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Abstract: The Weibull distribution has been observed as one of the most useful distributions, for modeling and analyzing lifetime data
in Engineering, Biology, Survival and other fields. Studies have been done vigorously in the literature to determine the best method in
estimating its parameters. In this paper, we examine the performance of Maximum Likelihood Estimator and Bayesian Estimator using
Extension of Jeffireys’ Prior Information with three Loss functions, namely, the Linear Exponential Loss, General Entropy Loss, and
Square Error Loss for estimating the Constant Shape Bi-Weibull failure time distribution. These methods are compared using Mean
Square Error through Simulation Study with varying sample sizes. The results show that Bayesian Estimator using Extension of
Jeffireys’ Prior under Linear Exponential (LINEX) Loss function in most cases gives the smallest Mean Square Error and Absolute Bias
for both the scale parameter ¢ and the shape parameter [} for the given values of Extension of Jeffreys’ Prior. An illustrative example is
also provided to explain the concepts.
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1. Introduction

The Weibull distribution is widely used in Reliability and
life data analysis due to its versatility. Depending on the
values of the parameters, the Weibull distribution can be
used to model a variety of life behaviours. An important
aspect of the Weibull distribution is how the values of the
shape parameter, f#, and the scale parameter, o, affect the
characteristics life of the distribution, the shape/slope of the
distribution curve, the Reliability Function, and the Failure
Rate. It has been found that this distribution is satisfactory in
describing the life expectancy of components that involve
fatigue and for assessing the Reliability of bulbs, ball
bearings, and machine parts according to [13].The primary
advantage of Weibull analysis according to [1] is its ability
to provide accurate Failure Analysis and Failure Forecasts
with extremely small samples. With Weibull, solutions are
possible at the earliest indications of a problem without
having to pursue further. Small samples also allow cost-
effective  component testing. Maximum Likelihood
Estimation (MLE) has been the most widely used method for
estimating the parameters of the Constant Shape Bi-Weibull
distribution. In recent, work we developed Functional
Relationship between Brier Score and Area Under the
Constant Shape Bi-Weibull ROC Curve [8] and Confidence
Intervals Estimation for ROC Curve, AUC and Brier Score
under the Constant Shape Bi-Weibull Distribution [7].

Now the main objective of this paper is to compare the
traditional Maximum Likelihood Estimation of the
parameters of the Constant Shape Bi-Weibull distribution
with its Bayesian counterpart using Extension of Jeffreys*
Prior Information obtained from Lindley's approximation
procedure with three Loss Functions. Recently, Bayesian

Estimation approach has received great attention by most
researchers among them is [4]. They considered Bayesian
Survival Estimator for Weibull distribution with censored
data. While [2] studied Bayesian Estimation for the extreme
value distribution using progressive censored data and
Asymmetric Loss. Bayes Estimator for Exponential
distribution with Extension of Jeffreys™ Prior Information
was considered by [5]. Others including [3, 6, and 10] did
some comparative studies on the estimation of Weibull
parameters using complete and censored samples and [9]
determined Bayes Estimation of the extreme-value
Reliability function.

In this paper, the Bayesian Estimation of Parameters under
the Constant Shape Bi-Weibull Distribution is studied by
Using Extension of Jeffreys™ Prior Information with Three
Loss Functions. This paper is organized as follows: In
Section 2, estimation of parameters under MLE and
Extension of Jeffreys™ Prior Information with Three Loss
functions are discussed. Section 3, provides simulation study
for proposed theory. In Section 4, the proposed theory is
validated by using real data. Finally conclusions are provided
in Section 5.

2. Materials and Methods

Let t; t,  t,be a random sample of size n with respect to the
Constant Shape Bi-Weibull distribution, with ¢ and f# as the
parameters, where o is the scale parameter and £ is the shape
parameter. The Probability density function (pdf), and
Cumulative distribution function (cdf), are given,
respectively,
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£(b) = gtﬂ_le_[é]. 1)

The Cumulative distribution function (CDF) is
tB
Fit)=1—¢ ["] (2)

2.1 Maximum Likelihood Estimation of Constant Shape
Bi-Weibull Distribution

Since (t;, t; _ t, ) is the set of » random lifetimes from the
Constant Shape Bi-Weibull distribution, with ¢ and # as the
parameters, where o is the scale parameter and f is the shape
parameter.

The likelihood function of the pdf is
t;#

L(t,0,B) = ﬁgtiﬁ_le_[T]. (3)
i=1

The log-likelihood function is

m n
1
InL = ninB + (B — 1) [Z lntil _ ning — —Z th. (4)
i=1 o=
By differentiating the equation (4) with respect to ¢ and
and equating to zero, we get
dlnL n Yr.tf
I U (5)

do

n g TLO-Z
alnL—n+ Int 1Ztﬁlt =0 6
aﬂ _ﬁ '_1ni 0_._11' ni_ . ()

From equation (5), we get
n

6=%Ztiﬁ . )

i=1

First we shall find B and so that & can be determined. So that
we propose to find B by using Newton-Raphson method as
given below. Let f(B) be the same as equation (6) and
taking the first differential of f(B), we have

n

@ =—(g) =y th )t . @
fB)= B2 p - i \Unt; . 3
By substituting equation (7) into equation (6), we call f(8)
as

n v ntf It
fB) =4+ E Int;| ——=——— . €)
B 1 n B
i=1 ﬁ i=1 ti

Substituting equation (7) into equation (8), we obtain

n_+B )2
f’(ﬁ)z_ %+M (10)
g n &i=1 tiﬁ

Therefore, B is obtained from the equation below by
carefully choosing an initial value § as B; and iterating the
process till it converges:

n B nt
B 5 ] - bt
n =1 i
Biv1 =P — a
_{n T tf (nt )
1
g n Py tf

2.2 Bayesian Estimation of Constant Shape Bi-Weibull
Distribution

Bayesian Estimation approach has received a lot of attention
in recent times for analyzing Failure Time data, which has
mostly been proposed as an alternative to that of the
traditional methods. Bayesian Estimation approach makes
use of once prior knowledge about the parameters as well as
the available data. When once prior knowledge about the
parameter is not available, it is possible to make use of the
noninformative prior in Bayesian analysis. Since we have no
knowledge on the parameters, we seek to use the Extension
of Jeffreys™ Prior Information, where Jeffreys™ Prior is the
square root of the determinant of the Fisher information.
According to [5], the extension of Jeffreys™ prior is by
taking u(0) o [1(0)]°, ceR™, so that
2c

w(®) o [%] . (12)

Thus,

u(o, B) x [%]2 (13)

Given a sample t= (t;_ t,
the pdf (1) is

t,) from the likelihood function of

t[ﬁ

L(t;| 0,p) = ﬁgtiﬂ*e'[ﬂ. (14)
i=1

With Bayes theorem, the joint posterior distribution of the
parameters ¢ and f is

" (c, Bt) o« L(t| o, B)u(o, ) ,
kT et
Lt 1o, p) = antzﬁ_le [G ] (15)
i=1

where k is the normalizing constant that makes 1" a proper
pdf.

