
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Optimized Crowdsourcing Systems for Advanced
Structured Query Language Operators

S. Y. Shelar1*, A. B. Rajmane2*

*Ashokrao Mane Group of Institutions, Vathar, Maharashtra, India
1seemashelar01@gmail.com
2amolbrajmane@gmail.com

Abstract: Query optimization plays an important role in crowdsourcing system. We study the optimized crowdsourcing system which is
SQL opeartors based crowdsourceing system, in which user submits the query. Crowdsourcing system compiles query and creates the
evaluation plans, then excutes selected plan on crowdsourcing platform. A submitted query has many execution plans but selected best
query plan gives siginificant effect on overall performance of crowdsource system. For this purpose, we present OptimizedCrowd system
in which query optimization is based on latency. In the developed system for query optimization purpose, we use select and join queries.

Keywords: Crowdsourcing, Query Optimization, Human Intelligence Tasks (HIT), SQL.

1. Introduction

Crowdsourcing system is web based activity in which
thousands of people simultaneously post and edit work e.g.,
Yahoo! answers [11] where users take the review of people
in question-answer format. Crowdsourcing is software
which solves the complex tasks that computer cannot solve
easily so with the equal intention crowdsourcing system
combines human logic with computer power and gets the
accurate result. Recently, crowdsourcing system has been
adopted in database system. The brief information of
developed optimizedcrowd system which uses the SQL
operators like select [2] [10], fill [7], count [3], max [4] and
join [5] in the query optimization process is overviewed
chronologically. Some crowdsourcing systems such as
CrowdDB [6], Qurk [9], Deco [7] and CrowdOP [8] provide
the SQL interface which is known to the database users.
Crowdsourcing system gives the platform on which
requester posts tasks and workers accept tasks and works on
these tasks. In crowdsourcing system, queryoptimizer
generates evaluation plans for submitted query and system
selects the best query plan to generate the tasks.
Crowdsourcing system has an immense impact of selection
of best query plan. By considering this impact we produced
the OptimizedCrowd system. Even query processing in the
crowdsourcing system is as same as in the database, the
query optimization has greater importance as far as the
performance of the crowdsourcing system is concerned.

The following are some of the characteristics of the
developed system,
1) Latency based optimization: Latency is parameter which

is used to improve the performance of crowdsourcing
system. Latency means how long people wait for results.
We examine the recent crowdsourcing system such as
CrowdDB [6], CrowdScreen [2] only works on cost and
CrowdFind [10] that takes latency to find out best query
plan for optimization purpose. Our system considers the
latency into a query optimization purpose.

2) Multiple crowdsourcing operators are used in
optimizations: Deco [7] works on the missing tuples
from the database. Qurk [9] focuses on join and sort
operators. CrowdOP uses the fill, select and join
operators in query optimization technique. CrowdScreen

and CrowdFind work for select operator. The proposed
system works on the operators such as select which finds
the specific tuples from relation, fill is used to place
value which is unknown to database. Aggregation
operation such as count [3] is used to estimate number of
items in dataset that satisfies a predicate or special
condition and max is used to find the highest ranked
object or tuple in set. In this paper, we study the query
optimization for various SQL operators by using latency.
The remaining paper contains following parts, part 2
describes related works for existing system. Part 3
describes architecture of proposed model and parts 4
contain experimental results for select and join queries.
Part 5 concludes the paper.

2. Related Work

Now a days, many works have been proposed to perform
database operations in a crowdsourcing system such as
select, join and aggregation operators such as count, max
and sort. Recently many crowdsourcing systems have been
developed to provide SQL like query interface to the crowd
such as CrowdDB system solves the queries by using human
answer which cannot be solved by database and uses SQL as
query language. It is rule based optimization crowdsourcing
system. Rule based is easy to implement but it generates
very less effective evaluation plans. It uses crowdprobe,
crowdjoin and crowdcompare operators in query
optimization process. Deco is declarative crowdsourcing
system in which SQL queries are solved. Deco works on
missing value of database. Deco uses only fill operator.
CrowdOP is the optimized crowdsourcing system which
uses Cselect, Cjoin and Cfill operators in query optimization
process. CrowdOP takes cost and latency into optimization
process. Our developed system takes latency for
optimization purpose because latency is an important key
element in crowdsourcing system. This latency model is
similar to CrowdOP and CrowdFind. But CrowdFind works
only select operator and CrowdOP works for Cselect, Cfill
and Cjoin queries while our work focus is on optimization
with the help of some advance aggregation operators such as
count and max with minimum latency.

