-C5-C6-N1, C5-C6-N1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Table 4: | Definition                      | of local symmetry coordinates of ATMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.      | Туре                            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                 | Stretching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1-3      | C-N                             | $R_1, R_2, R_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4-11     | C-C                             | $O_{4}, O_{5}, O_{6}, O_{7}, O_{10}, O_{12}, O_{16}, O_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12       | N-H                             | $R_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13-17    | СН                              | Ro Ro Reg Reg Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18 20    |                                 | $(0, \pm 0, \pm 0)/2$ $(0, 0, 0)/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10-20    | $C\Pi_{3(me 1)}$                | $(Q_{18}^+Q_{19}^+Q_{20})/\sqrt{3}, (Q_{18}^-Q_{19}^-Q_{20})/\sqrt{3}, (Q_{18}^-Q_{19}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20}^-Q_{20$ |
| 21.22    | CU                              | $(Q_{19}-Q_{20})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 21-23    | $CH_{3(me 2)}$                  | $(Q_{21}+Q_{22}+Q_{23})/\sqrt{3}, (Q_{21}-Q_{22}-Q_{23})/\sqrt{6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24       | NUL                             | $(Q_{22}-Q_{23})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 24       | NH <sub>2</sub> ss              | $(R_{24}+R_{25})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25       | NH <sub>2</sub> ass             | $(R_{24}-R_{25})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 26-28    | CH <sub>3(me 3)</sub>           | $\begin{array}{c} (\mathrm{Q}_{26} + \mathrm{Q}_{27} + \mathrm{Q}_{28}) / \sqrt{3}, (\mathrm{Q}_{26} - \mathrm{Q}_{27} - \mathrm{Q}_{28}) / \sqrt{6}, \\ (\mathrm{Q}_{27} - \mathrm{Q}_{28}) / \sqrt{2} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 29-31    | CH <sub>3(me 4)</sub>           | $(Q_{29}+Q_{30}+Q_{31})/\sqrt{3}, (Q_{29}-Q_{30}-Q_{31})/\sqrt{6},$<br>$(Q_{29}-Q_{31})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                 | In-plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22       | CNH                             | $(\alpha, \alpha)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32       | CNI                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 33       | C (CII)                         | $a_{36} + a_{37} + a_{38} + a_{39}, a_{36} + a_{37} + a_{38} - a_{39}, a_{36} + a_{37} - a_{36} + a_{37} - a_{38} + a_{39} + a_{36} + a_{37} + a_{38} + a_{39} + a_{$                                                                         |
| 26       | $C-(CH_3)_2$                    | α <sub>38</sub> -α <sub>39</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 36       | OII (1)                         | $\alpha_{42} + \alpha_{43} + \alpha_{44} + \alpha_{45}, \alpha_{42} - \alpha_{43} + \alpha_{44} - \alpha_{45}, \alpha_{42} + \alpha_{43} - \alpha_{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $CH_2(1)$                       | α <sub>44</sub> -α <sub>45</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 39       | CCN,                            | $\alpha_{48} + \alpha_{49} + \alpha_{50} + \alpha_{51}$ , $\alpha_{48} - \alpha_{49} + \alpha_{50} - \alpha_{51}$ , $\alpha_{48} + \alpha_{49} - \alpha_{51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | CCH                             | $\alpha_{50}$ - $\alpha_{51}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 42       |                                 | $\alpha_{54}+\alpha_{55}+\alpha_{56}+\alpha_{57}, \alpha_{54}-\alpha_{55}+\alpha_{56}-\alpha_{57}, \alpha_{54}+\alpha_{55}-\alpha_{57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | CH <sub>2</sub> (2)             | $\alpha_{56}$ - $\alpha_{57}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45       |                                 | $\alpha_{60} + \overline{\alpha_{61} + \alpha_{62} + \alpha_{63}}, \alpha_{60} - \alpha_{61} + \alpha_{62} - \alpha_{63}, \alpha_{60} + \alpha_{61} - \alpha_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | $C-(CH_3)_2$                    | $\alpha_{62}$ - $\alpha_{63}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 48       | (C-                             | 02 0 <u>0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | CH <sub>3</sub> ) <sub>Sh</sub> | $(-\alpha_{65}-\alpha_{66}-\alpha_{67}+\alpha_{68}+\alpha_{69}+\alpha_{70})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 49       | CH2:-1                          | $(-\alpha_{c9}-2\alpha_{c9}-\alpha_{70})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 50       | CH <sub>2</sub>                 | (-q <sub>68</sub> 2a <sub>69</sub> a <sub>70</sub> )/ (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 51       | CH.                             | $(a_{68} a_{70})/(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 52       |                                 | $(-u_{65+2}u_{66}-u_{67})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 52       | СП <sub>3opr</sub>              | (\u03c4 <sub>65</sub> -\u03c4 <sub>67</sub> )/\\0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 55       | (C-                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <i></i>  | $CH_3)_{Sb}$                    | $(-\alpha_{71}-\alpha_{72}-\alpha_{73}+\alpha_{74}+\alpha_{75}+\alpha_{76})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 54       | CH <sub>3ipb</sub>              | $(-\alpha_{74}-2\alpha_{75}-\alpha_{76})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 55       | CH <sub>3opb</sub>              | $(-\alpha_{74}-\alpha_{76})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56       | CH <sub>3ipr</sub>              | $(-\alpha_{71}+2\alpha_{72}-\alpha_{73})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 57       | CH <sub>3opr</sub>              | $(\alpha_{71}-\alpha_{73})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58       | NH <sub>2rock</sub>             | $(\alpha_{77}-\alpha_{78})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 59       | NH <sub>2wag</sub>              | $(\alpha_{77}+\alpha_{78})/\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 60       | NH <sub>2sciss</sub>            | $(2\alpha_{79}-\alpha_{77}-\alpha_{78})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 61       | C-CH <sub>3 Sh</sub>            | $(-\alpha_{80}-\alpha_{81}-\alpha_{82}+\alpha_{83}+\alpha_{84}+\alpha_{85})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 62       | CH3inh                          | $(-\alpha_{83}-2\alpha_{84}-\alpha_{85})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63       | CH2                             | $(-\alpha_{02}-\alpha_{05})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 64       | CHa                             | $(-q_{82}+2q_{21}-q_{22})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 65       | CH <sub>2</sub>                 | $(\alpha_{00}, 2\alpha_{01}, \alpha_{02})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 66       | C CH                            | $(u_{80}-u_{82})/v_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00       |                                 | $(-u_{86}-u_{87}-u_{88}+u_{89}+u_{90}+u_{91})/\sqrt{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0/       | CI13ipb                         | $(-\alpha_{89}-2\alpha_{90}-\alpha_{91})/VO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 68       | CH <sub>3opb</sub>              | $(-\alpha_{89}-\alpha_{90})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 69       | CH <sub>3ipr</sub>              | $(-\alpha_{86}+2\alpha_{87}-\alpha_{88})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70       | CH <sub>3opr</sub>              | $(\alpha_{86}-\alpha_{88})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 71       | R <sub>trigd</sub>              | $(\beta_{32}-\beta_{35}+\beta_{41}-\beta_{47}+\beta_{53}-\beta_{59})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 72       | R <sub>symd</sub>               | $(-\beta_{32}-\beta_{35}+\beta_{41}-\beta_{47}-\beta_{53}+\beta_{59})/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 73       | Rassymd                         | $(\beta_{32}-\beta_{35}+\beta_{41}-\beta_{47})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 74       |                                 | $(\alpha_{92}-\alpha_{93})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          |                                 | Out-of-plane bending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 75-77    | $CC_{2}(1)$                     | τ <sub>04</sub> τ <sub>95</sub> τ <sub>0101</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 78       | $CH_{2}(1)$                     | τος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 79-82    | $CH_{2}(1)$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 83       | CNH                             | $\tau_{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8/       | NH                              | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 04       | τ<br>1112                       | (7 7 7 7 7 7 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.5      | •Rtrigd                         | $(\iota_{104} - \iota_{105} + \iota_{106} - \iota_{107} + \iota_{108} - \iota_{109})/\sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 00       | u <sub>Rsymd</sub>              | $(\iota_{104}-\iota_{105}+\iota_{108}-\iota_{109})/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8/       | $\tau_{Rassymd}$                | $(-\tau_{104}-\tau_{105}-\tau_{106}-\tau_{107}+\tau_{108}-\tau_{109})/\sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

The title molecule ATMP under consideration possesses four CH<sub>3</sub> groups. These are split in to two CH<sub>3</sub> group are in second position of piperidine ring and two CH<sub>3</sub> group are in 6 position of piperidine ring. The important vibrational modes of this moiety is (C-(CH<sub>3</sub>)<sub>2</sub> stretching and methyl deformation. Methyl groups are generally referred to as electron donating substituents in the aromatic ring system [35,36]. Absorption arising from C-H stretching in methyl group lies in the region 3000 - 2840 cm<sup>-1</sup>. Normally the asymmetric stretching vibrations ( $\nu$  CH<sub>3</sub>ass) are found at 2962 cm<sup>-1</sup> and that of symmetric stretching vibrations at 2873 cm<sup>-1</sup> [37, 38]. Here the CH<sub>3</sub> symmetric stretching bands appear at 2851 cm<sup>-1</sup> and that of asymmetric as 2920 cm<sup>-1</sup>(PED 94%) in FT Raman. The lowering of the wavenumbers from the normal values is due to the intramolecular charge transfer (ICT) from thetetramethyl group to the aromatic ring. The change in intensity of the CH<sub>3</sub> stretching mode is also due to the influence of electronic effects resulting from hyperconjugation of methyl group and aromatic ring system. This can point to change in polarizability dipolemoment due to and electron delocalization. Thus the hyperconjugation of methyl group, causing changes in intensity in Raman, clearly indicates that methyl hydrogen is directly involved in the donation of electronic charge. Of CH<sub>3</sub> deformation frequencies [38,39], there are four asymmetric bending vibrations observed in the region 1470-1420 cm<sup>-1</sup> and a symmetric bending vibration near 1360 cm<sup>-1</sup>. Hence, in the present investigation, the weak FT Raman band at 1480 cm<sup>-1</sup>(PED%) and medium strong FTIR band at 1430 cm<sup>-1</sup> (PED%) have been assigned to asymmetric and symmetric deformation with major contribution to  $\nu(CC)$  of CH<sub>3</sub>group. The relatively large value of IR and Raman intensity of the asymmetric and symmetric bending mode suggests a large positive charge localized on hydrogen, which further supports the presence of hyper conjugation [39]. These fundamentals are good agreement with the calculated values at 1499, 1470, 1459 cm<sup>-1</sup> and 1463, 1450, 1444 cm<sup>-1</sup> by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods, respectively. The rocking modes of the CH<sub>3</sub> groups are expected to appear in the region 1070-1010 cm<sup>-1</sup>. The very intense band at 1156, 1096, 1076 cm<sup>-1</sup> (Raman) and 1168, 1136, 1097 cm<sup>-1</sup>(IR) are assigned to CH<sub>3</sub> rocking modes in ATMP. The relatively large value of intensity in IR and Raman wavenumbers of suggests the the rocking modes presence of hyperconjugation. The scissoring and torsion vibrations are identified below 800 cm<sup>-1</sup> which is supported by the computed wavenumbers. The C-N stretching modes and other structural modes have also been identified.