2.2.1 Asymmetric Loss Functions

Here we consider two Asymmetric Loss Functions namely
Linear Exponential Loss Function (LINEX) and General
Entropy Loss Function.

2.2.1(a) Linear Exponential Loss Function (LINEX)
The LINEX Loss Function is under the assumption that the

minimal loss occurs at § = 0 and is expressed as
L(0—0) xexp(a(0—0))—a(d-0)-1, (16)

where @ is an estimation of ® and a # 0. The sign and
magnitude of the shape parameter ,a" represents the direction
and degree of symmetry, respectively. There is
overestimation if a > 0 and underestimation if a < 0 but
when a = 0, the LINEX Loss Function is approximately
the Squared Error Loss Function. The posterior expectation
of the LINEX Loss Function, according to [10], is

EoL(8 — 0) « exp(ad)E, (exp(—ah))
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—a(d—Ey(6))—1. (17)

The Bayes Estimator of 0, represented by 85, under LINEX
Loss Function, is the value of ® which minimizes equation
(17) and is given as

~ 1
Og, = —Eln Eq(exp(—a®)). (18)

Provided Ey(exp(—a0f) exists and is finite. The Bayes
Estimator #ig; of a function

u = u(exp(—ao), exp(—ap)) is given as

p, = E(exp(~ao), exp(—ap)|t)
_ [T ulexp(=a0), exp(=ap)Ix* (0, f)dodp
[ (o,p)dodp '

(19)

From (19), it can be observed that ratio of integrals which
cannot be solved analytically and for that we employ
Lindley*s approximation procedure to estimate the
parameters. Lindley considered an approximation for the
ratio of integrals for evaluating the posterior expectation of
an arbitrary function (@) as

[ u(@)v(6)[L(6)]d6

O = ) 1L @)1as

(20)

According to [11], Lindley*s expansion can be approximated
asymptotically by

~ 1
0=u+ > [u11611 + Uz2052] + Uy p1 611 + UpP2052

(2D

1
+ E[L30u15211 + L03U,26222] )

where L is the log-likelihood function in equation (4),

u(o) = exp(—ao), u; = 2 = —a exp(—ao),

do
2
Uy = Z—Z = —a? exp(—aa) Uy = Uy, =0,
u(p) = exp(—ap), u, = — = —aexp(—ap),
aZ
U2 = azﬁ —a® exp(— aﬂ) u =up =0,

p(o, ﬂ) = —ln(JZC) - ln(ﬁzc)

pP1 = 00’ - = Zc’ P2 = aﬁ ﬁZC H
011 = (= Lzo)_I, 822 = (—Lo2) 7%,

1
Lo, = — (l%) — = 2= t,? (Int; )2,

1
Loz =2 (i) - _Zr‘l 16 (Int; )3,

n B

Ly =2 - 221 19 and Loy = —2 L 4 L

2.2.1(b) General Entropy Loss Function
Another useful Asymmetric Loss Function is the General
Entropy (GE) Loss which is a generalization of the Entropy

Loss and is given as
~k ~
—kin 9 -1
7 .

L(6— 6) (g)

The Bayes Estimator 8gg of © under the General Entropy
Loss is

(22)

Bpe =LE, (07 F @3)

provided E,(67%) exists and is finite. The Bayes Estimator
for this Loss Function is

tige = E{ulo™ "‘]It}
ff ok ,B¥]n* (0, B)dadp
Jf 7 (o, B)dodp '
Applying the same Lindley approach here as in (21) with u,,
u;; and u,, u,, are the first and second derivatives for ¢ and
J, respectively, and are given as

(24)

du

u= [o-_k] 9u1 = % = _k[o-_k_l]’
a? k-
Uy = ﬁ = —(=k* —k)o™*72,
Uy = Uy =0,
_ d
u= (574 uy = 2 = —k[p™ 1,
Uyy = Z—“ = —(—k?—k)B* 2 and u; =uy; = 0.

2.2.2 Symmetric Loss Function
The Squared Error Loss is given by

L(0—0) « (0—0)".

This Loss Function is symmetric in nature, that is, it gives
equal weightage to both over and under estimation. In real
life, we encounter many situations where overestimation may
be more serious than underestimation or vice versa. The
Bayes Estimator #igg of a function u = u(o,f) of the
unknown parameters under Square Error Loss Function
(SELF) is the posterior mean, where

tigs = E{ulo, Bl|t}
_ _ JJulo, Bl 7" (0, B)dodp
[ 7n*(o,B)dodB

(25)

Applying the same Lindley approach here as in (21) where
uy, u;; and u,, u,, are the first and second derivatives for ¢
and B, respectively, and are given as

u
—=1,u; =u; =uy =0,

U=0,u =

du
u=ﬁ,u2=£:1,u22= u; =ug =0.

3. Simulation Study

Since it is difficult to compare the performance of the
estimators theoretically and also to validate the data
employed in this paper, we have performed extensive
simulations to compare the estimators through Mean Squared
Errors and Absolute Biases by employing different sample
sizes with different parameter values. The Mean Squared
Error and Absolute Bias given as

5000 g — 5000| g 9
( ) ,and Abs = Z—' .

MSE_ R—1 R—1

(26)

In our Simulation study, we chose a sample size of n= 25,
50, and 100 to represent small, medium, and large dataset.
The scale and shape parameters are estimated for Constant
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Shape Bi-Weibull distribution with Maximum Likelihood
and Bayesian using Extension of Jeffrey"s Prior methods.

The values of the parameters chosen are ¢ = 0.5 and 1.5,
B =0.8and 1.2. The values of Jeffreys™ Extension are
¢ = 0.4 and 1.4. The values for the Loss parameters (a, k)
are a=k=+0.6 and +1.6. These were iterated (R) 5000 times
and the scale and shape parameters for each method were

calculated. The results are presented below for the estimated
parameters and their corresponding Mean Squared Error and
Absolute Bias values.