Paper ID: ART20161703 945

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Overview of Proposed System

The proposed system uses database operations in query
optimization process so that there is need to use database
query language in the system. In this section, we introduce
the data model and query language that is used by the
proposed system and also architecture of proposed system is
described.

3.1 Data Model

The Proposed system uses relational data model. In this
system data is considered as schema that consists of a set of
relations. These relations are designated by schema
designers. SQL query can be executed by relations and
queries can be given by requester.

3.2 Query Language

The proposed system goes through the SQL query language
over the database and result of the query is obtained by
executing query by using the relations used in the data
model. The proposed system considers following two types
queries.

(1) Selection Query: A selection query uses one or more
selection conditions over the records in single relation. It has
many applications in crowdsourcing platform like filter item
[2]. A simple example is find out cars having width is less
than equal to 66.5 and length is greater than equal to 165.3
and wheel base is less than equal to 96.9. For this, we
express the query as Q1 for three conditions,
Q1: select * from car where width <= 66.5 AND length >=
165.3 AND wheel_base < 96.9
We take another example of selection query for two

conditions and express the query as Q2,
Q2: Select * from car where wheel_base < 96.1 AND stroke
>= 3.12
(2) Join Query: Join query is used to combine records from
two or more relations according to certain conditions. An
example join query Q3 over relations car and image which
combines records from car relation to image relation, which
is presented as follows.
Q3: select c1.*, c2.* from car c1, image c2 where
c1.carid=c2.carid and c1.symboling >= 2 and c1.bore >=
3.31 and c1. highway_mpg > 34

3.3 Architecture of Proposed System

The proposed system is based on crowdsourcing platform
which has some optimization in sense of SQL queries. The
proposed system includes SQL queries like select, join, fill,
count, and max. In this section, we describe overall
architecture of proposed system. The workflow of proposed
system is shown in figure 1.

Figure 1: Block Diagram of the OptimizedCrowd System

The proposed system incorporates the traditional query
compilation, optimization and execution components. We
briefly describe each component as follows.

1) User Interface: By using user interface, user submits
SQL query.

2) Query Optimizer: Submitted query is processed by
query optimizer. In query optimizer, query first compiles
and generates the optimized query plans which is based
on latency i.e. execution time of query. The query
optimizer selects the low latency query plan for
execution purpose.

3) Crowdsourcing Executor: The selected query plan is
evaluated by crowdsourcing executor and generates the
tasks. Then publish these tasks on crowdsourcing
platform. These tasks are solved by human workers and
answers are given to these tasks. The system collects the
answer from the workers. By using these answers,
crowdsourcing executor, executes the query and accurate
result is given to the user.

4. Experimental Results

In this section, initially we examine the effectiveness of our
proposed optimization method for the select, join queries.
For our experiments purpose, we use a real auto import
dataset [1] which consists of specification of 205 cars to
generate the car relation. This dataset is in text format. In
preprocessing step, we convert text format into SQL
database format so that system can easily process database
queries. Then we manually generate relation image by
adding image related with each car present in car relation.
This image is taken from yahoo auto [12].

4.1 Evaluating Selection Query Optimization

In this section, we evaluate optimization method for
selection queries. We vary the number of selection condition
from two to three. For experimental purpose, we take
example query Q1 with three conditions and Q2 with two
conditions. In Query optimization process, query Q1
generates the query plans. In experimental study, we
calculate execution time of each query plan on the basis of
number of records fetch by each query condition which is
used in the query. Performance of each of the query plan of
query Q1 shown in the figure 2.