#### Ethyl(cyclohexane) vibration

The CH<sub>2</sub> interacts with nearby  $\pi$  –systems via hyperconjugation, while the NH<sub>2</sub> share its lone pair of electrons with the  $\pi$ -electrons in a ring. This mechanism implies electronic delocalization is taken into account by the molecular orbital approach. The CH<sub>2</sub> group gives rise to six internal modes of vibrations such as the asymmetric stretching, symmetric stretching, the symmetric planar deformation or scissoring, the antisymmetric planar deformation or wagging and the anti-symmetric non-planar deformation or torsion. The molecule under investigation possesses two CH<sub>2</sub> group and hence one can expect two symmetric and two asymmetric C-H stretching vibrations. It is stated that in cyclohexane, the C-H stretching vibrations occur in the region 3000-2800 cm<sup>-1</sup>. The asymmetric  $-CH_2$  stretching vibration appears from 3000 to 2900 cm<sup>-1</sup> and the symmetric  $-CH_2$  stretching is observed in the range 2900-2800 cm<sup>-1</sup> [40].

The antisymmetric stretching mode is calculated at the wavenumber 2883, 2882 cm<sup>-1</sup> than the symmetric one at 2881, 2880 cm<sup>-1</sup> by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods respectively. The deformation mode of the CH2 group appears in the region around 1470 cm<sup>-1</sup> [41]. The calculated frequency for the scissoring mode of CH2 is 1458, 1448 and 1443, 1428 cm<sup>-1</sup> by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods, respectively. This mode is also coupled with ring stretching mode as shown in Table 5. The observed medium strong band at 1192 cm<sup>-1</sup> in IR spectrum is attributed to the appreciable contribution from the C-H in plane bending suggests its origin due to the wagging mode. The theoretically predicted frequency by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods, respectively at 861, 889 and 889, 814 cm<sup>-1</sup>.

#### C-C and C-N vibrations

Most of the ring vibrational modes are affected by the substitutions in the ring of the title molecule. The characteristic ring stretching vibrations are assigned in the region 1650-1300 cm<sup>-1</sup> [42, 43]. The C-C stretching vibrations of ATMP are found in the range 1360 cm<sup>-1</sup> and 1240 cm<sup>-1</sup> in Raman spectrum. The theoretically computed values for C-C vibrational modes by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods give excellent agreement with the experimental data. The C-C in plane bending vibrations are assigned in the region  $\sim 550-300$  cm<sup>-1</sup>. On account of the heavy substitution on the ring these vibrations have shifted to lower frequencies from their usual range, making assignment difficult. In ATMP, the medium FT Raman band observed at 317, 294, 274 cm<sup>-1</sup>(PED %) without corresponding FTIR band is assigned to C-C in plane bending vibration. The weak FTIR band at 424 cm<sup>-1</sup> and very weak FT Raman band identified at 432 cm<sup>-1</sup> for ATMP have been assigned to ring out-of-plane vibrations. The scaled values by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods predict at 460, 444, 389 and 455, 421, 396 cm<sup>-1</sup> are show good agreement with experimentally recorded spectra.Weak to medium intensity bands for unconjugated C-N bond in primary, secondary and tertiary aliphatic amines occur in the region of 1000-1250 cm<sup>-1</sup>. They are due to coupled C-N stretching modes. The position of the bands in this region depends on the nature of the amine and the pattern of substitution on the  $\alpha$ -carbon atom. Aromatic amines show strong C-N stretching bands at higher frequencies, 1260-1340 cm<sup>-1</sup> than the corresponding bands of aliphatic amines since the C-N bond order is increased due to conjugation with the ring [44]. Hence, in the present investigation, the FTIR band at 1264 and 1260 cm<sup>-1</sup> (PED %) have been assigned to C-N stretching modes. These fundamentals are good agreement with the calculated values at 1254, 1240  $\rm cm^{-1}$  and 1235, 1220  $\rm cm^{-1}$  by HF/ 6-311+G (d, p) and B3LYP/6-311+G (d, p) methods, respectively.

#### 4. Other molecular properties

#### Natural bond orbital analysis

The Natural Bond Orbital (NBO) calculation was performed using NBO 3.1 program implemented in the Gaussian 09W [11] package at the DFT/B3LYP6-311+G (d, p)) level of theory. NBO analysis transforms the calculated canonical delocalized DFT molecular orbitals (MOs) into localized molecular orbitals (MOs) that are closely tied to chemical bonding concepts. This process involves sequential transform of non-orthogonal atomic orbital's (AO's) to the sets of natural atomic orbital's (NAOs), natural hybrid orbital's (NHOs) and natural bond orbital's (NBOs). The localized basis set completely describes the wave functions in the most economic method, as electron density and other properties that are described by the minimal amount of filled NBO's. This non-covalent bonding and antibonding charge transfer interactions can be quantitatively described in terms of the second order perturbation interaction energy  $(E^{(2)})$ [45,46]. This energy represents the estimate of the off diagonal NBO Fock matrix elements. It can be deduced from the second-order perturbation approach [47] as follows:

$$E^{(2)} = -n_{\sigma} \frac{\langle \sigma | F | \sigma \rangle^2}{\varepsilon \sigma^* - \varepsilon_{\sigma}} = -n_{\sigma} \frac{F_{ij}^2}{\Delta E}$$

where  $\langle \sigma | F | \sigma \rangle^2$ , or  $F_{ij}^2$  is the Fock matrix elements between i and j NBO orbital,  $\varepsilon_{\sigma}$  and  $\varepsilon \sigma^*$  are the energies (diagonal elements) of  $\sigma$  and  $\sigma^*$  NBO's, and  $n_{\sigma}$  is the population of the donor  $\sigma$  obtained occupancy. Delocalization of the electron density (ED) between occupied Lewis type (bond (or) lone pair) NBO orbitals and formally unoccupied (antibond (or) Rydberg) non-Lewis NBO orbitals corresponds to a stabilizing donor-acceptor interaction. The corresponding results have been tabulated in Table 6. The NBO analysis also describes the bonding in terms of the natural hybrid occupancy (number of electron (or) "natural population" of the orbital). It is noted that the maximum energy occupancies 1.9872, 1.9798, 1.9796, 1.9795 electrons are obtained to  $BD(C_4-N_{19})$ ,  $BD(N_1-C_6)$ ,  $BD(N_1-H_7)$ ,  $BD(C_6-C_{24})$ , respectively. The sp compositions with considerable *p*-characters 78.22%, 69.49%, 77.70%, 74.46% are also tabulated in Table 6. Therefore, the results suggest that the C<sub>4</sub>-N<sub>19</sub>, N<sub>1</sub>-C<sub>6</sub>, N<sub>1</sub>-H<sub>7</sub>, C<sub>6</sub>-C<sub>24</sub>, bond lengths 1.48, 1.48, 1.02, 1.54 of ATMP are essentially controlled by the *p* -character of these hybrid orbital's.

**Table 7:** The second order perturbation energies E (2) (kcal /mol) corresponding to the most important charge transfer

| Interactions (donor –acceptor) of ATMP by DFT method. |               |                   |                 |                     |  |  |  |  |  |  |
|-------------------------------------------------------|---------------|-------------------|-----------------|---------------------|--|--|--|--|--|--|
| Donor NBO                                             | Acceptor NBO  | E(2) <sup>a</sup> | $E(j)-E(i)^{b}$ | F(i,j) <sup>c</sup> |  |  |  |  |  |  |
| (i)                                                   | (j)           | kcal/mol          | a.u.            | a.u.                |  |  |  |  |  |  |
| LP (N1)                                               | BD*(C2 - C12) | 7.17              | 0.67            | 0.063               |  |  |  |  |  |  |
| LP (N1)                                               | BD*(C6 - C24) | 6.84              | 0.66            | 0.061               |  |  |  |  |  |  |
| LP (N19)                                              | BD*(C2 - C3)  | 2.94              | 0.64            | 0.039               |  |  |  |  |  |  |
| LP (N19)                                              | BD*(C3 - C4)  | 3.4               | 0.61            | 0.041               |  |  |  |  |  |  |
| LP (N19)                                              | BD*(C4 - H18) | 1.57              | 0.6             | 0.028               |  |  |  |  |  |  |