In Table 3.1 we present the estimated values for the scale
parameter ¢ for both the Maximum Likelihood Estimation
and Bayesian Estimation using extension of Jeffrey™s prior
information with the three loss functions.

Table 3.1: Estimated values for Scale Parameter (o)

i i o | Gc | Ge | 6 | Gm | Ges | Gm | O

no| o c | B} G | O a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-16
25 | 05| 04 | 0.8 ] 0.4924 | 0.5236 | 0.7289 | 1.5027 | 1.3664 | 0.6751 | 0.4264 | 3.0624 | 2.2802 | 0.3613
05| 04 | 1.2 | 0.3891 | 0.5548 | 0.7140 | 1.4681 | 1.3899 | 0.6975 | 0.3995 | 2.9520 | 2.3698 | 0.3992
05| 1.4 | 0.8 | 0.6006 | 0.4768 | 0.7501 | 1.5786 | 1.3293 | 0.6391 | 0.4618 | 3.4361 | 2.1226 | 0.3099
05| 1.4 | 1.2 | 0.4824 | 0.4689 | 0.7531 | 1.6035 | 1.3220 | 0.6317 | 0.4654 | 3.6041 | 2.0842 | 0.3038
1.5 04 | 0.8 | 1.3972 | 1.5691 | 0.3820 | 0.7798 | 2.5155 | 1.3036 | 0.0685 | 0.5345 | 10.771 | 2.0968
1.5 04 | 1.2 | 1.5376 | 1.5509 | 0.3878 | 0.7824 | 2.4968 | 1.2955 | 0.0733 | 0.5357 | 10.712 | 2.0520
1.5 1.4 | 0.8 | 1.3342 | 1.6278 | 0.3669 | 0.7632 | 2.5971 | 1.3327 | 0.0587 | 0.5072 | 11.647 | 2.2212
1.5 1.4 [ 1.2 | 1.6934 | 1.5675 | 0.3848 | 0.7748 | 2.5275 | 1.3050 | 0.0726 | 0.5196 | 11.204 | 2.0801
50 [ 05| 04 | 0805082 | 0.5107 | 0.7353 | 1.5101 | 1.3574 | 0.6667 | 0.4387 | 3.0489 | 2.2501 | 0.3443
05| 04 | 1.2 | 0.4254 | 0.5191 | 0.7313 | 1.5016 | 1.3636 | 0.6726 | 0.4314 | 3.0256 | 2.2588 | 0.3483
05| 1.4 | 0.8 | 05650 | 0.4874 | 0.7458 | 1.5501 | 1.3387 | 0.6485 | 0.4560 | 3.2535 | 2.1694 | 0.3191
05| 1.4 | 1.2 | 04071 | 0.4811 | 0.7481 | 1.5732 | 1.3326 | 0.6422 | 0.4583 | 3.4152 | 2.1356 | 0.3149
15| 04 | 0.8 | 1.6224 | 1.5218 | 0.3984 | 0.7836 | 2.4746 | 1.2839 | 0.0830 | 0.5292 | 10.861 | 1.9734
1.5 04 | 1.2 | 1.9561 | 1.5135 | 0.4012 | 0.7844 | 2.4672 | 1.2804 | 0.0855 | 0.5286 | 10.867 | 1.9522
1.5 1.4 | 0.8 | 1.4024 | 1.5549 | 0.3893 | 0.7754 | 2.5177 | 1.2999 | 0.0767 | 0.5170 | 11.262 | 2.0463
1.5 1.4 [ 1.2 | 1.6692 | 1.5349 | 0.3953 | 0.7792 | 2.4948 | 1.2907 | 0.0813 | 0.5209 | 11.120 | 1.9993
100 | 0.5 | 0.4 | 0.8 | 0.5551 | 0.5042 | 0.7386 | 1.5139 | 1.3523 | 0.6620 | 0.4445 | 3.0410 | 2.2329 | 0.3347
05| 04 | 1.2 | 0.4654 | 0.5070 | 0.7373 | 1.5113 | 1.3544 | 0.6639 | 0.4431 | 3.0379 | 2.2407 | 0.3384
05| 1.4 | 0.8 | 05928 | 0.4941 | 0.7431 | 1.5317 | 1.3446 | 0.6545 | 0.4525 | 3.1346 | 2.1993 | 0.3248
05| 1.4 | 1.2 | 0.3900 | 0.4902 | 0.7445 | 1.5463 | 1.3408 | 0.6506 | 0.4537 | 3.2383 | 2.1782 | 0.3224
1.5 0.4 | 0.8 | 1.2553 | 1.5257 | 0.3978 | 0.7815 | 2.4828 | 1.2863 | 0.0874 | 0.5259 | 11.006 | 1.9793
1.5 04 | 1.2 | 1.7461 | 1.5089 | 0.4031 | 0.7840 | 2.4653 | 1.2788 | 0.0831 | 0.5244 | 10.941 | 1.9383
1.5 1.4 | 0.8 | 1.4984 | 1.5228 | 0.3993 | 0.7806 | 2.4833 | 1.2855 | 0.0847 | 0.5208 | 11.107 | 1.9689
1.5 1.4 | 1.2 | 1.8155 | 1.5144 | 0.4018 | 0.7821 | 2.4739 | 1.2817 | 0.0867 | 0.5222 | 11.065 | 1.9535

ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Table 3.1 it is observed that Bayes estimator under
LINEX and General Entropy Loss functions tend to
underestimate the scale parameter with MLE and Bayes
estimation with Squared Error loss function slightly
underestimating it. In Table 3.2 we present the estimated

Table 3.2: Estimated values for Shape Parameter ()

values for the shape parameter B for both the Maximum
Likelihood Estimation and Bayesian Estimation using
extension of Jeffreys prior information with the three loss
functions.

