
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Deep Web Mining Using C# Wrappers
Rakesh Kumar Baloda1, Praveen Kantha2

1, 2BRCM College of Engineering and Technology, Bahal - 127028, Bhiwani, Haryana, India

Abstract: World Wide Web (Internet) has immense collection of information that can be extracted for building knowledge base and
business intelligence purposes. Generally that valuable information lies deep inside web databases and is not accessible directly through
surface web crawling methods. This information can only be accessed via a focused crawler or wrapper program customized for a
particular website. The wrapper can submit a set of values for form fields and imitate user actions such as mouse click or link
navigations as performed on a web browser, thus saving the response page received from a web server and can then after extract
information such as table data, links, image URLs etc after parsing the DOM structure of the document. In this research paper we
propose a C# crawler that can crawl a basic website and a set of related procedures (wrapper) which can extract (or mine) data from
that resource by making use of regular expressions (Regex) patterns.

Keywords: Deep Web, Crawling, Wrappers, Regular Expressions and Information Extraction

1. Introduction

A. Deep Web(Hidden Web)
The deep web, invisible web, or hidden web is a part of the
World Wide Web whose contents are not indexed by
standard search engines. The deep web is opposite to the
surface web. It also refers to web pages that are dynamically
generated from underlying databases. These web pages are
generated on - the - fly (at runtime) by the scripts running on
web server as a response to user query or search results.
Conventional search engines cannot index the "hidden web"
[9].

B. Crawling
A Web crawler is a program that automatically traverses the
Web’s hyperlink structure and downloads each linked page to
a local storage. Crawling (Document Retrieval) is often the
first step of Web mining process. Broadly classifying,
crawlers can be divided into two categories: universal
crawlers and topic crawlers. A universal crawler downloads
all pages irrespective of their contents, while a topic crawler
downloads only pages of certain topics (relevant to user’s
search query) [1].

C. Wrappers
Wrapper in data mining is a program that extracts content of
a particular information source and translates it into a
relational (structured) form [10].

For extracting information from a web page, a mechanism
must be set up to take as inputs, the HTML source code of
the web page and some method or pattern for extracting
information from that code. One such method is the use of
wrappers [3]. They function by given delimiters (parameters)
relating to information that is to be extracted. When
extracting information from a web page, these parameters
will be HTML tags that surround the required information.

A web data mining wrapper can be constructed using any
programming language that supports features like
Network/Socket programming and String/Text processing
(with Regular Expressions).

D. Regular Expressions (Regex)
A Regular Expression (Regex) is a pattern that the regular
expression engine attempts to match in input text. A pattern
consists of one or more characters, literals, operators or
constructs. Regex provides a concise and flexible means for
matching strings of text, such as particular characters, words
or patterns of characters.

A regular expression is written in a formal language that can
be interpreted by a regular expression processor, a program
that serves as a Parser generator or examines text and
identifies parts that match the provided specification
(pattern).

Few basic patterns and their corresponding match description
are as follows:

Basic Patterns Matches

\d a single digit (0-9)
\w alphanumeric (a-z, A-Z, 0-9 and _)
\s tabs, spaces, newline, carriage return
. Any one character
+ One or more of the previous character
* Zero or more of the previous character
? Zero or one of the previous element
(Makes it optional)

Other special characters:
\ Matches the literal that follows \
^ Match must start at the beginning of line.
$ Match must occur at the end of string.
() Captures the matched sub-expression.
{n} Matches the previous element n times.
[] Defines a character class (matches any one of a set of
 characters.
| Matches any one element. Ex: colo(r|ur)

Example:
Matching a valid phone number (206) 443-6836

\(\d\d\d\)\s\d\d\d-\d\d\d\d
Regex: \(\d{3}\)\s\d{3}-\d{4}

Paper ID: ART20161605 527DOI: 10.21275/ART20161605

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Regular Expressions (Regex) pattern matching can be
effectively used for web content mining.

We programmed a Regular Expression based data matcher
and extractor using C# language. Screenshot image of the
RegexBuilder application is shown as below:

Figure 1: RegexBuilder, (a Regular Expression based Data
Extractor)

Such a tool is helpful in writing error free Regex patterns and
quickly checking these against test data when creating a
supervised wrapper for data extraction.

2. Web Data Extraction System

A web data extraction system is a software system that
automatically and repeatedly extracts data from web pages
with changing content and delivers the extracted data to a
database or some other software application [6].

The task of web data extraction performed by such a system
is usually divided into five different functions:
1)Crawling: (or web interaction), which comprises mainly

the navigation to usually pre-determined target web pages
containing the desired information and storing those
resources to local system.

2)Support for wrapper generation and execution: where a
wrapper is a program that identifies the desired data on
target pages, extracts the data and transforms it into a
structured format.

3)Scheduling: which allows repeated application of
previously generated wrappers to their respective target
pages.