**Table 5:** Vibrational assignments, infrared intensities, Raman activities and Raman intensity of ATMP based on HF and B31 VP/6-311+G\*\*

| Observed                                |                      |         |           |         | -1   | Redi | iced | For   | rce         |       | 2                 | Ran               | nan    | Rar     | nan                                     |                                    |  |  |
|-----------------------------------------|----------------------|---------|-----------|---------|------|------|------|-------|-------------|-------|-------------------|-------------------|--------|---------|-----------------------------------------|------------------------------------|--|--|
| frequenci                               | ies cm <sup>-1</sup> | Calcula | ated free | quencie | s cm | ma   | SS   | cons  | tant        | inter | sitv              | activ             | vitv   | inter   | nsitv                                   |                                    |  |  |
|                                         |                      |         |           | _       |      | (an  | nu)  | (mdvn | $eA^{-1}$ ) | (km)ı | nol <sup>-1</sup> | A <sup>0</sup> (a | mu)    | (km)1   | (km)mol <sup>-1</sup> Assignments/ (%PE |                                    |  |  |
| FTIR                                    | FT-                  | Unsc    | caled     | Sca     | led  |      | ,    |       | ,           |       |                   |                   |        |         | × /                                     |                                    |  |  |
|                                         | Raman                | а       | b         | а       | b    | а    | b    | а     | b           | а     | b                 | а                 | b      | а       | b                                       |                                    |  |  |
| 3360(ms)                                |                      | 3855    | 3562      | 3370    | 3353 | 1.09 | 1.09 | 8.17  | 9.52        | 0.05  | 2.61              | 71.55             | 25.43  | 6.86    | 4.02                                    | v NH2 ass(100)                     |  |  |
|                                         | 3310(w)              | 3777    | 3512      | 3292    | 3306 | 1.07 | 1.08 | 7.80  | 9.04        | 0.93  | 1.06              | 83.81             | 46.02  | 8.41    | 7.61                                    | v NHss(100)                        |  |  |
| 3288(ms)                                |                      | 3751    | 3485      | 3269    | 3280 | 1.05 | 1.06 | 7.51  | 8.75        | 1.06  | 0.26              | 157.00            | 104.41 | 16.2    | 17.70                                   | v NH2 ss(100)                      |  |  |
| 3000(vs)                                |                      | 3301    | 3157      | 2962    | 2960 | 1.09 | 1.09 | 6.42  | 7.00        | 7.30  | 49.05             | 39.33             | 47.97  | 5.50    | 11.05                                   | v CH3ass(99)                       |  |  |
|                                         |                      | 3272    | 3141      | 2946    | 2952 | 1.10 | 1.10 | 6.37  | 6.91        | 7.47  | 50.44             | 37.29             | 35.63  | 5.25    | 8.27                                    | v CH3ass(99)                       |  |  |
|                                         | 2920(s)              | 3239    | 3103      | 2906    | 2920 | 1.10 | 1.10 | 6.25  | 6.81        | 44.43 | 95.18             | 124.18            | 165.23 | 18.0    | 39.55                                   | ν CH3ass(96)                       |  |  |
|                                         |                      | 3236    | 3102      | 2899    | 2916 | 1.10 | 1.10 | 6.24  | 6.80        | 18.28 | 56.07             | 1.77              | 78.41  | 0.26    | 18.84                                   | v CH3ass(94)                       |  |  |
|                                         |                      | 3228    | 3078      | 2892    | 2893 | 1.10 | 1.10 | 6.14  | 6.77        | 85.82 | 1.75              | 189.79            | 11.46  | 28.3    | 2.82                                    | v CH3ass(93)                       |  |  |
|                                         |                      | 3226    | 3077      | 2890    | 2892 | 1.10 | 1.10 | 6.14  | 6.76        | 39.58 | 4.03              | 39.21             | 8.43   | 5.85    | 2.07                                    | v CH3ass(94)                       |  |  |
|                                         |                      | 3218    | 3065      | 2883    | 2881 | 1.10 | 1.10 | 6.10  | 6.70        | 20.42 | 76.22             | 58.37             | 161.77 | 8.80    | 40.20                                   | v CH2 ass(94)                      |  |  |
|                                         |                      | 3216    | 3064      | 2882    | 2880 | 1.10 | 1.10 | 6.09  | 6.70        | 22.72 | 54.67             | 32.53             | 26.33  | 4.91    | 6.55                                    | v CH2 ass(93)                      |  |  |
|                                         |                      | 3208    | 3057      | 2874    | 2873 | 1.10 | 1.10 | 6.07  | 6.65        | 36.43 | 8.71              | 53.94             | 27.71  | 8.20    | 6.94                                    | ν CH3 ss (96)+ CH2 SS              |  |  |
|                                         |                      | 3181    | 3054      | 2855    | 2870 | 1.10 | 1.07 | 6.06  | 6.39        | 5.11  | 43.93             | 17.33             | 398.15 | 2.64    | 100.0                                   | ν CH3 ss (89)+ CH2 SS              |  |  |
|                                         | 2851(vs)             | 3179    | 3026      | 2852    | 2848 | 1.05 | 1.08 | 5.69  | 6.44        | 1.52  | 52.30             | 642.36            | 135.16 | 100.0   | 34.67                                   | ν CH3 ss (94)+ CH2 SS              |  |  |
|                                         |                      |         |           |         |      |      |      |       |             |       |                   |                   |        |         |                                         | ν CH3 ss (94)+ CH2 SS              |  |  |
|                                         |                      | 3176    | 3021      | 2846    | 2839 | 1.05 | 1.06 | 5.63  | 6.29        | 115.1 | 75.66             | 6.65              | 28.26  | 1.04    | 7.31                                    | (42)                               |  |  |
|                                         |                      |         |           |         |      |      |      |       |             |       |                   |                   |        |         |                                         | v CH3 ss (91)+ CH2                 |  |  |
|                                         |                      | 3172    | 3017      | 2842    | 2836 | 1.05 | 1.06 | 5.61  | 6.30        | 70.59 | 28.31             | 106.23            | 28.75  | 16.7    | 7.46                                    | SS(43)                             |  |  |
|                                         |                      |         |           |         |      |      |      |       |             |       |                   |                   |        | • • • • |                                         | $\nu$ CH3 ss (93)+ CH2 SS          |  |  |
|                                         |                      | 3157    | 3015      | 2829    | 2834 | 1.05 | 1.04 | 5.62  | 6.13        | 0.11  | 47.58             | 24.71             | 97.27  | 3.90    | 25.29                                   | (55)                               |  |  |
|                                         |                      | 2150    | 2012      | 2020    | 2022 | 1.04 | 1.04 | 5.50  | 6 10        | 25 (2 | 21.06             | 0.02              | (5 11  | 1 4 1   | 17.05                                   | $\nu$ CH2 ss (95)+ CH2 SS          |  |  |
|                                         |                      | 3130    | 3013      | 2828    | 2832 | 1.04 | 1.04 | 5.50  | 0.10        | 33.03 | 31.80             | 8.93              | 05.44  | 1.41    | 17.05                                   | (45)                               |  |  |
|                                         |                      | 3146    | 3011      | 2810    | 2830 | 1.04 | 1.07 | 5 56  | 6 21        | 1 70  | 3 33              | 17 55             | 16.80  | 2 78    | 1 38                                    | V CH2 SS (93) + CH2 SS (43)        |  |  |
|                                         | 2750(vav)            | 3140    | 2027      | 2812    | 2850 | 1.04 | 1.07 | 5.50  | 6.17        | 74.64 | 1/ 68             | 120.00            | 26.18  | 2.78    | 7 35                                    | 25(45)<br>27 CH(00)                |  |  |
|                                         | 2739(VW)             | 5156    | 2921      | 2012    | 2155 | 1.08 | 1.00 | 5.47  | 0.17        | /4.04 | 14.00             | 129.90            | 20.10  | 22.1    | 1.55                                    | $\frac{V CH(99)}{NH2 sci(60)+CH2}$ |  |  |
| 1584(ms)                                |                      | 1801    | 1654      | 1614    | 1584 | 1.09 | 1.10 | 1.76  | 2.11        | 43.04 | 38.38             | 3.58              | 2.38   | 2.03    | 2.22                                    | sci(30)                            |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1480(w)              | 1673    | 1528      | 1499    | 1463 | 1.06 | 1.23 | 1.46  | 2.03        | 18.80 | 15.48             | 1.93              | 0.69   | 1.26    | 0.74                                    | CH3ad(61)                          |  |  |
| <u> </u>                                |                      | 1641    | 1527      | 1470    | 1450 | 1.19 | 1.06 | 1.64  | 1.68        | 10.66 | 8.91              | 1.56              | 0.17   | 1.04    | 0.19                                    | CH3 ad(57)                         |  |  |
|                                         |                      |         |           |         |      |      |      | 1     |             |       |                   |                   |        |         |                                         |                                    |  |  |