. . BaL Bre BaL Bae Ba | Bee B | Bee

n c c p B Bas a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6

25 05| 04 0.8 | 0.8838 | 0.7872 | 0.6218 1.1671 | 1.5992 | 0.8638 | 0.2783 | 1.5358 | 3.4535 | 0.6898
05| 04 1.2 1.1513 | 0.5548 | 0.7140 | 1.4681 | 2.0154 | 1.1002 | 0.1461 | 0.8023 | 6.3088 | 1.3124
0.5 1.4 0.8 | 0.9366 | 0.7775 | 0.6253 1.1763 | 1.5896 | 0.8573 | 0.2822 | 1.5683 | 3.3930 | 0.6768
0.5 1.4 1.2 1.1012 | 1.1872 | 0.4874 | 09122 | 2.0261 | 1.1053 | 0.1432 | 0.7963 | 6.3849 | 1.3311
1.5 0.4 0.8 0.7788 | 0.7973 0.6185 1.1550 | 1.6103 | 0.8711 | 0.2752 | 1.4880 | 3.5305 | 0.7019
1.5 0.4 1.2 1.2821 | 1.1916 0.4864 | 0.9096 | 2.0323 | 1.1079 | 0.1426 | 0.7895 | 6.4524 | 1.3378
1.5 1.4 0.8 0.8861 | 0.7899 0.6211 1.1626 | 1.6026 | 0.8660 | 0.2780 | 1.5160 | 3.4809 | 0.6922
1.5 1.4 1.2 1.1041 | 1.2011 0.4846 | 0.9018 | 2.0484 | 1.1143 | 0.1425 | 0.7673 | 6.6597 | 1.3496

50 05| 04 0.8 | 0.8905 | 0.7941 0.6201 1.1545 | 1.6082 | 0.8696 | 0.2780 | 1.4799 | 3.5292 | 0.6954
05| 04 1.2 1.2864 | 1.1887 | 0.4885 | 0.9066 | 2.0341 | 1.1077 | 0.1459 | 0.7769 | 6.5419 | 1.3257
0.5 1.4 0.8 | 0.9124 | 0.7887 | 0.6220 | 1.1597 | 1.6028 | 0.8659 | 0.2802 | 1.4979 | 3.4954 | 0.6881
0.5 1.4 1.2 1.2598 | 1.1930 0.4872 | 0.9046 | 2.0395 | 1.1101 | 0.1450 | 0.7724 | 6.5949 | 1.3339
1.5 0.4 0.8 0.8170 | 0.7988 0.6186 1.1486 | 1.6134 | 0.8730 | 0.2767 | 1.4561 | 3.5664 | 0.7008
1.5 04 1.2 1.1994 | 1.1987 | 0.4864 | 0.8993 | 2.0498 | 1.1141 | 0.1453 | 0.7570 | 6.7361 | 1.3401
1.5 1.4 0.8 | 0.7163 | 0.7945 | 0.6201 1.1532 | 1.6089 | 0.8700 | 0.2782 | 1.4731 | 3.5369 | 0.6952
1.5 1.4 1.2 1.1244 | 1.2011 0.4855 0.8987 | 2.0522 | 1.1153 | 0.1445 | 0.7563 | 6.7482 | 1.3451

100 | 0.5 | 04 0.8 | 0.8301 | 0.7970 | 0.6194 | 1.1489 | 1.6122 | 0.8722 | 0.2779 | 1.4559 | 3.5646 | 0.6978
05| 04 1.2 1.0879 | 1.1945 | 0.4876 | 0.9013 | 2.0444 | 1.1117 | 0.1462 | 0.7618 | 6.6852 | 1.3328
0.5 1.4 0.8 | 0.7808 | 0.7950 | 0.6202 1.1506 | 1.6102 | 0.8708 | 0.2789 | 1.4599 | 3.5514 | 0.6946
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0.5
1.5
1.5
1.5
1.5

1.4
0.4
0.4
1.4
1.4

1.2 | 1.2115
0.8 | 0.8323
1.2 | 1.1115
0.8 | 0.8429
1.2 | 1.2494

1.1964
0.7990
1.1993
0.7974
1.2004

0.4870
0.6187
0.4865
0.6194
0.4861

0.9005
1.1471
0.8980
1.1479
0.8977

2.0468 | 1.1128
1.6141 | 0.8735
2.0518 | 1.1147
1.6127 | 0.8725
2.0530 | 1.1153

0.1458 | 0.7597
0.2771 | 1.4485
0.1459 | 0.7526
0.2781 | 1.4499
0.1455 | 0.7521

6.7075 | 1.3361
3.5746 | 0.7004
6.7730 | 1.3395
3.5684 | 0.6976
6.7849 | 1.3417

ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

For the shape parameter B, it is clear from Table 3.2. Bayes
estimator under LINEX Loss functions provides the smallest
values compared to the others in most cases especially

In Table 3.3 we present the Mean Square Error estimated
values for the scale parameter ¢ for both the MLE and
Bayesian Estimation using extension of Jeffrey*s prior

