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1. Introduction 

It was shown by S. Kasahara [7] in 1976, that several known 
generalization of the Banach Contraction Theorem can be
derived easily from a Fixed Point Theorem in an L-space. 
Iseki [10] has used the fundamental idea of Kasahara to
investigate the generalization of some known Fixed Point 
Theorem in L-space. 

Let N be the set of natural numbers and X be a nonempty 
set. Then L-space is defined to be the pair (X, ) of the set 
X and a subset  of the set XN × X, satisfying the following 
conditions: 
L1 . if xn = x X for all nN, then ({xn}nN , x)
L2 if ({xn}nN ,x )  , then ({ xni}iN 

For every subsequence { xni}iN of {xn}nN 

In what follows instead of writing ({xn})nN , x),we 
write {xn}nN  x or xn  x and read {xn}nN converges to
x. Further we give some definitions regarding L-space. 

Definition 1. Let (X, ) be an L-space. It is said to be
.separated. if each sequence in x converges to at most one 
point of X.

Definition 2. A mapping f on (X, ) into an L-space (X', 
')is said to be 'continuous' if xn  x implies f(xn) ' f(x) 
for some subsequence {xn )iN for {xn}nN . 

Definition 3. Let d- be a non negative extended real valued 
function on X × X: 0 ≤ d(x, y) ≤ ∞i for all x, y  X. The L-
space is said to be d- complete if each sequence {xn}nN in X 

with 


 0 1),(
i ii xxd < ∞ converges to the at most one 

point of X.
In this context Kasahara S. proved a lemma, which as
follows: 

Lemma (S. Kasahara): 
Let (X, ) be an L-space which is d- complete for a non 
negative real valued function d on X × X. If (X, ) is
separated then: 

d(x, y) = d(y, x) = 0 implies, x = y for all x, y X 
During the past few years many great mathematicians Yeh 
[13], Singh [12], Pathak and Dubey [8], Sharma and 
Agrawal [11], Patel, Sahu and Sao [9], Patel and Patel [10],
worked for L-space. In this chapter, we similar investigation 
for the study of Fixed Point Theorems in L-space are worked 
out. We find Common Fixed Point Theorem in L-space with 
rational contraction

Theorem 1: 

Let (X, ) be a separated L-space, which is d- complete for 
a non negative extended real valued function d on X × X
with d(x, x) = 0, for each x in X. Let A, B, S and T be
continuous self mapping satisfying: 
[1.1] : A(X )  T(X ) & B(X)  S(X), and AS = SA, BT = ST 
[1.2] : 
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For all x, y in X, where non negative α, , ,  such that 0 < 
α + 2 +2 + <1, and 0 < 2 +<1 with Tx  Sy. Then A, 
B, S and T have unique common fixed point.  

Proof: Let x0  X be an arbitrary point. Then, since A(X) 
T(X), B(X)  S(X), there exists x1, x2  X such that Ax0 = Tx1

and Bx1 = Sx2. Inductively, we construct the sequences {yn}
and {xn} in X such that y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1
= Sx2n+2, for n = 0, 1, 2, ....  

Now, by [1.1], we have  
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d(y2n, y2n+1) ≤ q d(y2n-1, y2n) 

Where 1
1
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q  for n = 1, 2, 3………….

Similarly, we have  
d(y2n+1, y2n+2) ≤ qn d(y0, y1) 

for every positive integer n, this means  




 0 2212 ),(
i ii yyd < ∞

Thus the d – completeness of the space, the sequence {yn}
converges to some point u in X  
So by [1.2] and [1.2] sequences {Ax2n}, {Sx2n}, {Tx2n+1} and 
{Bx2n+1} also converges to u.

Since A, B, S and T be continuous, there is a subsequence t
of {yn} such that 

 A(T(t)) A(u), T(A(u)) T(u), B(S(t))  B(u) and 
S(B(t)) S(u)
By [1.1], we get  
[1.3] A(u) = T(u) and B(u) = S(u)
Thus we can write  
[1.4] T(T(u)) = T(A(u)) = A(T(u)) = A(A(u)) and  
S(S(u)) = S(B(u)) = B(S(u)) = B(B(u)) 

We claim that Au = u. For this, suppose that Au  u.
 Then, setting x = u and y = x2n+1 in contractive condition By
[1.2], [1.3], and [1.4] we have,  
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Which is contradiction. Hence [1.5] Au = u  

From [1.3] and [1.5] we get Au = Tu = u
 Which is contradiction. Hence [1.5] Au = u

Similarly setting x = x2n and y = u in contractive condition 
[1.2], then  

This implies that [1.6] Bu = u.  
From [1.3] and [1.6] we get Bu = Su = u. Therefore , we get 
u = Au = Bu = Su = Tu. Hence u is a common fixed point of
A, B, S and T.  

Uniqueness 

The uniqueness of a common fixed point of the mappings A,
B, S and T be easily verified by using [1.2]. In fact, if w be
another fixed point for mappings A, B, S and T. Then, , we
have 
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Which is contradiction. Hence u = v. 

Hence u is a unique common fixed point of A, B, S, T in X.
This complete the proof of the theorem. 
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