# Volume 5 Issue 9, September 2016

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

|           |          | 1627 | 1504 | 1458 | 1444 | 1.05 | 1.06 | 1.40 | 1.65 | 0.87  | 8.77  | 11.61 | 1.80  | 7.76  | 1.98        | CH3 ad(65)                    |
|-----------|----------|------|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------------|-------------------------------|
|           |          | 1627 | 1503 | 1458 | 1443 | 1.06 | 1.07 | 1.41 | 1.67 | 2.36  | 1.22  | 2.67  | 7.69  | 1.79  | 8.48        | CH2 sci(74)+v ring (40)       |
|           |          | 1616 | 1491 | 1448 | 1428 | 1.06 | 1.08 | 1.39 | 1.66 | 15.61 | 9.69  | 2.62  | 1.71  | 1.78  | 1.92        | CH2 sci(71)+v ring (33)       |
| 1444(s)   |          | 1615 | 1487 | 1447 | 1427 | 1.05 | 1.07 | 1.37 | 1.64 | 1.10  | 1.72  | 6.19  | 10.56 | 4.22  | 11.87       | CH3opr(51)                    |
|           |          | 1612 | 1487 | 1444 | 1427 | 1.06 | 1.05 | 1.38 | 1.61 | 3.32  | 1.58  | 3.82  | 12.95 | 2.61  | 14.56       | CH3opr(65)                    |
|           |          | 1605 | 1482 | 1438 | 1423 | 1.11 | 1.05 | 1.44 | 1.60 | 0.23  | 1.89  | 3.90  | 1.36  | 2.67  | 1.54        | CH3opr(58)                    |
| 1430(ms)  |          | 1602 | 1478 | 1435 | 1419 | 1.08 | 1.08 | 1.38 | 1.63 | 0.31  | 0.29  | 0.95  | 0.29  | 0.65  | 0.33        | CH3sd(78)                     |
| 1430(ms)  |          | 1599 | 1472 | 1433 | 1413 | 1.07 | 1.07 | 1.37 | 1.61 | 6.50  | 5.22  | 16.08 | 8.52  | 11.1  | 9.74        | CH3sd(67)                     |
| 1100(110) |          | 1590 | 1467 | 1425 | 1405 | 1.09 | 1.08 | 1.38 | 1.61 | 8.67  | 2.81  | 2.44  | 3.33  | 1.71  | 3.84        | CH3sd(48)                     |
|           |          | 1560 | 1420 | 1398 | 1360 | 1.05 | 1 30 | 1.30 | 1.86 | 8.22  | 9.04  | 1.04  | 3.69  | 0.77  | 4 50        | CH3sd(77)                     |
|           |          | 1548 | 1411 | 1387 | 1354 | 1 33 | 1 26 | 1.56 | 1 77 | 29.82 | 6.81  | 1.46  | 0.99  | 1.09  | 1.22        | CH3opr(70)                    |
| 1360(vs)  |          | 1539 | 1403 | 1381 | 1344 | 1 44 | 1 24 | 1.67 | 1 73 | 0.27  | 19.93 | 0.72  | 1 10  | 0.54  | 1.37        | $\nu CC(55)$                  |
| 1000(10)  |          | 1531 | 1402 | 1372 | 1343 | 1 31 | 1 38 | 1 51 | 1 91 | 1.06  | 15 52 | 0.66  | 1 13  | 0.50  | 1 41        | C-CH3 opd (60)                |
|           |          | 1521 | 1392 | 1363 | 1333 | 1.23 | 1.27 | 1.01 | 1.73 | 30.29 | 1 07  | 0.33  | 0.11  | 0.25  | 0.14        | C-CH3 opd(57)                 |
|           |          | 1515 | 1386 | 1357 | 1328 | 1.25 | 1.52 | 1 41 | 2.06 | 0.05  | 4.82  | 0.09  | 2.13  | 0.07  | 2 70        | C-CH3 opd(61)                 |
|           | 1312(vw) | 1502 | 1379 | 1347 | 1320 | 1 69 | 1 39 | 1.89 | 1.85 | 18.95 | 0.72  | 1.88  | 0.72  | 1 46  | 0.92        | C-CH3opd(58)                  |
|           | 1312(vw) | 1456 | 1361 | 1306 | 1303 | 1.65 | 1 48 | 1.60 | 1.85 | 1 31  | 1.89  | 1.50  | 3.97  | 1 19  | 5.20        | CH2  twist  (48)              |
| 1295(ms)  | 1512(10) | 1450 | 1322 | 1301 | 1267 | 1 23 | 1.10 | 1.00 | 2.04 | 3 54  | 10.26 | 5 42  | 635   | 4 51  | 8 71        | $CH2 \ twist(52)$             |
| 1290(110) | 1264(vw) | 1398 | 1290 | 1254 | 1235 | 2.87 | 2.03 | 2.82 | 2 33 | 10 54 | 64 87 | 11 16 | 1 35  | 9.69  | 1.93        | $\nu CN(55)$                  |
|           | 1240(w)  | 1382 | 1274 | 1240 | 1220 | 1.77 | 2.54 | 1.69 | 2.86 | 39.39 | 34.54 | 1.09  | 9.41  | 0.97  | 13.73       | ν CN(58)                      |
| 1213      | 1210(11) | 1358 | 1239 | 1241 | 1228 | 1.75 | 2.60 | 1.58 | 2.83 | 5.00  | 20.66 | 5.73  | 8.13  | 5.02  | 11.74       | NH2 wag(45)                   |
|           |          | 1000 |      |      |      |      |      | 1.00 | 05   | 2.00  | 00    | 2.75  | 0.10  | 2.02  | * * • /   ſ | CH2 wag (48) + CH ind         |
| 1192(ms)  | 1204(vw) | 1332 | 1218 | 1217 | 1207 | 2.84 | 2.44 | 2.48 | 2.55 | 1.40  | 3.71  | 1.04  | 2.29  | 0.94  | 3.40        | (28)                          |
|           | 1180(w)  | 1327 | 1200 | 1213 | 1189 | 2.78 | 2.45 | 2.35 | 2.55 | 42.42 | 1.03  | 15.73 | 1.76  | 14.5  | 2.68        | CH2 wag (38)                  |
| 1168(ms)  |          | 1270 | 1191 | 1199 | 1180 | 1.87 | 1.89 | 1.57 | 1.79 | 0.00  | 3.12  | 2.42  | 3.25  | 2.26  | 5.00        | CH3ipr (45)                   |
| 1136(w)   | 1156(vw) | 1253 | 1159 | 1183 | 1149 | 1.60 | 1.30 | 1.27 | 1.21 | 42.60 | 23.20 | 5.66  | 5.81  | 5.52  | 9.33        | CH3ipr (61)                   |
| 1097(ms)  | 1096(vw) | 1220 | 1120 | 1152 | 1110 | 1.59 | 1.60 | 1.17 | 1.41 | 4.69  | 6.47  | 2.76  | 3.35  | 2.84  | 5.68        | CH3ipr (57)                   |
| 1054(w)   | 1072(vw) | 1180 | 1076 | 1114 | 1067 | 1.79 | 1.69 | 1.22 | 1.38 | 4.07  | 4.02  | 4.60  | 7.25  | 5.03  | 13.07       | CH3ipr (63)                   |
|           | 1036(vw) | 1160 | 1042 | 1095 | 1033 | 1.76 | 1.69 | 1.13 | 1.34 | 0.00  | 13.23 | 5.01  | 6.37  | 5.76  | 12.07       | ν CN(62)                      |
| 1012(ms)  |          | 1127 | 1032 | 1062 | 1023 | 1.78 | 2.04 | 1.12 | 1.52 | 6.73  | 11.18 | 1.32  | 0.23  | 1.54  | 0.44        | ν CC(61)                      |
| 1000(w)   |          | 1109 | 1024 | 1047 | 1015 | 1.44 | 1.41 | 0.89 | 1.02 | 1.21  | 2.21  | 1.22  | 0.83  | 1.44  | 1.61        | ν CC(62)                      |
|           |          | 1104 | 1013 | 1042 | 1004 | 1.44 | 1.36 | 0.87 | 0.97 | 0.68  | 0.64  | 0.61  | 0.81  | 0.73  | 1.60        | CH3 ipd(33)                   |
|           | 990(vw)  | 1075 | 1001 | 1015 | 992  | 1.71 | 1.88 | 1.01 | 1.28 | 5.21  | 2.82  | 3.70  | 3.76  | 4.52  | 7.57        | ν CC(85)                      |
|           | 945(w)   | 1017 | 960  | 960  | 952  | 2.11 | 1.49 | 1.14 | 0.91 | 4.73  | 1.31  | 2.79  | 1.93  | 3.63  | 4.14        | ν CC(88)                      |
| 916(w)    | 922(w)   | 1011 | 933  | 955  | 925  | 1.48 | 1.63 | 0.76 | 0.98 | 7.82  | 2.30  | 3.93  | 8.07  | 5.34  | 18.05       | NH2 rock(44) +ring(25)        |
|           | 922(w)   | 1007 | 923  | 950  | 915  | 1.48 | 1.48 | 0.75 | 0.88 | 0.64  | 0.07  | 6.13  | 6.76  | 8.46  | 15.37       | Ring(30)                      |
| 892(ms)   | 899(w)   | 981  | 909  | 926  | 901  | 2.25 | 2.12 | 1.10 | 1.20 | 0.69  | 2.94  | 0.62  | 6.87  | 0.88  | 15.98       | Ring(32)                      |
|           |          | 979  | 906  | 877  | 898  | 1.73 | 1.93 | 0.84 | 1.09 | 24.14 | 6.90  | 11.85 | 0.60  | 16.8  | 1.40        | b CNH(42)                     |
|           |          | 961  | 897  | 861  | 889  | 2.20 | 2.00 | 1.04 | 1.09 | 1.83  | 12.47 | 2.96  | 0.73  | 4.26  | 1.73        | CH2 rock(75)                  |
|           |          | 920  | 882  | 824  | 874  | 1.77 | 1.54 | 0.81 | 0.77 | 0.00  | 88.46 | 1.52  | 1.50  | 2.24  | 3.65        | CH2 rock(75)                  |
| 823       |          | 884  | 840  | 814  | 798  | 1.80 | 2.17 | 0.75 | 1.00 | 44.48 | 52.10 | 1.29  | 2.75  | 2.18  | 7.64        | Ring(32)                      |
| 770       | 785(ms)  | 849  | 784  | 801  | 777  | 2.89 | 3.22 | 1.05 | 1.37 | 41.76 | 2.68  | 4.53  | 6.24  | 7.94  | 18.03       | twist CH3(80)                 |
|           |          | 811  | 765  | 766  | 700  | 3.10 | 2.97 | 1.07 | 1.15 | 0.40  | 0.31  | 0.45  | 0.61  | 0.92  | 2.05        | b CCC(61)                     |
| 660       | 705(vw)  | 782  | 677  | 738  | 705  | 1.86 | 1.80 | 0.50 | 0.65 | 52.34 | 77.64 | 2.68  | 5.30  | 5.41  | 17.63       | twist CH3(85)                 |
| 633       | 580(vs)  | 669  | 649  | 632  | 594  | 3.78 | 3.34 | 0.94 | 0.88 | 13.73 | 7.76  | 20.34 | 19.65 | 52.54 | 83.64       | twist CH3 (81)                |
|           | 523(w)   | 564  | 537  | 533  | 532  | 2.96 | 2.83 | 0.50 | 0.53 | 4.32  | 1.84  | 6.84  | 3.86  | 20.72 | 19.27       | twist CH3(66)                 |
| 505       |          | 562  | 520  | 530  | 515  | 2.83 | 2.87 | 0.45 | 0.53 | 4.62  | 6.64  | 1.49  | 3.16  | 4.73  | 16.54       | twist CNH(63)                 |
| 464       | 477(vw)  | 505  | 467  | 477  | 463  | 1.70 | 1.71 | 0.22 | 0.26 | 21.29 | 15.99 | 0.25  | 0.41  | 0.93  | 2.51        | ν CH(81)                      |
|           |          | 499  | 459  | 460  | 455  | 2.14 | 2.23 | 0.27 | 0.33 | 0.00  | 0.92  | 0.10  | 0.16  | 0.38  | 1.00        | $\gamma \text{ CCC ring}(67)$ |
| 424(w)    | 432(vw)  | 470  | 425  | 444  | 421  | 2.10 | 2.05 | 0.22 | 0.27 | 0.22  | 6.35  | 0.05  | 0.06  | 0.21  | 0.42        | $\gamma$ CCC ring(65)         |
|           |          | 434  | 400  | 389  | 396  | 1.90 | 1.92 | 0.18 | 0.21 | 0.55  | 0.06  | 0.21  | 0.52  | 0.98  | 4.02        | $\gamma$ CCC ring(61)         |
|           | 374(w)   | 381  | 357  | 360  | 374  | 2.39 | 2.67 | 0.18 | 0.23 | 1.03  | 0.33  | 1.75  | 2.10  | 8.94  | 17.69       | C-CH3 sci(45)                 |
|           | 352(w)   | 376  | 353  | 355  | 349  | 2.97 | 2.89 | 0.22 | 0.24 | 3.03  | 3.11  | 1.61  | 1.60  | 9.15  | 14.98       | b CNC(41)                     |
|           | 317(w)   | 353  | 323  | 333  | 320  | 3.54 | 1.66 | 0.22 | 0.12 | 1.02  | 0.45  | 1.34  | 0.12  | 8.71  | 1.29        | βb CCC(77)                    |
|           | 294(vw)  | 346  | 319  | 327  | 316  | 2.31 | 2.11 | 0.14 | 0.15 | 0.42  | 1.01  | 1.30  | 0.91  | 8.62  | 9.94        | βb CCC(72)                    |
|           | 294(vw)  | 339  | 312  | 320  | 309  | 1.37 | 2.43 | 0.08 | 0.17 | 2.58  | 0.67  | 0.21  | 1.14  | 1.44  | 12.90       | C-CH3 $sci(47)$               |
|           | 294(vw)  | 310  | 283  | 293  | 281  | 1.11 | 1.13 | 0.05 | 0.06 | 26.46 | 0.22  | 0.40  | 0.01  | 3.19  | 0.13        | twist NH2 (85)                |
|           | 272(vw)  | 273  | 274  | 273  | 272  | 1.16 | 1.61 | 0.05 | 0.07 | 2.42  | 2.36  | 0.19  | 0.28  | 1.60  | 3.88        | βb CCC(71)                    |
|           |          | 266  | 252  | 253  | 250  | 1.29 | 1.49 | 0.05 | 0.06 | 0.42  | 3.19  | 0.29  | 0.18  | 2.79  | 2.86        | twist C-CH3 (81)              |
|           |          | 264  | 243  | 251  | 241  | 1.34 | 1.28 | 0.05 | 0.05 | 0.24  | 1.92  | 0.31  | 0.06  | 3.17  | 1.01        | twist C-CH3 (66)              |
|           |          | 248  | 236  | 236  | 234  | 1.60 | 1.09 | 0.05 | 0.04 | 0.88  | 4.47  | 0.12  | 0.22  | 1.29  | 3.89        | v CC(55)                      |
|           |          | 212  | 199  | 211  | 197  | 1.14 | 3.16 | 0.03 | 0.08 | 2.19  | 0.41  | 0.11  | 0.28  | 1.57  | 6.59        | twist C-CH3 (69)              |
|           | 190(vw)  | 134  | 199  | 122  | 197  | 3.33 | 1.53 | 0.08 | 0.02 | 2.43  | 14.06 | 0.18  | 0.06  | 2.57  | 1.41        | twist C-CH3 (78)              |
|           | 136(vw)  | 128  | 130  | 128  | 129  | 2.55 | 1.91 | 0.03 | 0.02 | 0.57  | 8.16  | 0.15  | 0.05  | 4.46  | 2.45        | C-CH3 rock(30)                |
|           |          | 119  | 126  | 119  | 122  | 2.63 | 1.88 | 0.02 | 0.02 | 0.00  | 1.07  | 0.19  | 0.04  | 6.24  | 2.17        | C-CH3 $rock(45)$              |