a=k=1.6. information with the three loss functions.
Table 3.3: MSE Estimated Parameter (o) of Constant Shape Bi-Weibull Distribution
) | 1 oBL | 1 ) | 056 ) Gpg
n o ¢ B GuL Bps a=k=0.6 a=k=-0.6 a=k=1.6 a=k=-1.6
25 |05 |04 |08 |0.01924 |3.9¢-07 |9.4¢-08 |2.4e-07 |2.0e-07 | 1.81e-07 |3.3e-07 | 2.36e-07 | 2.5¢-06 | 6.42¢-07
0.5 (04 | 1.2 |0.01217 |4.7e-06 | 1.0e-06 | 6.6e-06 |2.7¢-06 |2.47e-06 |3.3e-06 | 8.43e-05 |4.0e-05 | 6.74e-06
0.5 [ 1.4 | 0.8 |0.01876 |2.9e-07 |4.3e-08 |2.7¢-06 |2.4e-07 |2.49¢-07 | 6.4e-08 | 0.00012 | 6.6e-06 | 1.78e-07
0.5 [ 1.4 | 1.2 |0.02618 | 1.9¢-07 |3.1e-08 | 1.6e-06 | 1.5¢-07 | 1.62e-07 | 5.3¢-08 | 6.84e-05 |4.1e-06 | 1.38e-07
1.5 |04 | 0.8 [021533 |1.1e-06 | 1.3e-07 |5.3e-09 | 7.7e-07 | 1.89¢-07 | 1.1e-07 | 2.51e-08 | 1.0e-05 | 7.82e-06
1.5 |04 | 1.2 [0.12672 | 1.1e-05 | 1.1e-06 |3.0e-07 | 1.3e-05 | 2.38e-06 | 7.4e-07 | 1.64e-07 | 0.0002 | 6.91e-05
1.5 | 1.4 | 0.8 [0.22339 |2.4e-07 |2.4e-08 |6.0e-08 |2.7e-07 |4.91e-07 | 1.5e-08 |2.65¢-09 |4.7¢-06 | 1.44e-06
1.5 | 1.4 | 1.2 [0.30899 |1.0e-07 |1.0e-07 |2.0e-08 | 1.0e-06 |2.02e-07 | 7.4e-08 | 2.99¢-09 | 8.9¢-06 | 6.38e-06
50 |05 [04 |08 |0.15144 | 1.3e-08 |3.5¢-09 |2.2¢-09 |6.5¢-09 |5.57e-09 | 1.3e-08 | 8.78¢-08 | 6.4e-08 | 2.54e-08
0.5 [04 | 1.2 |0.12541 |2.2e-08 |5.7e-09 |5.8¢-09 |1.1e-08 | 9.53e-09 |2.1e-08 | 6.30e-08 | 1.1e-07 | 4.07¢-08
0.5 (1.4 | 0.8 |0.11348 |4.7¢-08 | 7.5e-09 |3.7¢-07 |3.7¢-08 | 3.82e-08 | 1.2¢-08 | 1.59¢-05 |9.7e-07 | 3.31e-08
0.5 [ 1.4 | 1.2 |0.18305 |2.5¢-08 |4.0e-09 | 1.8¢-07 |1.9¢-08 | 1.97e-08 | 7.4e-09 | 7.57¢-06 | 4.9¢-07 | 1.86e-08
1.5 |04 | 0.8 |1.39003 |7.3e-08 | 1.0e-08 |1.1e-12 |3.1e-08 | 1.08e-08 | 9.5¢-09 | 8.36e-09 |5.2e-06 | 5.75e-07
1.5 |04 | 1.2 | 1.42004 | 6.8¢-08 |9.9¢-09 |2.4e-14 |2.8e-08 | 1.01e-08 |9.0e-09 | 8.28e-09 |5.2e-06 | 5.41e-07
1.5 | 1.4 | 0.8 | 1.03816 |4.6e-07 |4.5¢-08 |1.0e-08 |5.0e-07 |9.11e-08 | 3.0e-08 | 3.46e-09 | 6.9¢-06 | 2.75e-06
1.5 |14 | 1.2 | 1.84031 |1.2e-07 | 1.3e-08 | 1.9¢-09 | 1.1e-07 |2.30e-08 |9.3e-09 | 1.78e-11 | 3.5e-07 | 7.67e-07
100 [ 0.5 | 0.4 | 0.8 |0.61916 |3.4e-09 |8.8e-10 [5.6e-10 | 1.6e-09 | 1.39¢-09 | 3.4e-09 |2.19¢-08 | 1.6e-08 | 6.36e-09
0.5 [04 | 1.2 |0.27268 |5.5¢-08 | 1.3e-08 |4.8¢-08 |3.0e-08 |2.69¢-08 |4.4e-08 |2.30e-07 |4.0e-07 | 8.68e-08
0.5 [ 1.4 | 0.8 |0.78762 |5.8¢-09 |9.4e-10 |4.2¢-08 |4.5¢-09 |4.57e-09 | 1.7e-09 | 1.74e-06 | 1.1e-07 | 4.34e-09
0.5 [ 1.4 | 1.2 | 037559 | 1.5¢-08 |2.3e-09 |1.3e-07 |1.2e-08 | 1.27e-08 |3.8¢-09 | 5.70e-06 |3.3e-07 | 1.02e-08
1.5 |04 | 0.8 |4.44984 |4.9e-09 |5.6e-11 |3.7¢-08 |2.0e-08 |5.92e-09 |4.2¢-09 |2.07¢-09 | 1.1e-06 | 2.74e-07
1.5 |04 | 1.2 |573241 | 1.7¢-08 |2.5¢-09 |5.9e-14 | 7.4e-09 |2.59¢-09 |2.3e-09 |2.07¢-09 | 1.3e-06 | 1.38e-07
1.5 | 1.4 | 0.8 [4.45341 | 1.0e-07 | 1.0e-08 |2.2e-09 | 1.0e-07 | 1.99¢-08 | 6.8¢-09 | 6.34e-10 | 1.3e-06 | 6.08e-07
1.5 | 1.4 | 1.2 [3.35240 |2.3e-07 |[2.2¢-08 | 6.3e-09 |2.7e-07 | 4.73e-08 | 1.4e-08 | 3.90e-09 | 6.1e-06 | 1.35¢-06
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Table 3.3 it is observed that Bayes estimation with
LINEX loss function provides the smallest MSE values in
most cases especially compared when the loss parameter
values are (0.6, 1.6). Also sample size increases MLE has

increased and Bayes estimation under all loss functions have
decreases in MSE values.

In Table 3.4 we present the Mean Square Error estimated
values for the shape parameter B for both the MLE and
Bayesian Estimation using extension of Jeffrey's prior
information with the three loss functions.

Table 3.4: MSE Estimated Parameter () of Constant Shape Bi-Weibull Distribution

. . BaL Bre Ba., Brc Ba. Bre Ba, Bre

noo e | B B Bes a=k=0.6 a=k=0.6 a=k=1.6 k=16

25 0.5 0.4 0.8 0.00025 | 3.8e-08 | 2.23e-09 | 1.2e-07 | 6.4e-08 | 2.7e-08 | 5.4e-11 | 2.5e-06 | 4.6e-06 | 2.4e-08
0.5 0.4 1.2 0.00017 1.1e-07 | 3.34e-09 | 8.2e-08 | 3.3e-07 | 5.2e-08 | 5.1e-11 | 6.8e-07 | 5.8e-05 | 1.5e-07
0.5 14 0.8 0.00010 | 9.9¢-08 | 9.01e-09 | 1.9e-07 | 1.3e-07 | 5.7¢-08 | 4.7¢-09 | 3.3e-06 | 7.5¢-06 | 1.1e-07
0.5 1.4 1.2 0.00033 | 2.7e-08 | 3.45¢-11| 4.7e-08 | 1.4e-07 | 1.8e-08 | 2.7e-09 | 4.7e-07 | 3.6e-05 | 6.2e-09
1.5 0.4 0.8 9.67e-05 | 2.5¢-09 | 5.57e-12 | 4.3e-08 | 1.1e-08| 4.1e-09 | 2.0e-09 | 1.0e-06 | 1.3e-06 | 8.3e-10
1.5 0.4 1.2 0.00023 1.3e-08 | 1.57e-11 | 3.3e-08 | 9.3e-08 | 1.1e-08 | 2.9e-09 | 3.4e-07 | 2.5e-05 | 2.1e-10
1.5 1.4 0.8 5.98e-05 | 2.0e-08 | 1.25e-09 | 6.5¢-08 | 3.3e-08 | 1.4e-08 | 5.6e-11 | 1.2e-06 | 2.3e-06 | 1.3e-08
1.5 1.4 1.2 9.26e-05 | 4.7¢-10 | 9.80e-10 | 5.6e-09 | 6.1e-09 | 2.0e-10 | 3.4e-09 | 8.1e-08 | 5.0e-06 | 2.7¢-08