4)Data Transformation: which includes filtering,
transforming, refining, and integrating data extracted from
one or more sources and structuring the result according to
a desired output format (usually XML or relational tables);
and

5)Data Loading: delivering the resulting structured data to
external applications such as database management
systems, data warehouses, business software systems,
content management systems, decision support systems,
RSS publishers, email servers, or SMS servers.

Alternatively, the output can be used to generate new web
services out of existing and continually changing web
sources.

Figure 2: Architecture of a typical Web Data Extraction
System

Figure 2 depicts a high-level view of a typical full-fledged
semi-automatic interactive web data extraction system. This
system comprises several tightly connected components and
interfaces three external entities: (1) the Web, which contains
pages with information of interest; (2) a target application, to
which the extracted and refined data will be ultimately
delivered; and (3) the user, who interactively designs the
wrapper [6].

3. Steps for writing a script for web crawling.

Strategic approaches may be taken to target deep web
content. With a technique called screen scraping, specialized
software may be customized to automatically and repeatedly
query a given Web form with the intension of aggregating the
resulting data. Data extracted from the results of one Web
form submission can be taken and applied as input to another
Web form thus establishing continuity across the Deep Web
in a way not possible with traditional web crawlers [6].

Here we describe a few general steps that may be followed in
the order specified, to crawl a basic webpage:
(1) Website Analysis: First the target website needs to be

analysed for :
(a) Protocol used (http or https), the top level domain URI

(Uniform Resource Identifier), Request method (GET
/ POST) used in the Search (Query) Form. HTTP
Network Packet Analyser software such as Wireshark
or HttpFox (a packet sniffer for Mozilla Firefox

Paper ID: ART20161605 528DOI: 10.21275/ART20161605

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

browser) comes as handy tool for this as well as for
studying the website navigation and pagination
behaviour.

(b) Identify the key-value pairs (parameters) necessary in
the Request of form submission.

(c) Observe the HTTP Request Headers of the browser,
The Response Headers from the Server, type of
response received (text/html, XML, JSON). This is
required for making any adjustment in the
Request.Accept parameters while submitting the same
request via the Intelligent Agent.

(d) Check whether the target page (that contains the
desired data) has been received directly by the request
submission or any URL redirection (Status Code:
301/303) is involved in-between.

(2) Request Submission via Intelligent Agent: Submit an http
request through the crawler (wrapper) as identical to the
request submitted by the web browser [Analysed in step
1(b) via network monitoring tool]. Make sure that the
submitted URL is in encoded form.

(3) Store the response (received from the Server) on your
Local System as .HTML file or generate its Snapshot.

(4) Comparison with the Live Site: Compare the HTML
source code of the received response with that of the live
site or records captured by the Network Analyser. Make
adjustments in Request Headers like User-Agent, Accepts
etc (if necessary).

4. Sample code for crawler script

(1) Crawling a simple webpage :
The URI class in C# checks to see if the URL is valid.

To open a Stream, we must first obtain a WebRequest object.
This object can be obtained by calling the Create function of
the HttpWebRequest class. The Create function accepts a
URI to specify which page to be downloaded.

From the WebRequest object we can obtain an
HttpWebResponse object. The HttpWebResponse object
allows us to obtain a stream by calling GetResponseStream.
The below code demonstrates how this is accomplished [7].

The StreamReader class provides the ReadToEnd function
that will read until the end of the stream has been reached.

(2) Saving the HTML page to your local disk :

Above code saves the crawled webpage as
“DownloadedPage.html” (on local system) using the
StreamWriter Class.

(3) Sending a POST Request: [8]

Paper ID: ART20161605 529DOI: 10.21275/ART20161605

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Identifying the Browser Type

The browser type can be determined from the user-agent
HTTP request header. We can easily set the value of this, or
any HTTP request header using the set method of the
Headers collection.

Calling Sequence

A variety of operations can be performed on the
HttpWebRequest and HttpWebResponse classes. However,
these operations must follow a very specific order.

All request information must be set before we begin working
with the response. The general order that we should follow is:

• Step 1: Obtain a HttpWebRequest object.
• Step 2: Set any HTTP request headers.
• Step 3: POST data, if this is a POST request.
• Step 4: Obtain a HttpWebResponse object.
• Step 4: Read HTTP response headers.
• Step 5: Read HTTP response data.

If we ever face a bug where it seems the request headers are
being ignored, then there is a need to check whether we are
not already calling a method related to the response before
setting the header. All headers must be set before the request
is sent.

5. General Steps for Data Extraction

Once we have the desired pages (HTML or XML) crawled to
our local system, the data extraction process can be initiated.

Steps for Manual (Supervised) Wrapper Induction are as
follows:
(1) Place the pages which have a common style of

appearance (html visual elements) into a common
directory (Extraction Folder).

(2) Select a page, view its source code using Adobe
Dreamweaver (EditPlus or any other source code
editor/syntax highlighter). It helps in identifying logical
separators between different data element sections and
records. Identify the html/xml tags which acts as a
separator (generally like <hr />, </tr> or closing </div>
tags).