Intensities: w-weak, vw-very weak, s-strong, vs-very strong.

v-stretching, ss-symmetric stretching, ass-asymmetric stretching, sd-in-plane bending, ad-out-of-plane bending, scissscissoring, wag.-wagging, rock.-rocking, ipd-in-plane bending, opd-out-of-plane bending, ipr.-in-plane rocking, opr.-out-ofplane rocking, twist.-twisting,  $\delta_{ring}$  - ring in-plane-bending,  $\gamma_{ring}$  - ring out-of-plane-bending a Calculated by B3LYP/6-311+G\*\*

<sup>b</sup> Calculated by HF/6-311++G\*\*

Table 6: Natural bond orbital analysis of ATMP

| Bomd (A-B)  | ED/Energy a.u. | $ED_A(\%)$ | $ED_{B}(\%)$ | NBO                                                           | S(%)  | P(%)  |
|-------------|----------------|------------|--------------|---------------------------------------------------------------|-------|-------|
| BD (N1-C2)  | 1.9769         | 60.27      | 39.73        | 0.7763 (sp <sup>2.36</sup> ) N+0.6303 (sp <sup>3.67</sup> ) C | 29.75 | 21.39 |
| BD (N1-C6)  | 1.9798         | 60.09      | 39.91        | 0.7752 (sp <sup>2.28</sup> ) N+0.6317 (sp <sup>3.53</sup> ) C | 30.45 | 22.06 |
| BD (N1-H7)  | 1.9796         | 67.61      | 32.39        | 0.8222 (sp <sup>3.50</sup> ) N+0.5691 (sp <sup>0.00</sup> ) H | 22.21 | 99.94 |
| BD (C2-C3)  | 1.9693         | 50.78      | 49.22        | 0.7126 (sp <sup>2.66</sup> ) C+0.7016 (sp <sup>2.71</sup> ) C | 27.31 | 26.97 |
| BD (C2-C8)  | 1.9760         | 51.41      | 48.59        | 0.7170 (sp <sup>2.35</sup> ) C+0.6971 (sp <sup>2.41</sup> ) C | 25.95 | 29.33 |
| BD (C2-C12) | 1.9789         | 49.94      | 50.06        | 0.7067 (sp <sup>2.69</sup> ) C+0.7075 (sp <sup>2.41</sup> ) C | 25.22 | 29.34 |
| BD (C3-C4)  | 1.9618         | 48.77      | 51.23        | 0.6983 (sp <sup>2.76</sup> ) C+0.7158 (sp <sup>4.63</sup> ) C | 26.60 | 17.75 |
| BD (C4-C5)  | 1.9768         | 51.55      | 48.45        | 0.7180 (sp <sup>1.77</sup> ) C+0.6961 (sp <sup>2.89</sup> ) C | 36.12 | 25.72 |
| BD (C4-N19) | 1.9872         | 40.62      | 59.38        | 0.6374 (sp <sup>3.61</sup> ) C+0.7706 (sp <sup>1.73</sup> ) N | 21.67 | 36.66 |
| BD (C5-C6)  | 1.9648         | 50.08      | 49.92        | 0.7076 (sp <sup>2.74</sup> ) C+0.7066 (sp <sup>2.87</sup> ) C | 26.75 | 25.80 |
| BD(C6-C24)  | 1.9795         | 50.34      | 49.66        | 0.7095 (sp <sup>2.92</sup> ) C+0.7047 (sp <sup>2.42</sup> ) C | 25.49 | 29.20 |
| BD (C2-C28) | 1.9775         | 51.45      | 48.55        | 0.7173 (sp <sup>2.77</sup> ) C+0.6968 (sp <sup>2.42</sup> ) C | 26.52 | 29.21 |
| LP) (1) N1  | 1.9280         |            |              | (sp <sup>4.71</sup> ) N                                       | 17.51 |       |
| LP) (1) N19 | 1.9636         |            |              | (sp <sup>36.17</sup> ) N                                      | 2.690 |       |
| BD* (N1-C2) | 0.0410         | 39.73      | 60.27        | 0.6303 (sp <sup>2.36</sup> ) N-0.7763 (sp <sup>3.67</sup> ) C | 29.75 | 21.39 |
| BD* (N1-C6) | 0.0388         | 39.91      | 60.09        | 0.6317 (sp <sup>2.28</sup> ) N-0.7752 (sp <sup>3.53</sup> ) C | 30.45 | 22.06 |
| BD* (C2-C3) | 0.0392         | 49.22      | 50.78        | 0.7016 (sp <sup>2.66</sup> ) C-0.7126 (sp <sup>2.17</sup> ) C | 27.31 | 26.97 |
| BD* (C2-C8) | 0.0235         | 48.59      | 51.41        | 0.6971 (sp <sup>2.85</sup> ) C-0.7170 (sp <sup>2.41</sup> ) C | 25.95 | 29.33 |
| BD*(C2-12)  | 0.0397         | 50.06      | 49.94        | 0.7075 (sp <sup>2.96</sup> ) C-0.7067 (sp <sup>2.41</sup> ) C | 25.22 | 29.34 |
| BD* (C3-C4) | 0.0303         | 51.23      | 48.77        | 0.7158 (sp <sup>2.76</sup> ) C-0.6983 (sp <sup>4.63</sup> ) C | 26.6  | 17.75 |
| BD* (C4-C5) | 0.0194         | 48.45      | 51.55        | 0.6961 (sp <sup>1.77</sup> ) C-0.7180 (sp <sup>2.89</sup> ) C | 36.12 | 25.72 |
| BD*(C4-19)  | 0.0197         | 59.38      | 40.62        | 0.7706 (sp <sup>3.16</sup> ) C-0.6374 (sp <sup>1.73</sup> ) N | 21.67 | 36.66 |
| BD* (C5-C6) | 0.0311         | 49.92      | 50.08        | 0.7066 (sp <sup>2.74</sup> ) C-0.7076 (sp <sup>2.87</sup> ) C | 26.75 | 25.8  |
| BD*(C6-C24) | 0.0228         | 49.66      | 50.34        | 0.7047 (sp <sup>2.92</sup> ) C-0.7095 (sp <sup>2.42</sup> ) C | 25.49 | 29.20 |
| BD*(C6-C28) | 0.0048         | 48.55      | 51.45        | 0.6968 (sp <sup>2.77</sup> ) C-0.7173 (sp <sup>2.42</sup> ) C | 26.52 | 29.21 |

#### Perturbation theory analysis

Natural Bond Orbital (NBO) analysis provides an efficient method for studying intra-intermolecular bonding and charge transfer (or) conjugative interaction in molecular systems. Some electron donor, acceptor orbital's and stabilization energy resulted from the second-order microdisturbance theory are reported [48]. The large  $E^{(2)}$  value indicate the more intensive interaction between the electrondonors and electron-acceptors, i.e. the more donating tendency from electron donors to electron acceptors and greater the extent of conjugation of the whole system. The possible intensive interactions are given in Table 7 for ATMP. The second-order perturbation theory analysis of Fock matrix in NBO basis shows strong intramolecular hyperconjugative interactions of  $\pi$  electron. The LP- $\pi$ conjugation between the N lone pair electrons and piperazine ring  $\pi$  system is strong in the ground state. The stabilization energy E<sup>(2)</sup> associated with hyperconjugative interactions  $C_{24}$ - $H_{28} \rightarrow C_{12}$ - $H_{14}$  is seen to give a strong stabilization 58.69kJ/mol. This strong stabilization denotes the larger delocalization. The interesting interactions in ATMP compound are LP (N1) $\rightarrow$  BD\* (C<sub>2</sub> - C<sub>12</sub>), LP (N<sub>1</sub>) $\rightarrow$ BD\* (C<sub>6</sub>-C<sub>24</sub>), LP (N<sub>19</sub>)  $\rightarrow$  BD\* (C<sub>3</sub>-C<sub>4</sub>), LP(N<sub>19</sub>)  $\rightarrow$  BD\*  $(C_2-C_3),LP(N_{19}) \rightarrow BD^*$   $(C_4-H_{18})$  are obtained as 7.17, 6.84, 2.94, 3.4, and 1.57(kJ/mol), respectively. This highest interaction around the ring can induce the large bioactivity in the compound. The p-character of nitrogen lone pair orbital LP(N1) and LP(N19) are 82.44% and 97.30% respectively. This shows that the lone pair orbital participates in electron donation in the compound.