50 0.5 0.4 0.8 0.00034 | 6.9¢-09 | 3.50e-10 | 2.7e-08 | 1.2e-08 | 5.3e-09 | 4.5¢-12 | 5.6e-07 | 9.7¢-07 | 3.4e-09
0.5 0.4 1.2 0.00056 | 2.3e-08 | 5.44e-10| 1.9e-08 | 7.7e-08 | 1.1e-08 | 9.5¢-11 | 1.7e-07 | 1.4e-05 | 2.7¢-08
0.5 14 0.8 0.00023 | 2.5¢-08 | 2.23e-09 | 5.1e-08 | 3.4e-08 | 1.4e-08 | 1.1e-09 | 8.8e-07 | 1.9¢-06 | 2.7¢-08
0.5 1.4 1.2 0.00050 | 2.7e-09 | 1.88e-11| 8.1e-09 | 2.1e-08 | 2.4e-09 | 8.8e-10 | 8.5¢-08 | 6.3e-06 | 4.3e-11
1.5 0.4 0.8 5.64e-05 | 1.2e-10 | 1.04e-11 | 4.4e-09 | 9.2e-10 | 3.3e-10 | 3.5¢-10 | 1.1e-07 | 1.3e-07 | 3.6e-10
1.5 0.4 1.2 8.84e-05 | 3.9¢-10 | 3.61e-11 | 2.4e-09 | 5.5¢-09 | 5.5¢-10 | 4.2e-10 | 2.7e-08 | 1.9¢-06 | 6.1e-10
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1.5 14 0.8 | 7.70e-05 | 5.1e-09 | 2.96e-10 | 1.7e-08 | 5.0e-07 | 9.1e-08 | 3.9e-12 | 3.5¢-07 | 6.3e-07 | 3.1e-09
1.5] 14 1.2 | 8.29¢-05 | 1.7e-10 | 2.12e-10 | 9.3e-10 | 8.3e-10 | 1.5e-11 | 6.7e-10 | 1.4e-08 | 8.4e-07 | 6.0e-09
100 | 0.5| 0.4 0.8 | 0.00031 | 1.7¢-09 | 9.02e-11 | 6.5¢-09 | 3.0e-09 | 1.2¢-09 | 1.5e-13 | 1.3e-07 | 2.3e-07 | 9.1e-10
05| 04 1.2 | 0.00031 | 6.7¢-09 | 1.78e-10 | 5.2e-09 | 2.1e-08 | 3.2¢-09 | 1.1e-11 | 4.4e-08 | 3.7¢-06 | 8.5e-09
05| 14 0.8 | 0.00033 | 5.5¢-09 | 4.67e-10 | 1.1e-08 | 7.6e-09 | 3.2¢-09 | 1.9¢-10 | 2.1e-07 | 4.5¢-07 | 5.7e-09
05| 14 1.2 | 0.00032 | 1.7e-09 | 5.76e-12 | 2.8¢-09 | 8.8e-09 | 1.1e-09 | 1.3e-10 | 2.7e-08 | 2.1e-06 | 6.1e-10
1.5] 04 0.8 | 6.45¢-05 | 4.7e-11 | 2.71e-12 | 1.4e-09 | 3.1e-10 | 1.1e-10 | 1.0e-10 | 3.8e-08 | 4.5¢-08 | 1.0e-10
1.5] 04 1.2 | 0.00010 | 1.2e-10 | 8.85e-12 | 7.0e-10 | 1.6e-09 | 1.6e-10 | 1.1e-10 | 7.9¢-09 | 5.6e-07 | 1.3e-10
1.5] 14 0.8 | 6.38¢-05 | 1.0e-09 | 6.06e-11 | 3.4e-09 | 1.7e-09 | 7.2¢-10 | 1.3e-12 | 6.8e-08 | 1.2e-07 | 6.5¢-10
1.5] 14 1.2 | 0.00019 | 1.2e-11 | 8.71e-11| 7.1e-10 | 9.5e-10 | 4.7e-11 | 3.4e-10 | 9.8e-09 | 6.2¢-07 | 2.3e-09
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Tables 3.4, Bayesian estimation under LINEX loss
gives smaller Mean Squared Error as compared to the others.
It is observed again from Table 3.4 that as the sample size
increases, the Mean Squared Error values of the MLE has
increased and Bayes estimation under all loss functions have
decreases.

In Table 3.5 we present the Absolute Bias estimated values
for the scale parameter ¢ for both the Maximum Likelihood
Estimation and Bayesian Estimation using extension of
Jeffreys prior information with the three loss functions.

Table 3.5: Absolute Bias Estimated Parameter (o) of Constant Shape Bi-Weibull Distribution