(3) Page Content Filtering : Eliminate advertisement
content, header – footer, navigation menu tags using the
proper extraction/string processing functions available
with the wrapper development tool, So that only the
desired content portion is available for extraction. This
step is also known n as Pre-processing before Data
Extraction.

(4) Page Chunking: Divide the data content portion into
logically separated records (blocks) such as a array of
text items (String array) based on the separator tag [as
Identified in Step 2]. An auto increment Chunk_id
should be generated for each record chunk.

(String) Text_to_Array (source_content,
<separator_tag | Regex Pattern>)

(5) Write Regular Expression (Regex Patterns) to extract
individual data records (data sets).

(6) Export the extracted records as .CSV file and Upload to
database/data warehouse.

6. Overview of Data Extraction Functions

Method (or Function) for extracting String (text content)
between two HTML/XML tags (represented by token1 and
token2). Here Count represents that after how many
occurrences of token1 we should start the lookup.

Alternatively we can make use of Regular Expressions to
extract text:

(a) Text before any specified tag.

Paper ID: ART20161605 530DOI: 10.21275/ART20161605

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

(b) After any specified tag.

(c) Between any two html tags.

7. Applications of Web Data Mining

Web data mining can be used in the following sectors:
1)Business and Competitive Pricing Intelligence.
2)Publishing and Media.
3)Information Technology sector and Internet.
4)Banks, Insurance and Financial markets.
5)Market Analysis, Fraud Detection, and Customer

Retention.
6)Social Web Mining (Twitter, Blog, RSS Feed), Public

Administration and Legal Documents.
7)Pharmaceutical, Research and Healthcare.

8. Conclusions

This paper focuses on approaches to extract valuable
information from the web (or unstructured textual
information), combining methods from information retrieval
and text mining.

We have also discussed a prototype of a general web data
extraction system in C# language and its application in deep
web mining. Such a wrapper can crawl (or fetch) and extract
real time information from web (required in case of Stock
Exchange or Forex Trading etc). Traditional search engines
fail to provide real time vital information as they crawl, store
and index the web pages periodically (on timely basis, say 15
days, 1 week or 24 hours at the most).

Our further work involves an evolution of this system into a
script/query based crawler, a click - point facility for auto
code generation, browser automation and data extraction
system.

References

[1] Ankita Dangre, Vishakha Wankhede, Priyanka Akre,
Puja Kolpyakwar Design and Implementation of Web
Crawler, International Journal of Computer Science and
Information Technologies (IJCSIT), Vol.5(1), 2014,
921-922

[2] T. Sunil kumar, Dr. K. Suvarchala: Web Data Mining
Challenges and Application for Information Extraction -
IOSR Journal of Computer Engineering (IOSRJCE),
Volume 7, Issue 3 (Nov-Dec.2012), PP 24-29.

[3] Nicholas Kushmerick, Daniel S.Weld, Robert
Doorenbos, “Wrapper Induction for Information
Extraction”, IJCAI-97.

[4] Rakesh Kumar Baloda, Praveen Kantha: Deep Web
Mining and its Application in Business Intelligence,
IJCSIT Vol. 7 (4), 2016, 1936-1939

[5] Bing Liu, Web Data Mining – Exploring Hyperlinks,
Contents and Usage Data, Springer 2007.

[6] Robert Baumgartner, Wolfgang Gatterbauer, Georg
Gottlob: Web Data Extraction System.

[7] Jeff Heaton, HTTP Programming Recipes for C# Bots
(2007), Publisher : Heaton Research Inc. St. Louis

[8] How to: Send Data Using the WebRequest Class –
MSDN

[9] Wikipedia(www.wikipedia.org)
https://en.wikipedia.org/wiki/Deep_Web

[10] Wikipedia:
https://en.wikipedia.org/wiki/Wrapper_(data_mining)

Author Profile

Rakesh Kumar Baloda received his B.E. degree in
Computer Science & Engineering from BRCM College
of Engineering and Technology Bahal in year 2004.
After that he worked with Electrobug Technologies
Ltd. and QL2 Software on Web Data Mining,

Extraction and Business Intelligence projects. He is now pursuing
his M.Tech in Computer Science & Engineering from BRCM
College of Engineering & Technology Bahal, Bhiwani, Haryana
(India). His areas of interests include web programming, real-time
web data mining and extraction.

Praveen Kantha holds MCA and M.Tech degree in
Computer Science & Engineering. He is currently
working as an Assistant Professor in Computer Science
& Engineering department of BRCM College of
Engineering & Technology Bahal, Bhiwani, Haryana

(India). He is passionate about teaching and research work. His
areas of interests include DBMS, Data Mining, Network Security
and Cryptography.

Paper ID: ART20161605 531DOI: 10.21275/ART20161605