#### Mulliken charge analysis

The charge distribution on molecule has significant influence in vibrational spectra. Mulliken net charges calculated at the B3LYP level with the 6-311+G(d,p) atomic basis set using Gaussian 09 are shown in Fig. 5. The charge distribution of ATMP was calculated from the atomic charges by NLO and NBO analysis (Fig. 5). These two methods predict the same trend i.e., among the nitrogen atoms N1 and N19 is considered as more basic site [49]. The charge distribution shows that the more negative charge is concentrated on N19 atom whereas the partial positive charge resides at hydrogens. When compared to nitrogen atoms (H30 and H31) are less electronegative and it can be seen from the bar diagram [50].



Figure 5: Comparative graph of Mulliken's vs. natural atomic charges

#### **Fukui function**

The condensed Fukui functions  $(f_k)$  were calculated using the simple procedure (based on Mulliken population analysis) given by Yang and Mortier [51]. For a system of N electrons, independent calculations are to be made for corresponding N+1, N-1 and N are total electrons present in anion, cation and neutral state of molecules respectively. Mulliken population analysis yields gross charges  $q_k(N+1)$ ,  $q_k(N-1)$ ,  $q_k(N)$  and for all atoms k. In a finite-difference approximation, the condensed Fukui functions  $f_k^+ = q_k(N+1)$ -  $q_k(N)$  for nucleophilic attack,  $f_k^- = q_k(N) - q_k(N-I)$  for electrophilic attack and  $f_k^0 = \frac{1}{2}[q_k(N+1) - q_k(N-I)]$  for free radical attack, where  $q_k$  is the electronic population of atom k in the molecule, N the number of electrons, were calculated. Morell et al. [52] have recently proposed a dual descriptor  $(\Delta f(r))$ , which is defined is defined as the difference between the nucleophilic and electrophilic Fukui function and is given by the equation,

 $\Delta f(\mathbf{r}) = [f^+(\mathbf{r}) - f^-(\mathbf{r})]$ 

 $\Delta f(r) > 0,$ 

then the site is favored for a nucleophilic attack, whereas if  $\Delta f(r) < 0$ , then the site may be favored for an electrophilic attack. According to dual descriptor  $\Delta f(r)$  provide a clear difference

Table 8: Local reactivity descriptors (au) of ATMP

| Atom | Electronic<br>populationq <sub>k</sub> (N-1) | $q_k$ (N) | $q_k (N+1)$ |
|------|----------------------------------------------|-----------|-------------|
| N1   | 1.179                                        | -0.535    | 0.812       |
| C2   | -0.079                                       | -1.261    | 0.812       |
| C3   | -0.809                                       | -1.015    | -0.502      |
| C4   | -1.098                                       | 0.473     | -0.651      |
| C5   | 0.195                                        | 1.258     | -0.502      |
| C6   | 0.869                                        | 0.885     | 0.812       |
| H7   | 1.706                                        | -0.768    | -0.029      |
| C8   | -0.596                                       | -2.144    | 1.963       |
| H9   | 0.108                                        | -2.127    | 2.769       |
| H10  | -1.539                                       | -1.770    | 2.304       |
| H11  | -0.715                                       | -3.149    | 1.616       |
| C12  | 0.609                                        | -2.509    | 0.229       |

| H13         | 1.550         | -2.658         | 0.716         |
|-------------|---------------|----------------|---------------|
| H14         | -0.013        | -3.365         | 0.385         |
| H15         | 0.768         | -2.371         | -0.820        |
| H16         | -0.197        | -1.342         | -1.316        |
| H17         | -1.730        | -1.559         | -0.506        |
| H18         | -1.676        | 0.729          | -1.978        |
| N19         | -1.077        | 0.881          | -2.764        |
| H20         | -2.669        | 0.752          | -2.095        |
| H21         | -1.791        | 0.779          | 0.105         |
| H22         | 0.849         | 1.026          | -1.316        |
| H23         | -0.021        | 2.306          | -0.506        |
| C24         | 1.176         | 1.862          | 1.963         |
| H25         | 2.103         | 2.360          | 1.771         |
| H26         | 0.390         | 2.585          | 2.036         |
| H27         | 1.247         | 1.318          | 2.882         |
| C28         | 2.255         | 1.216          | 0.228         |
| H29         | 2.957         | 0.466          | 0.528         |
| H30         | 2.195         | 1.240          | -0.840        |
| H31         | 1.179         | -0.535         | 0.812         |
| F           | ukui function | Local          | softness      |
| $f_{k}^{-}$ | $f_{k}^{+}$   | S <sub>k</sub> | $s_{k}^{\mp}$ |
| -1.182      | 1.347         | -11.441        | 13.039        |
| -0.206      | 2.073         | -1.993         | 20.072        |
| 1.572       | 0.513         | 15.215         | 4.964         |
| 1.063       | -1.124        | 10.291         | -10.885       |
| 0.016       | -1.760        | 0.151          | -17.039       |
| -2.474      | -0.073        | -23.949        | -0.705        |
| -1.548      | 0.738         | -14.989        | 7.147         |
| -2.234      | 4.107         | -21.631        | 39.766        |
| -0.231      | 4.896         | -2.241         | 47.402        |
| -2.434      | 4.074         | -23.560        | 39.447        |
| -3.118      | 4.765         | -30.185        | 46.132        |
| -4.208      | 2.737         | -40.738        | 26.502        |
| -3.352      | 3.374         | -32.453        | 32.662        |
| -3.139      | 3.750         | -30.388        | 36.307        |
| -1.145      | 1.550         | -11.089        | 15.007        |
| 0.170       | 0.026         | 1.647          | 0.251         |
| 2.405       | 1.053         | 23.289         | 10.197        |
| 1.957       | -2.707        | 18.950         | -26.212       |
| 3.421       | -3.645        | 33.120         | -35.287       |
| 2.570       | -2.847        | 24.886         | -27.565       |
| 0.177       | -0.675        | 1.715          | -6.532        |
| 2.327       | -2.343        | 22.533         | -22.679       |
| 0.686       | -2.812        | 6.640          | -27.224       |
| 0.257       | 0.102         | 2.489          | 0.983         |
| 2.194       | -0.589        | 21.244         | -5.704        |
| 0.072       | -0.549        | 0.696          | -5.315        |
| -1.039      | 1.564         | -10.064        | 15.140        |
| -2.491      | -0.988        | -24.116        | -9.567        |
| -0.955      | 0.062         | -9.243         | 0.599         |
| -0.406      | -2.081        | -5.928         | -20.146       |
| /           | 1 4/1 /       | //// ·         | 1 4 1140      |

That is they provide positive value for sited prone for nucleophilic attack and a negative value prone for electrophilic attack. From the values reported in Table 8, according to the condition for dual descriptor, nucleophilic site for in our title molecule is N1, C2, C6, H7, C8, H9, H10, H11, C12, H13,H14, H15, H27, C28, H29 and H31 (Positive value i.e.  $\Delta f(r) > 0$ ). Similarly the electrophilic site is C3, C5, H16, H17, H18, N19, H20, H21, H22, H23, H24, H25, H26, H27, C28 and H30 (Negative value i.e.  $\Delta f(r) < 0$ ). The behavior of molecule as electrophilic and nucleophilic attack during reaction depends on the local behavior of molecule.

#### Solvent effect on the UV/vis spectrum

The calculations of electronic structures of the title compound were carried out using TD-DFT calculations with the B3LYP/6-311+G (d, p) method. Before the electronic calculations, the molecule was optimized in ground state using the DFT method with B3LYP functional. It is obvious that the use of TD-DFT calculations for prediction of the electronic absorption spectra is a reasonable method. The calculated results involving the vertical excitation energies, oscillator strength (f), wavelength ( $\lambda$ ) and life span ( $\tau$ ) for gas phase and various solvents are illustrated in Table 9.

**Table 9:** Maximum absorption wavelength (nm), excitation energies E (eV), oscillator strength (f) of ATMP and life span time (ls) of its first and second excited state derived from calculation in different media using DFT/B3LYP/6-311++G(d n) method