OBL | B BpL | 56 BpL 0BG OBL G5
no o ¢ |f L Ops a=k=0.6 a=k=-0.6 a=k=16 a=k=-16
25 105 {04 | 0.8 |0.00196 |8.8e-06 |4.3e-06 |6.9¢-06 |6.4e-06 |6.02¢-06 |8.1e-06 |6.87¢-06 |2.2e-05 | 1.13e-05
0.5 |04 |12 |0.00156 |3.0e-05 |1.4e-05 |3.6e-05 |2.3e-05 |2.22e-05 |2.5e-05 | 0.00012 |9.0e-05 |3.67e-05
0.5 | 1.4 | 0.8 | 0.00193 |7.6e-06 |2.9¢e-06 |2.3e-05 |6.9e-06 |7.06e-06 |3.5e-06 | 0.00015 |3.6e-05 |5.97¢-06
0.5 | 1.4 | 1.2 | 0.00228 |6.3e-06 |2.5e-06 | 1.7e-05 |5.6e-06 |5.76e-06 |3.2e-06 | 0.00011 |2.8e-05 |5.27¢-06
1.5 104 | 0.8 | 0.00656 |1.5e-05 |5.2e-06 |1.0e-06 |1.2e-05 |6.16e-06 |4.7¢-06 |2.24e-06 |4.5¢-05 |3.95e-05
1.5 104 | 1.2 | 0.00503 |4.8¢-05 |1.5¢-05 |7.8¢-06 |5.2e-05 |2.18e-05 |1.2e-05 |5.73e-06 | 0.0002 | 0.00011
1.5 | 1.4 | 0.8 | 0.00668 |2.2e-05 |6.9¢-06 |3.4e-06 |2.3e-05 |9.91e-06 |5.6e-06 |2.30e-06 |9.7¢-05 |5.38e-05
1.5 [ 1.4 [ 1.2 | 0.00786 |1.4e-05 |4.6e-06 |2.0e-06 |1.4e-05 |6.36e-06 |3.8e-06 | 7.74e-07 |4.2e-05 | 3.57e-05
50 0.5 |04 |08 |0.00550 |1.6e-06 |8.4e-07 |6.7e-07 |1.1e-06 |1.05e-06 |1.6e-06 |4.19¢-06 |3.6e-06 |2.25¢-06
0.5 |04 | 1.2 |0.00500 |2.1e-06 |1.0e-06 | 1.0e-06 |1.4e-06 |1.38e-06 |2.0e-06 |3.55¢-06 |4.8e-06 |2.85¢-06
0.5 | 1.4 | 0.8 | 0.00476 |3.0e-06 |1.2e-06 |8.6e-06 |2.7e-06 |2.76e-06 |1.6e-06 |5.64e-05 |1.3e-05 |2.57¢-06
0.5 | 1.4 | 1.2 | 0.00605 |2.2e-06 |9.0e-07 |6.0e-06 |1.9¢e-06 | 1.98e-06 |1.2e-06 |3.89¢-05 |9.9¢-06 | 1.93e-06
1.5 104 | 0.8 | 0.01667 |3.8¢-06 |1.4e-06 |1.4e-08 |2.5¢-06 |1.47¢-06 |1.3e-06 |1.29¢-06 |3.2e-05 |1.07e-05
1.5 {04 | 1.2 | 0.01685 |3.7e-06 |1.4e-06 |2.2¢-09 |2.4e-06 |1.42¢-06 |1.3e-06 | 1.28e-06 |3.2e-05 | 1.04e-05
1.5 | 1.4 | 0.8 | 0.01441 |9.6e-06 |3.0e-06 | 1.4¢-06 |1.0e-05 |4.27¢-06 |2.4e-06 |8.32e-07 |3.7e-05 |2.34e-05
1.5 [ 1.4 [ 1.2 | 0.01918 [4.9¢-06 |1.6e-06 | 6.1e-07 |4.8e-06 |2.14e-06 |1.3e-06 | 5.96e-08 |8.4e-06 | 1.23e-05
100 | 0.5 |04 | 0.8 | 0.01112 |8.2e-07 |4.2e-07 |3.3e-07 |5.7e-07 | 5.28e-07 |8.2e-07 |2.09¢-06 |1.8e-06 | 1.12e-06
0.5 |04 | 1.2 |0.00738 |3.3e-06 | 1.6e-06 |3.1e-06 |2.4e-06 |2.32e-06 |2.9¢-06 |6.78e-06 |8.9¢-06 |4.16e-06
0.5 | 1.4 |0.8 | 0.01255 |1.0e-06 |4.3e-07 |2.9¢-06 |9.5e-07 |9.56e-07 |5.8e-07 | 1.86e-05 |4.7¢-06 |9.31e-07
0.5 | 1.4 | 1.2 | 0.00866 |1.7e-06 |6.9¢e-07 |5.1e-06 |1.5e-06 | 1.59¢-06 |8.7e-07 |3.37e-05 |8.1e-06 | 1.42¢-06
1.5 104 | 0.8 | 0.02983 |2.7e-06 |9.9¢-07 | 1.0e-07 |2.0e-06 | 1.08e-06 |9.1e-07 |6.43e-07 | 1.5e-05 | 7.40e-06
1.5 {04 | 1.2 | 0.03386 |1.8e-06 |7.1e-07 |3.4e-09 |1.2e-06 |7.20e-07 |6.7e-07 | 6.44e-07 | 1.6e-05 | 5.26e-06
1.5 | 1.4 | 0.8 | 0.02984 |4.5e-06 |1.4e-06 |6.6e-07 |4.6e-06 |1.99¢-06 |1.1e-06 |3.56e-07 |1.6e-05 | 1.10e-05
1.5 [ 1.4 [ 1.2 | 0.02589 [6.8e-06 |2.1e-06 | 1.1e-06 |7.4e-06 |3.07¢-06 |1.6e-06 | 8.83e-07 |3.5e-05 | 1.64e-05
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

From Table 3.5 it is observed that Bayes estimation with
LINEX loss function provides the smallest Absolute Bias
values in most cases and as the sample size increases
Absolute values of the MLE increased and Bayes estimation

In Table 3.6 we present the Absolute Bias estimated values
for the shape parameter # for both the Maximum Likelihood
Estimation and Bayesian Estimation using extension of

under all loss functions decreases.

Jeffrey"s prior information with the three loss functions.

Table 3.6: Absolute Bias Estimated Parameter (#) of Constant Shape Bi-Weibull Distribution

