# International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

# Common Fixed Point Theorem in L-Space with Rational Contraction

# Raghu Nandan Patel<sup>1</sup>, Damyanti Patel<sup>2</sup>

<sup>1</sup>Department of Mathematics, Government Mukut Dhar College, Katghora, (CG)

Abstract: Many authors are prove several theorems in L-space, using various type of mappings. In this paper, we prove common fixed point theorem in L-Space with rational contraction

Keywords: Fixed point, Common Fixed point, L-space, Continuous Mapping, Self Mapping, commutative Mappings

2000 Mathematics Subject Classification: 47H10, 54H25

#### 1. Introduction

It was shown by S. Kasahara [7] in 1976, that several known generalization of the Banach Contraction Theorem can be derived easily from a Fixed Point Theorem in an L-space. Iseki [10] has used the fundamental idea of Kasahara to investigate the generalization of some known Fixed Point Theorem in L-space.

Let N be the set of natural numbers and X be a nonempty set. Then L-space is defined to be the pair  $(X, \rightarrow)$  of the set X and a subset  $\rightarrow$  of the set  $X^N \times X$ , satisfying the following conditions:

L1 . if 
$$x_n = x \in X$$
 for all  $n \square N$ , then  $(\{x_n\}_{n \in N}, x) \in \rightarrow$   
L2 if  $(\{x_n\}_{n \in N}, x) \in \rightarrow$ , then  $(\{x_{ni}\}_{i \in N}, x) \in \rightarrow$ 

For every subsequence  $\{x_{ni}\}_{i\in\mathbb{N}}$  of  $\{x_n\}_{n\in\mathbb{N}}$ 

In what follows instead of writing  $(\{x_n\})_{n\in\mathbb{N}}$ ,  $x)\in\to$ ,we write  $\{x_n\}_{n\in\mathbb{N}}\to x$  or  $x_n\to x$  and read  $\{x_n\}_{n\in\mathbb{N}}$  converges to x. Further we give some definitions regarding L-space.

**Definition 1.** Let  $(X, \rightarrow)$  be an L-space. It is said to be separated. if each sequence in x converges to at most one point of X.

**Definition 2.** A mapping f on  $(X, \to)$  into an L-space  $(X', \to')$  is said to be 'continuous' if  $x_n \to x$  implies  $f(x_n) \to' f(x)$  for some subsequence  $\{x_n\}_{n \in N}$  for  $\{x_n\}_{n \in N}$ .

**Definition 3.** Let d- be a non negative extended real valued function on  $X \times X$ :  $0 \le d(x, y) \le \infty_i$  for all  $x, y \in X$ . The L-space is said to be d- complete if each sequence  $\{x_n\}_{n \in \mathbb{N}}$  in X with  $\sum_{i=0}^{\infty} d(x_i, x_{i+1}) < \infty$  converges to the at most one point of X

In this context Kasahara S. proved a lemma, which as follows:

#### Lemma (S. Kasahara):

Let  $(X, \rightarrow)$  be an L-space which is d- complete for a non negative real valued function d on  $X \times X$ . If  $(X, \rightarrow)$  is separated then:

d(x, y) = d(y, x) = 0 implies, x = y for all  $x, y \in X$  During the past few years many great mathematicians Yeh [13], Singh [12], Pathak and Dubey [8], Sharma and Agrawal [11], Patel, Sahu and Sao [9], Patel and Patel [10], worked for L-space. In this chapter, we similar investigation for the study of Fixed Point Theorems in L-space are worked out. We find Common Fixed Point Theorem in L-space with rational contraction

## **Theorem 1:**

Let  $(X, \rightarrow)$  be a separated L-space, which is d- complete for a non negative extended real valued function d on  $X \times X$  with d(x, x) = 0, for each x in X. Let A, B, S and T be continuous self mapping satisfying:

[1.1]: 
$$A(X) \subset T(X)$$
 &  $B(X) \subset S(X)$ , and  $AS = SA$ ,  $BT = ST$  [1.2]

and  $Bx_1 = Sx_2$ . Inductively, we construct the sequences  $\{y_n\}$ 

and  $\{x_n\}$  in X such that  $y_{2n} = Ax_{2n} = Tx_{2n+1}$  and  $y_{2n+1} = Bx_{2n+1}$ 

$$d(Ax, By) \le \alpha \left[ d(Tx, Sy) \frac{d(Tx, Ax) + d(Sy, By)}{d(Tx, By) + d(Sy, Ax)} \right] + \beta \left[ d(Tx, Ax) + d(Sy, By) \right]$$
$$+ \gamma \left[ d(Tx, By) + d(Sy, Ax) \right] + \delta d(Tx, Sy)$$

For all x, y in X, where non negative  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  such that  $0 < \alpha + 2\beta + 2\gamma + \delta < I$ , and  $0 < 2\gamma + \delta < I$  with  $Tx \neq Sy$ . Then A, B, S and T have unique common fixed point.