| 311++O(a,p) method |           |                |                  |                                         |                         |
|--------------------|-----------|----------------|------------------|-----------------------------------------|-------------------------|
| Solvents           | λ<br>(nm) | Energy<br>(eV) | Osc.<br>Strength | Micro-transition<br>(contribution in %) | Life-<br>span<br>×10-7s |
| Gas                | 261       | 4.215          | 0.0272           | HOMO→LUMO(86%)                          | 10 / 5                  |
|                    |           |                |                  | HOMO $\rightarrow$ L+1(2%)              | 0.37                    |
|                    |           |                |                  | HOMO $\rightarrow$ L+2(6%)              |                         |
| -                  |           |                |                  | HOMO→L+3(5%)                            |                         |
|                    | 237       | 4.727          | 0.005            | HOMO→L+1(91%)                           |                         |
|                    |           |                |                  | HOMO→LUMO(3%)                           |                         |
|                    | 231       | 4.812          | 0.0037           | HOMO→LUMO(10%)                          |                         |
|                    |           |                |                  | HOMO→L+2(54%)                           |                         |
|                    |           |                |                  | HOMO→L+3(24%)                           |                         |
|                    |           |                |                  | HOMO→L+4(7%)                            |                         |
| Choloro-           |           |                |                  |                                         |                         |
| form               | 327       | 3.786          | 0.0103           | HOMO→LUMO(95%)                          | 1.68                    |
|                    |           |                |                  | $HOMO \rightarrow L+1(4\%)$             |                         |
|                    | 261       | 4.751          | 0.0198           | HOMO→L+1(63%)                           |                         |
|                    |           |                |                  | HOMO→L+3(12%)                           |                         |
|                    |           |                |                  | HOMO→L+4(14%)                           |                         |
|                    |           |                |                  | HOMO→LUMO(2%)                           |                         |
|                    |           |                |                  | HOMO→L+2(4%)                            |                         |
|                    | 257       | 4.829          | 0.0114           | $HOMO \rightarrow L+1(16\%)$            |                         |
|                    |           |                |                  | HOMO→L+2(51%)                           |                         |
|                    |           |                |                  | HOMO→L+3(25%)                           |                         |
| DMSO               | 325       | 3.814          | 0.0112           | HOMO→LUMO (95%)                         | 2.17                    |
|                    |           |                |                  | $HOMO \rightarrow L+1(4\%)$             |                         |
|                    | 259       | 4.787          | 0.019            | HOMO→L+1(73%)                           |                         |
|                    |           |                |                  | HOMO→L+4(13%)                           |                         |
|                    |           |                |                  | HOMO→LUMO(3%)                           |                         |
|                    |           |                |                  | HOMO→L+3(5%)                            |                         |
|                    | 255       | 4.854          | 0.0155           | HOMO→L+2(33%)                           |                         |
|                    |           |                |                  | HOMO→L+3(49%)                           |                         |
|                    |           |                |                  | $HOMO \rightarrow L+1(9\%)$             |                         |
|                    |           |                |                  | HOMO→L+4(3%)                            |                         |
|                    |           |                |                  | $HOMO \rightarrow L+8(2\%)$             |                         |



Figure 6: Density of states (DOS) diagram of ATMP

Calculated  $\lambda_{max}$  values obtained with B3LYP/6-311+G (d, p) are 261, 237 and 231 nm in gas which are HOMO  $\rightarrow$  LUMO, HOMO $\rightarrow$  LUMO+1, HOMO $\rightarrow$  LUMO+2, HOMO $\rightarrow$  LUMO+3 and HOMO $\rightarrow$  LUMO+4 transitions, respectively. In chloroform and DMSO, these values are calculated at 327, 261, 257 and 325, 259, 255 nm which are the same transition in, chloroform and DMSO, respectively is shown in Table 9.

Gauss-Sum 2.2 program [53] was used to calculate group contributions to the molecular orbitals (HOMO and LUMO) and prepare the density of states (DOS) spectrum in Fig.6. The DOS spectra were created by convoluting the molecular orbital information with GAUSSIAN curves of unit height. The green and blue lines in the DOS spectrum indicate the HOMO and LUMO levels. Fig 6, illustrates molecular orbitals involved in the different transitions leading to observed peaks in ATMP.



Fig. 7 The frontier molecular orbitals

#### Frontier molecular orbital

The most important frontier molecular orbital (FMO) such as higher occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) plays a crucial part in the chemical stability of the molecule [54]. The HOMO represents the ability to donate an electron and LUMO as an electron acceptor represents the ability of accept an electron [55]. The energy gap between HOMO and LUMO also determines the chemical reactivity, optical polarizability and chemical hardness–softness of a molecule [55].

In the present study, the HOMO and LUMO energies are predicted at B3LYP level with the 6-311+G(d,p) basis set. Our calculation predicts that there are 362 molecular orbits present in title molecules with energy ranges -388.94 eV to 970.17eV among them 44 orbits are occupied and rest are unoccupied. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have energies -5.79657 eV and -0.17524 eV for ATMP. The difference between HOMO and LUMO is 5.6213 eV. An electron makes transition from LUMO to HOMO resulting FT-Raman spectra of wavenumber 1584 cm<sup>-1</sup>. However, the energy difference between LUMO and ground state is -388.94 eV, i.e., transition between LUMO and ground state of ATMP emits FT-Raman spectra of wavenumbers 136 cm<sup>-1</sup>.

#### **Global reactivity descriptors**

The molecular quantities such as ionization potential(I), electron affinity (A), chemical potential ( $\mu$ ), electronegativity ( $\chi$ ), absolute hardness ( $\eta$ ), global softness ( $\sigma$ ) and global electrophilicity ( $\omega$ ). The chemical potential

 $(\mu)$  of the electrons (the negative of the electronegativity  $\chi$ ) is given by

| Fable 10: | Quantum | chemical | parameter | of ATMP |
|-----------|---------|----------|-----------|---------|
|-----------|---------|----------|-----------|---------|

| Chemical parameter                 | Monomer   |
|------------------------------------|-----------|
| Ionization potential(I) (eV)       | 5.79657   |
| Electron affinity(A) (eV)          | 0.17524   |
| Global hardness( $\eta$ ) (eV)     | 5.62133   |
| Global softness (S) (eV)           | 0.17789   |
| Chemical potential(µ) (eV)         | - 2.98595 |
| Electrophilicity ( $\omega$ ) (eV) | 0.79304   |
| Electro negativity( $\chi$ ) (eV)  | 2.98595   |

$$\mathbf{M} = \left(\frac{\partial E}{\partial N}\right)_{v(r)}$$

$$\mu = -\frac{1}{2}(I+A)$$

and it has the same value everywhere [56]. In a finite-difference approximation:

$$\chi = -\mu = \frac{1}{2}(I + A)$$

were I and A are the ionization potential and electron affinity. The change of  $\mu$  with the number of electrons was defined by Parr and Pearson as a measure for the "absolute hardness" as

$$\eta = \left(\frac{\partial \mu}{\partial N}\right)_{\nu(r)} = \left(\frac{\partial^2 E}{\partial N^2}\right)_{\nu(r)}$$

[57] The corresponding finite-difference formula is

$$\eta = \frac{1}{2}(I+A)$$

The softness ( $\sigma$ ) is reciprocal of the hardness ( $\eta$ )

The electrophilicity index can be estimated by the equation [58]:

$$\omega = \frac{\mu^2}{2r}$$

Thus the frontier molecular orbital analysis and global reactivity parameters of the molecule in B3LYP and LSDA methods with 6-311+G(d,p) basis set are presented in Table 10, respectively.

#### Molecular electrostatic potential

In the present study, 3D plots of molecular electrostatic potential (MEP) of ATMP is illustrated in Fig 8. The MEP which is a plot of electrostatic potential mapped onto the constant electron density surface with together HOMO and LUMO (Fig.7). The MEP is a useful property to study reactivity given that an approaching electrophile will be attracted to negative regions (where the electron distribution effect is dominant). The importance of MEP lies in the fact that it simultaneously displays molecular size, shape as well as positive, negative and neutral electrostatic potential regions in terms of color grading (Fig 8) and is very useful in research of molecular structure with its physiochemical property relationship [59,60]. The different values of the electrostatic potential at the surface are represented by different colors. Potential increases in the order red < orange < yellow < green < blue. The color code of these maps is in the range between -1.2908a.u. (deepest red) to 0.1498a.u. (deepest blue) in compound, where blue indicates the strongest attraction and red indicates the strongest repulsion. MEPs color scale is such  $\delta^+ \rightarrow \delta^-$  in the direction red  $\rightarrow$  blue. As can be seen from the MEP map of the title molecule, while regions having the negative potential are over the electronegative atoms (Nitrogen atom), the regions having

the positive potential are over the carbon and hydrogen atoms. The negative potential value is -18.4292 and -

18.4208a.u. for nitrogen atoms (N1 and N19). A maximum less negative region localized on

|     | V(r)     | Point<br>Charges (e) |  |
|-----|----------|----------------------|--|
| N19 | -18.4292 | -1.2908              |  |
| N1  | -18.4208 | -0.9632              |  |
| C24 | -14.8190 | -0.3655              |  |
| C12 | -14.8183 | -0.3461              |  |
| C3  | -14.8001 | -0.3932              |  |
| C8  | -14.7997 | -0.5295              |  |
| C28 | -14.7955 | -0.5528              |  |
| C5  | -14.7709 | -0.3079              |  |
| C4  | -14.7524 | 0.3471               |  |
| C2  | -14.7450 | 0.7340               |  |
| C6  | -14.7312 | 0.5504               |  |
| H17 | -1.1473  | 0.0950               |  |
| H27 | -1.1381  | 0.0419               |  |
| H10 | -1.1349  | 0 1307               |  |
| H15 | -1.1338  | 0.0232               |  |
| H11 | -1.1309  | 0 1138               |  |
| H29 | -1.1304  | 0.1440               |  |
| H9  | -1.1285  | 0.1059               |  |
| H31 | -1.1269  | 0 1433               |  |
| H30 | -1.1253  | 0.1306               |  |
| H26 | -1.1252  | 0 1015               |  |
| H13 | -1.1244  | 0.0660               |  |
| H16 | -1.1230  | 0.1422               |  |
| H23 | -1.1210  | 0.1191               |  |
| H22 | -1.1165  | 0.1626               |  |
| H18 | -1.0882  | 0.0902               |  |
| H7  | -1.0704  | 0.3858               |  |
| H21 | -1.0638  | 0.4452               |  |
| H20 | -1.0619  | 0.4706               |  |
| H25 | -1.0473  | 0.0560               |  |
| H14 | -1.0458  | 0.1498               |  |



Fig. 8 Molecular electrostatic potential (MEP) surface map for ATMP

the hydrogen atom bond has value of -1.0458a.u. From these results, we can say that the carbon (H<sub>14</sub>) atom indicates the strongest attraction and nitrogen atom indicates the strongest repulsion.

#### Thermodynamic analysis

In consideration of the dependence of association constant  $(K_a)$  on temperature, a thermodynamic process was considered to be responsible for the intermolecular interactions. The molecular forces contributing to

biomolecules interaction with small molecules substrates may involve hydrogen bond, van der Waals force, hydrophobic interaction force, and electrostatic force [61]. The thermodynamic parameters, enthalpy change ( $\Delta$ H) and entropy change ( $\Delta$ S)of reaction are main evidence for characterizing the acting force. If there is no significant change in temperature,  $\Delta$ H and  $\Delta$ S can be estimated from the van't Hoff equation as follows:

$$\log K_a = \frac{\Delta H}{2.303RT} + \frac{\Delta S}{2.303RT}$$

were *R* is the gas constant, and the temperatures used were 100, 200, 298.15, 300, 400, 500 K. The values of  $\Delta H$  and  $\Delta S$  were obtained from spectroscopic data by statistical methods. The value of free energy change ( $\Delta G$ ) can be calculated from the following equation:

# $\Delta G{=}\Delta H{\text{-}}T\Delta S$

Table 11 lists the thermodynamic parameters for the interaction of ATMP. The negative values of  $\Delta G$  revealed that the binding process was spontaneous.