R R BB’L ‘ BBG ﬂAB’L ‘ BBG ﬂAB’L ‘ BBG BBL ’ ﬁBG

n oo | ¢ B P Pss a=k=0.6 a—k=-0.6 a—k=1.6 a—k=-1.6
25 105 | 04 | 08 [0.00022 [2.7e-06 |6.7¢-07 |5.0e-06 |3.5e-06 |2.3e-06 |1.0e-07 |2.2e-05 |3.0e-05 | 2.2¢-06
0.5 | 04 | 12 |0.00018 |4.7e-06 |8.1e-07 |4.0e-06 |8.2¢-06 |3.2e-06 | 1.0e-07 |1.1e-05 | 0.0001 | 5.5e-06
05 | 1.4 | 0.8 |0.00014 |4.4e-06 | 1.3e-06 |6.2e-06 |5.1e-06 |3.3e-06 |9.7e-07 |2.5e-05 |3.8¢-05 | 4.7e-06
0.5 | 1.4 | 1.2 |0.00025 |2.3e-06 |8.3¢-08 |3.0e-06 |5.4¢-06 |1.9¢-06 |7.3¢-07 |9.7¢-06 |8.5¢-05 | 1.1e-06
15 | 04 | 0.8 |0.00013 |7.2e-07 |3.3e-08 [2.9¢-06 | 1.4e-06 |9.1e-07 | 6.4e-07 |1.4e-05 | 1.6e-05 | 4.0e-07
1.5 | 04 | 1.2 |0.00021 |1.6e-06 |5.6e-08 |2.5¢-06 |4.3¢-06 |1.5¢-06 |7.6e-07 |8.3e-06 | 7.2¢-05 | 2.0e-07
1.5 | 1.4 | 0.8 |0.00010 |[2.0e-06 |5.0e-07 |3.6e-06 |2.5¢-06 |1.6e-06 | 1.0e-07 |1.6e-05 |2.1e-05 | 1.6e-06
1.5 | 1.4 | 1.2 |0.00013 |3.0e-07 |4.4e-07 |1.0e-06 | 1.1e-06 |2.0e-07 |8.2¢-07 |4.0e-06 |3.1e-05 | 2.3e-06
50 |05 04 | 08 [0.00026 [1.1e-06 [2.6e-07 |2.3¢-06 | 1.6e-06 | 1.0e-06 |3.0e-08 | 1.0e-05 |1.3e-05 | 8.3e-07
0.5 | 04 | 1.2 |0.00033 |2.1e-06 |3.3¢-07 |1.9¢-06 |3.9¢-06 |1.5¢-06 | 1.3e-07 |5.8e-06 |5.3e-05 | 2.3e-06
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05 | 14 0.8 | 0.00021 |2.2e-06 |6.6e-07 |3.2e-06 |2.6e-06 |1.7¢-06 |4.6e-07 |1.3e-05 |1.9¢-05 | 2.3e-06
05 | 14 1.2 | 0.00031 |7.3e-07 | 6.1e-08 |1.2e-06 |2.0e-06 |7.0e-07 |4.1e-07 |4.1e-06 |3.5e-05 | 9.3¢-08
1.5 | 04 0.8 | 0.00010 |1.6e-07 |4.5e-08 |9.4e-07 |4.2e-07 |2.5e-07 |2.6e-07 |4.8¢-06 |5.2e-06 | 2.7e-07
1.5 | 04 1.2 | 0.00013 |[2.8e-07 |8.5¢-08 |6.9¢-07 |1.0e-06 |3.3e-07 |2.9¢-07 |2.3e-06 | 1.9¢-05 | 3.4e-07
1.5 | 14 0.8 | 0.00012 |1.0e-06 |2.4e-07 |1.8e-06 | 1.3e-06 |8.5e-07 |2.8e-08 |8.4e-06 |1.1e-05 | 7.9¢-07
1.5 | 14 1.2 | 0.00013 |1.8e-07 |2.0e-07 |4.3e-07 |4.0e-07 |5.6e-08 |3.6e-07 | 1.6e-06 | 1.3e-05 | 1.1e-06
100 [ 0.5 | 0.4 0.8 |0.00025 |5.8e-07 |1.3e-07 |1.1e-06 | 7.8e-07 |5.0e-07 |5.4e-09 |5.1e-06 |6.8e-06 | 4.2e-07
05 | 04 1.2 | 0.00025 |1.1e-06 |1.8e-07 |1.0e-06 |2.0e-06 |8.0e-07 |4.7e-08 |2.9e-06 |2.7e-05 | 1.3e-06
05 | 14 0.8 |0.00026 |1.0e-06 |3.0e-07 |1.5¢-06 |1.2e-06 |8.1e-07 | 1.9e-07 | 6.4e-06 |9.4e-06 | 1.0e-06
05 | 14 1.2 | 0.00026 |5.9¢-07 |3.3e-08 |7.4e-07 |1.3e-06 |4.8¢-07 |1.6e-07 |2.3e-06 |2.0e-05 | 3.5¢-07
1.5 | 04 0.8 | 0.00011 |[9.7¢-08 |2.3e-08 |5.4e-07 |2.5¢-07 | 1.5e-07 | 1.4e-07 |2.7e-06 |3.0e-06 | 1.4e-07
1.5 | 04 1.2 | 0.00014 |1.6e-07 |4.2e-08 |3.7e-07 |5.7¢-07 |1.8e-07 | 1.5e-07 | 1.2e-06 | 1.0e-05 | 1.6e-07
1.5 | 14 0.8 | 0.00011 |4.5¢-07 |1.1e-07 |8.3e-07 |5.8e-07 |3.8e-07 | 1.6e-08 |3.7e-06 |4.9¢-06 | 3.6e-07
1.5 | 14 1.2 | 0.00019 |4.9¢-08 |1.3e-07 |3.7e-07 |4.3e-07 |9.7¢-08 |2.6e-07 | 1.4e-06 |4.9¢-08 | 6.8e-07
ML: Maximum Likelihood, BS: Squared Error Loss function, BL: LINEX Loss function, BG: General Entropy Loss function.

Similarly, it has also been observed from Table 3.6 that the
estimator that gives the minimum Absolute Bias over all the
other estimators in majority of the cases is Bayes estimator
under LINEX loss function.

4. Illustration

The real data set is about Worcester Heart Attack (WHA)
Study extracted from [14]. The data represent study is to
describe factors associated with trends over time in the
incidence and survival rates following hospital admission for
acute myocardial infarction (MI). Data have been collected
during thirteen 1-year periods beginning in 1975 and
extending through 2001 on all MI patients admitted to
hospitals in the Worcester, Massachusetts Standard
Metropolitan Statistical Area. This data consists of a total of
100 respondents of which 49 are alive and 51 are dead. Here
we considered Follow up Survival Time is the most factors.
Since we do not have any prior information on the hyper
parameters, we assume as 0.01. Table 4.1 depicts the
Estimated values for Scale Parameter (o) and scale parameter
() using WHA Study Data.

Table 4.1: Estimated values for Scale Parameter (¢) and
scale parameter (f) using WHA Study Data

From Table 4.1, we observe that, Bayesian estimator under
LINEX loss function has the smallest values for both the
scale parameter ¢ and the shape parameter f. So that the
Bayes estimators of parameters under LINEX loss function is
best estimation method for Constant Shape Bi-Weibull
Distribution using WHA Study Data.

5. Conclusion

In this paper, we have addressed the problem of Bayesian
estimation for the Constant Shape Bi-Weibull distribution,
under Asymmetric and Symmetric loss functions and that of
Maximum Likelihood Estimation. Bayes estimators were
obtained using Lindley approximation while MLE were
obtained using Newton-Raphson method. A Simulation
study was conducted to examine and compare the
performance of the estimates for different sample sizes with
different values for the extension of Jeffreys™ prior and the

loss functions. From the results, we observe that in most
cases, Bayesian estimator under LINEX loss function has the
smallest Mean Squared Error values and minimum Bias for
both the scale parameter ¢ and the shape parameter f in most
cases especially compared when the loss parameter values
are (0.6, 1.6), for both values of the extension of Jeffreys™
prior information. As the sample size increases the Mean
Squared Error and the Absolute Bias for Maximum
Likelihood Estimator has increased and Bayes estimator
under all the loss functions decreases correspondingly.
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