Now, by [1.1], we have

 $= Sx_{2n+2}$ , for n = 0, 1, 2, ...

**Proof**: Let  $x_0 \in X$  be an arbitrary point. Then, since  $A(X) \subset T(X)$ ,  $B(X) \subset S(X)$ , there exists  $x_1, x_2 \in X$  such that  $Ax_0 = Tx_1$ 

Volume 5 Issue 9, September 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20161625 534

<sup>&</sup>lt;sup>2</sup>Department of Mathematics, Government Engineering College, Bilaspur, (CG)

# International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

$$d(Ax_{2n}, Bx_{2n+1}) \leq \alpha \left[ d(Tx_{2n}, Sx_{2n+1}) \frac{d(Tx_{2n}, Ax_{2n}) + d(Sx_{2n+1}, Bx_{2n+1})}{d(Tx_{2n}, Bx_{2n+1}) + d(Sx_{2n+1}, Ax_{2n})} \right] + \beta \left[ d(Tx_{2n}, Ax_{2n}) + d(Sx_{2n+1}, Bx_{2n+1}) \right] + \gamma \left[ d(Tx_{2n}, Bx_{2n+1}) + d(Sx_{2n+1}, Ax_{2n}) \right] + \delta d(Tx_{2n}, Sx_{2n+1})$$

$$d(Ax_{2n}, Bx_{2n+1}) \leq \alpha \left[ d(Ax_{2n-1}, Bx_{2n}) \frac{d(Ax_{2n-1}, Ax_{2n}) + d(Bx_{2n}, Bx_{2n+1})}{d(Ax_{2n-1}, Bx_{2n+1}) + d(Bx_{2n}, Ax_{2n})} \right] + \beta \left[ d(Ax_{2n-1}, Ax_{2n}) + d(Bx_{2n}, Bx_{2n+1}) \right] + \gamma \left[ d(Ax_{2n-1}, Bx_{2n+1}) + d(Bx_{2n}, Ax_{2n}) \right] + \delta d(Ax_{2n-1}, Bx_{2n})$$

$$d(y_{2n}, y_{2n+1}) \le \alpha \left[ d(y_{2n-1}, y_{2n}) \frac{d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1})}{d(y_{2n-1}, y_{2n+1}) + d(y_{2n}, y_{2n})} \right] + \beta \left[ d(y_{2n-1}, y_{2n}) + d(y_{2n}, y_{2n+1}) \right]$$
$$+ \gamma \left[ d(y_{2n-1}, y_{2n+1}) + d(y_{2n}, y_{2n}) \right] + \delta d(y_{2n-1}, y_{2n})$$

$$d(y_{2n}, y_{2n+1}) \le \left[\frac{\alpha + \beta + \gamma + \delta}{1 - \beta - \gamma}\right] \left[d(y_{2n-1}, y_{2n})\right]$$

 $d(y_{2n}, y_{2n+1}) \leq q d(y_{2n-1}, y_{2n})$ 

Where 
$$q = \left\lceil \frac{\alpha + \beta + \gamma + \delta}{1 - \beta - \gamma} \right\rceil < 1$$
 for  $n = 1, 2, 3, \dots$ 

Similarly, we have

 $d(y_{2n+1}, y_{2n+2}) \le q^n d(y_0, y_1)$ 

for every positive integer n, this means

$$\sum_{i=0}^{\infty} d(y_{2i+1}, y_{2i+2}) < \infty$$

Thus the d – completeness of the space, the sequence  $\{y_n\}$  converges to some point u in X

So by [1.2] and [1.2] sequences  $\{Ax_{2n}\}$ ,  $\{Sx_{2n}\}$ ,  $\{Tx_{2n+1}\}$  and  $\{Bx_{2n+1}\}$  also converges to u.

Since A, B, S and T be continuous, there is a subsequence t of  $\{y_n\}$  such that

 $A(T(t)) \rightarrow A(u)$ ,  $T(A(u)) \rightarrow T(u)$ ,  $B(S(t)) \rightarrow B(u)$  and  $S(B(t)) \rightarrow S(u)$ 

By [1.1], we get

[1.3] A(u) = T(u) and B(u) = S(u)

Thus we can write

[1.4] T(T(u)) = T(A(u)) = A(T(u)) = A(A(u)) and

S(S(u)) = S(B(u)) = B(S(u)) = B(B(u))

We claim that Au = u. For this, suppose that  $Au \neq u$ .