Paper ID: ART20161703 946

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Performance of Query Q1 with Execution Time
and Conditions

In figure 2, we take the count of records fetched from
database on the basis of each condition used in query and
takes execution time of each query plan. When system
execute the query Q1 on the basis of wheel_base condition,
the system return result in less time than other two
conditions used in query Q1. Due to low execution time,
system selects query plan as select * from car where
wheel_base < 96.9 and length >= 165.3 and width <= 66.5.
This query plan is used for tasks generation. We also take
the experimental result for query Q2. Figure 3 represent
execution time and records fetch by each condition used in
query Q2. In experimental analysis, we take count of records
fetch by each condition and execution time of each condition
used in the query. We have observed that to display result of
query Q2, system gives best results in comparatively
minimum time when it executes the query on wheel_base
condition. As a result the query with less execution time as
“select * from car where wheel_base < 96.1 and stroke >=
3.12” is selected for tasks generation.

Figure 3: Performance of Query Q2 with execution time

4.2 Evaluating Join Query Optimization

In this section, we validate optimization approach for join
query. For experimental purpose, we take Q3 query with
three conditions. We join two relations car and image on
basis of attribute carid. Query Q3 evaluate in three ways on
the basis of conditions present in the query. This evaluation
of each condition of query Q3 with execution time and
records fetched by each attribute of the query is shown in
figure 4. From figure 4, it clearly shows that when query Q3
evaluate on the condition highway_mpg then system gets
result in very less time. Due to low execution time, system
selects this query plan for task generation.

Figure 4: Performance of Query Q3 with execution time

From the above discussion, we have observed that selection
of best query plan improves the performance of system in
terms of execution time hence query optimization plays an
important role in developed system.

5. Conclusion and Future Work

In this paper, we have presented a latency based query
optimization which helps to optimization in sense of SQL
queries. The system includes SQL queries like select, join,
fill operations. In addition to these three operations some
aggregate operators are used in query optimization purpose
such as count and max. This optimization is effective for
SQL query processing. In future, we intend to study
complex join query for query optimization and also we use
cost and latency combination in query optimization
technique.

References

[1] https://archive.ics.uci.edu/ml/datasets/Automobile
[2] A.G. Parameswaran, H. Garcia-Milina, H. Park, N.

Polyzotis, A. Ram and J. Windom, “CrowdScreen:
Algorithms for filtering data with humans,” in Proc
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp.
361-372.

[3] A. Marcus, D.R. Karger, S. Madden, R. Miller, and S.
Oh, “Counting with the crowd”, Proc. VLDB
Endowment, vol. 6, no. 2, pp. 109-120, 2012.

[4] P. Venetis, H. Garcia-Molina, K. Huang, and N.
Polyzotis, “Max algorithms in crowdsourcuing
Environment”,in Proc. 21st Int. Conf. World Wide Web,
2012, pp. 989-998.

[5] A. Marcus, E. Wu, D.R.Karger, S.Madden, and
R.C.Miller, “Human- powered sort and joins”, Proc.
VLDB Endowment, vol. 5, no. 1, pp. 13- 24, 2011.

[6] M.J.Franklin, D.Kossmann, T. Kraska, S.Ramesh, and
R. Xin, “CrowdDB: Answering queries with
crowdsourcing”, in Proc. ACMSIGMOD Int. Conf.
Manage. Data, 2011, pp. 61-72.

[7] A.G.Parameswaran, H.Park, H.Garcia-Moline,
N.Polyzotis, and J. Widom, “Deco: Declarative
crowdsourcing”, in Proc. 21st ACM Int. Conf. Inf.
Knowl. Manage, 2012, pp. 1203-1212.

[8] Ju Fan, Meihui Zhang, Stanley Kok, MeiyuLu, and
Beng Chin Ooi, “CrowdOP: Query Optimization for
Declarative Crowdsourcing Systems”, IEEE

Paper ID: ART20161703 947

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Transactions on Knowledge and Data Engineering, vol.
27, no.8, pp. 2078-2092, August 2015.

[9] A. Marcus, E. Wu. S. Madden, and R.C.Miller,
“Crowdsourced databases: Query processing with
people”, in Proc. 5th Biennial Conf. Innovative Data
Syst. Res., 2011, pp.211- 214.

[10] A.D.Sharma, A. Parameswaran, H. Garcia- Molina, and
A. Halevy, “Crowd-powered find algorithms”, in Proc.
IEEE 30th Int. Conf. DataEng., 2014, pp. 964- 975.

[11] Yahoo! answers, http://answers.yahoo.com
[12] https:// autos.yahoo.com/

Paper ID: ART20161703 948