**Table 11:** Thermodynamic parameters of ATMP at different temperatures by B3LYP/6-311++G(d,p) method.

|        | 1          | 2          | ( 4        |            |
|--------|------------|------------|------------|------------|
| Temp   | Ср         | $\Delta H$ | $\Delta S$ | $\Delta G$ |
| (K)    | (kcal/mol) | (kcal/mol) | (kcal/mol) | (kcal/mol) |
| 100    | 19.4629    | 8.3020     | 67.8802    | -6779.7153 |
| 200    | 37.3134    | 11.1841    | 81.3773    | -16264.267 |
| 298.15 | 53.8955    | 16.5286    | 81.3773    | -24246.100 |
| 300    | 54.2133    | 16.6478    | 96.6168    | -28968.385 |
| 400    | 70.9578    | 23.8925    | 113.2716   | -45284.746 |

# 5. Conclusion

HF and B3LYP level with the 6-311+G(d,p) basis sets are utilized to conduct a detailed study of the structures, geometrical parameters, molecular electrostatic potential map and thermodynamic parameters of ATMP. Comparison between the calculated and experimental structural parameters indicates that B3LYP/6-311+G(d,p) results are in good agreement with experimental values. The vibrational spectra of ATMP were found to be in good agreement with calculated values. It is seen from the theoretical results, there is no remarkable difference between the results of the DFT level used in evaluating geometrical parameters and vibrational frequencies. The significant changes in bond lengths of the ATMP have been explained with the help of NBO analysis. The delocalized of ED from Lewis to non-Lewis sites are discussed with their stabilization energies. The lowering of the HOMO-LUMO energy gap value has substantial influence on the intra molecular charge transfer and bioactivity of the molecules. The MEP map is agrees well with the ground state interaction. The electro negativity, hardness and electrophilicity were found. The Fukui functions showed that the ring and substitution atoms are the most probable sites for electrophilic and free radical attacks. The correlations between the statistical thermodynamics properties are also obtained.

#### 6. Acknowledgement

This work was supported by the University Grants Commissions fund through research Grant no.: MRP-5124/14 (SERO/UGC).

# References

- V. Vinayak, Kane and Maitland Jones Jr (1990).
   "Spiro[5.7]trideca-1,4-dien-3-one". Org. Synth.; Coll. Vol. 7, p. 473
- [2] B. Michael, Smith, Jerry March (2001).March's Advanced Organic Chemistry: Reactions, Mechanisms,

and Structure (5th ed.). Wiley-Interscience. ISBN 0-471-58589-0.

- [3] P. George. Claxton, Lloyd Allen, and J. Martin Grisar (1988). "2,3,4,5-Tetrahydropyridine trimer". Org. Synth.; Coll. Vol. 6, p. 968
- [4] C. S. Marvel and W. A. Lazier (1941). "Benzoyl Piperidine". Org. Synth.; Coll. Vol. 1, p. 99
- [5] Spaeth and Englaender, Ber.1935,68, 2218; cf. Pictet; Pictet (1927). Helv. Chim. Acta10: 593.
- [6] Rimington (1934). S. Afr. J. Sci31: 184.
- [7] Juraschewski; Stepanov (1939). J. Gen. Chem., U.R.S.S. 9: 1687.
- [8] J.L. Arbiser, T. Kau, M. Konar, et al. (2007).
   "Solenopsin, the alkaloidal component of the fire ant (Solenopsisinvicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis". Blood 109 (2): 560–5. doi:10.1182/blood-2006-06-029934. PMC 1785094.
   PMID 16990598.
- [9] Thomas Anderson Henry (1949). The Plant Alkaloids (4th ed.). The Blakiston Company
- [10] Karsten Eller, Erhard Henkes, Roland Rossbacher, HartmutHöke "Amines, Aliphatic" Ullmann's Encyclopedia of Industrial Chemistry 2002 Wiley-VCH. doi:10.1002/14356007.a02\_001
- [11] M. J. Frisch, ed al., Gaussian, Inc., Wallingford CT, 2009
- [12] A.D. Becke, Phys. Rev. A 39 (1988) 3098–3100.
- [13] C. Lee, W. Yang, G.R. Parr, Phys. Rev. B 37 (1998) 785–789.
- [14] A. Frich, A.B. Nielsen, A.J. Holder, Gaussview Users Manual, Gaussian Inc., Pittsburgh, 2007.
- [15] G. Fogarasi, P. Pulay, in: J.R. Durig(Ed.), Vibrational Spectra and Structure, vol.14, Elsevier, Amsterdam, 1985, p. 125.
- [16] P. Pulay, G. Fogarasi, F. Pongor, J.E. Boggs, A. Vargha, J. Am. Chem. Soc. 105 (1983) 7037.
- [17] T. Sundius, J. Mol. Struct. 218 (1990) 321-326.
- [18] T. Sundius, Vib. Spectrosc.29 (2002) 89-95.
- [19] E.D.Glendering, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
- [20] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899–926.
- [21] F. Weinhold, J.E. Carpenter, The Structure of Small Molecules and Ions, Plenum, New York, 1988.
- [22] C. Muñoz-Caro, A. Niño, M.L. Senent, J.M. Leal, S. Ibeas, J. Org. Chem. 65 (2000) 405–410.
- [23] S. Miertus, E. Scrocco, J. Tomasi, Theor. Chem. Acc. 103 (2000) 343–345
- [24] P. Politzer, J. Murray, Theor. Chem. Acc. 108 (2002) 134–142
- [25] P.L. Polavarapu, J. Phys. Chem. 94 (1990) 8106-8112.
- [26] G. Keresztury, S. Holly, J. Varga, G. Besenyei, A.Y. Wang, J.R. Durig, Spectrochim, Acta A 49(1993) 2007–2026.
- [27] D.A. Kleinman, Phy. Rev. 126 (1962) 1977.
- [28] S. K. Goswami, L. R. Hanton, C. J. McAdam, S. C. Moratti and J. Simpson, *Acta Cryst.* (2011). E67, o3024-o3025
- [29] Yu.A. Pentin, O.S. Anisimova, Opt. Spectrosc. 26, 1968, 35.

- [30] T. Hirakowa, T. Kimura, K. Ohno, H. Murata, *Spectrochim. Acta A* **36**, 1980, 329–332.
- [31] G. Gundersen, D.W. Rankin, Acta Chem. Scand. A 37, 1983, 865–874.
- [32] MOLVIB: A Program for Harmonic Force Field Calculations, QCPE Program No. 807, 2002.
- [33] N. B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.
- [34] G. Socrates, Infrared, Raman Characteristic Group Frequencies, Tables and Charts, Third ed., Wiley, Chichester, 2001.
- [35] D. Lin-Vein, N.B. Colthup, W.G. Fately, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, New York, 1991
- [36] M. Gussoni, C. Castiglioni, J. Mol. Struct. 521 (2000) 1-18.
- [37] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York, 1990.
- [38] B.C. Simith, Infrared Spectral Interpretation, CRC Press, Boca Raton, FL, 1996.
- [39] L.J. Bellamy, The Infrared Spectra of Compound Molecules, Chapman and Hall, London, 1975.
- [40] D. Sajan, J. Binoy, B. Pradeep, K. Venkatakrishnan, V. Kartha, I. Joe, V. Jayakumar, 2004. Spectrochim.ActaA 60: 173-180.
- [41]Fundamentals of Molecular Spectroscopy, Colin N. Banwell and Elaine M. McCash, Tata McGraw-Hill reprint 1995.
- [42] G. Socrates, Infrared Characteristics Group Frequencies, John Wiley, GB, 1980.
- [43] S. Ahmad, P.K. Verma, Ind. J. Phys. B 64 (1990) 50-55
- [44] D.N. Sathyanarayana, Vibrational Spectroscopy Theory and Applications(New Age, International, New Delhi) 1996
- [45] M. Snehalatha, C. Ravikumar, I. Hubert Joe, V.S. Jayakumar, J. Raman Spectrosc.40 (2009) 1121–1126.
- [46] A.E. Ledesma, J. Zinczuk, A. Ben Altabef, J.J. Lopez Gonzalez, S.A. Brandhan, J.Raman Spectrosc. 40 (2009) 1004–1010.
- [47] J. Chocholoušová, V. Vladimír Špirko, P. Hobza, Phys. Chem. Chem. Phys. 6 (2004) 37–41.
- [48] J.N. Liu, Z.R. Chen, S.F. Yuan, J. Zhejiang Univ, Science B 6 (2005) 584–589.
- [49] P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. Chem. Phys. 1 (1999) 3519.
- [50] G. Wang, F. Lian, Z. Xie, G. Su, L. Wang, X. Jing, F. Wang, Synth. Met. 131 (2002)1.
- [51] W. Yang, W.J. Mortier, J. Am. Chem. Soc. 108 (1986) 5708–5711.
- [52] C. Morell, A. Grand, A. Toro-Labbe, J. Phys. Chem. A 109 (2005) 205–212.
- [53] N.M. O'Boyle, A.L. Tenderholt, K.M. Langer, J. Comput. Chem. 29 (2008) 839–845.
- [54] B. Kosar, C. Albayrak, Spectrochim. Acta 78A (2011) 160–167.
- [55] P. Senthil kumar, K. Vasudevan, A. Prakasam, M. Geetha, P.M. Anbarasan, Spectrochim. Acta 77A (2010) 45–50.
- [56] (a) R.G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049–4050;

- a. (b) W. Yang, R.G. Parr, R. Pucci, J. Chem. Phys. 81 (1984) 2862–2863.
- [57] R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68 (1978) 3801–3807.
- [58] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512–7516.
- [59] J.S. Murray, K. Sen, Molecular Electrostatic Potentials, Concepts and 399 Applications, Elsevier, Amsterdam, 1996.
- [60] E. Scrocco, J. Tomasi, in: P. Lowdin (Ed.), Advances in Quantum Chemistry, Aademic Press, New York, 1978.
- [61] N. Akbay, Z. Seferoglu. E. Gok, J. Fluoresc. 19(2009) 1045-1051.