Then, setting x = u and  $y = x_{2n+1}$  in contractive condition By [1.2], [1.3], and [1.4] we have,

$$\begin{split} d(Au, Bx_{2n+1}) &\leq \alpha \Bigg[ d(Tu, Sx_{2n+1}) \frac{d(Tu, Au) + d(Sx_{2n+1}, Bx_{2n+1})}{d(Tu, Bx_{2n+1}) + d(Sx_{2n+1}, Au)} \Bigg] + \beta \Big[ d(Tu, Au) + d(Sx_{2n+1}, Bx_{2n+1}) \Big] \\ &+ \gamma \Big[ d(Tu, Bx_{2n+1}) + d(Sx_{2n+1}, Au) \Big] + \delta d(Tu, Sx_{2n+1}) \\ d(Au, u) &\leq \alpha \Bigg[ d(Tu, u) \frac{d(Tu, Au) + d(u, u)}{d(Tu, u) + d(u, Au)} \Bigg] + \beta \Big[ d(Tu, Au) + d(u, u) \Big] \\ &+ \gamma \Big[ d(Tu, u) + d(u, Au) \Big] + \delta d(Tu, u) \end{split}$$

$$d(Au, u) \le (2\gamma + \delta)d(Au, u)$$

Which is contradiction. Hence [1.5] Au = u

From [1.3] and [1.5] we get Au = Tu = uWhich is contradiction. Hence [1.5] Au = u

Similarly setting  $x = x_{2n}$  and y = u in contractive condition [1.2], then

This implies that [1.6] Bu = u.

From [1.3] and [1.6] we get Bu = Su = u. Therefore, we get u = Au = Bu = Su = Tu. Hence u is a common fixed point of A, B, S and T.

#### Uniqueness

The uniqueness of a common fixed point of the mappings A, B, S and T be easily verified by using [1.2]. In fact, if w be another fixed point for mappings A, B, S and T. Then, , we have

$$d(u, w) = d(Au, Bw) \le \alpha \left[ d(Tu, Sw) \frac{d(Tu, Au) + d(Sw, Bw)}{d(Tu, Bw) + d(Sw, Au)} \right] + \beta \left[ d(Tu, Au) + d(Sw, Bw) \right]$$
$$+ \gamma \left[ d(Tu, Bw) + d(Sw, Au) \right] + \delta d(Tu, Sw)$$

## Volume 5 Issue 9, September 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20161625 535

# **International Journal of Science and Research (IJSR)**

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

 $d(u, w) \le (2\gamma + \delta)d(u, w)$ 

Which is contradiction. Hence u = v.

Hence u is a unique common fixed point of A, B, S, T in X. This complete the proof of the theorem.

#### References

- [1] A. Aliouche and V. Popa Common fixed point theorems for occasionally weakly compatible mapping via implicit relations Filomat, 22(2), 99-107, (2008).
- [2] B.E. Rhoades, Some theorem in weakly contractive maps, Nonlinear Analysis 47(2010) 2683-2693.
- [3] Bhardwaj, R.K., Rajput, S.S. and Yadava, R.N. "Application of fixed point theory in metric spaces" Thai Journal of Mathematics 5(2007) 253-259.
- [4] D. Turkoglu, O. Ozer, B. Fisher, Fixed point theorem for complete metric space, Mathemathica Nr. **9**(1999) 211-218.
- [5] G.V.R. Babu, G.N. Alemayehu, Point of coincidence and common fixed points of a pair of generalized weakly contractive map, Journal of Advanced Research in pure Mathematics 2(2010) 89-106.
- [6] Iseki K. "Some Fixed Point Theorems in L-space" Math. Seminar. Notes, kobe univ. **3**(1975), 1-11.
- [7] Kasahara S., "Some Fixed Point and Coincidence Theorem in L-space" Thesis notes, vol. 3(1975), 181-185.
- [8] Pathak H.K. and Dubey R.P. "Common Fixed Point of Three Commuting mapping in L-spaces" Acta Ciencia Indica, vol. **XV**, M, No. **2**(1989), 155-160.
- [9] Patel R.N., Sahu, D.P. and Sao G.S., "A Common Fixed Point Theorem in L-spaces" Acta Ciencia Indica, vol. XXXX, M, No. 4(2004) 771-774.
- [10] Patel R.N. and Patel D., "A Common Fixed Point Theorem in L-spaces" Acta Ciencia Indica, vol. XXXX, M, No. 4(2004) 797-800.
- [11] Sharma P.L. and Agrawal Dharmendra, "Common Fixed point theorem in L-space" Acta Ciencia Indica, vol. XVII, M, No. 4(1991) 681-684
- [12] Singh S.L. "Some common fixed point theorem in L-spaces" Math. Seminar notes vol. 7(1979), 91-97.
- [13] Yeh, C.C., "Some Fixed Point Theorems in L-space" Indian Jour. of Pure and Appl. Maths. Vol 9: 993-995, (1978).

### **Author Profile**



**Raghu Nandan Patel** is in Department of Mathematics, Government Mukut Dhar College, Katghora, (CG)



**Damyanti Patel** is in Department of Mathematics, Government Engineering College, Bilaspur, (CG)

Volume 5 Issue 9, September 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20161625 536