
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Software Puzzle: A Countermeasure to Resource-
Inflated Denial-of-Service Attacks

Syeda Ghazala Nikhat1, Zohara Begum2, Dr. Mohammed Abdul Waheed3

1PG Scholar, Department of Computer Science and Engineering, VTU CPGS Kalburagi, Karnataka, India

2Assistant Professor, Department of E&CE, KBN College of Engineering, Kalaburagi, Karnataka, India

3Associate Professor, Department of Computer Science and Engineering, VTU CPGS Kalburagi, Karnataka, India

Abstract: Denial-of-service (DoS) and Distributed Denial of Service (DDoS) are dangerous to cyber-security, and client puzzle, which
request a client to perform computationally very high operations before providing services from a server to client, is a well-known
countermeasure to them. After all, an attacker can boost its capability of DoS/DDoS attacks with fast puzzle solving software and/or
inbuilt graphics processing unit such like (GPU) hardware to extremely weaken the effectiveness of client puzzles. There are many
system exist like Timelock puzzle, Client puzzle are used in this paper. In this paper, we study how to prohibit DoS/DDoS attackers from
inflating their puzzle-solving capacities. To this end, we introduce a new client puzzle named as software puzzle. Unlike the existing
client puzzle strategy, which publish their puzzle algorithms previously and generate software puzzle for each client request, a puzzle
algorithm in the present software puzzle scheme is created only after threshold value of client request exceed which is accepted at the
server side by using decision tree and the algorithm is generated such that: 1) an attacker is not able to prepare an implementation to
solve the puzzle previously and 2) the attacker needs extensive effort in translating a central processing unit puzzle software to its
functionally equal GPU version such that the transformation cannot be done in real time.

Keywords: Software puzzles generation, information gain, GPU programming, distributed denial of service (DDoS).

1. Introduction

Denial of Service (DoS) attacks and Distributed DoS
(DDoS) attacks try to damage an online service’s resources
such as network bandwidth, memory and computation power
by outstanding the service with bogus requests. When client
establishing connection with server needs a lot of CPU time
to make SSL handshake. It may result an insufficient
resource are left to providing services. In this case,
conventional cryptographic tools do not enhance the
availability of the services; in fact, they may reduce service
quality due to expensive cryptographic operations. The
seriousness of the DoS/DDoS problem and their increased
frequency has led to the advent of numerous defense
mechanisms [2]. In this paper, we are particularly excited in
the countermeasures to DoS/DDoS attacks on server
computation power. Client puzzle [1] is a well-known
approach to increase the cost of clients as it pressures the
clients to carry out heavy operations before being granted
services. Generally, a client puzzle strategy consists of three
steps: puzzle generation, puzzle solving by the client and
puzzle verification by the server. Many of the system are
existed which are using techniques like Timelock puzzle,
client puzzle rather than this technology some other
techniques also available like mod_kaPoW. So, this paper
presents an idea of Software puzzle which takes input as
request from client, and process the step using software
puzzle. Therefore, in either case, a client puzzle can
significantly reduce the impact of DoS attack because it
permits a server to spend much less time in handling the
bulk of malicious requests. Server gives threshold value of
client requests, if requests exceeds the threshold value then
software puzzle is given to client. Otherwise requested client
is a legitimate client operate its task normally. This paper
not only classify the attack is DoS/DDoS and but also
request type. Optimizing the puzzle verification mechanism

is very important and doing so will undoubtedly improve the
server’s performance.

2. Related Work

In [1] “Client puzzles: A cryptographic countermeasure
against connection depletion attacks” this paper, introduces a
new approach that we refer to as the client puzzle protocol,
the aim of which is to fight against connection depletion
attacks. The idea is quite simple, when there is no witness of
attack, a server accepts connections request normally, that is
aimlessly. When a server comes under attack, it accepts
connections selectively. In particular, the server gives to
each client wishing to make a connection a unique client
puzzle. A client puzzle is a quickly computable
cryptographic problem formulated using the time, a server
secret, and additional client request information. The server
resource allocated to it for a connection, the client must
submit to itself for a connection, the client must submit to
the server a accurate solution to the puzzle it has been given.
Client puzzle are deployed in union with conventional time-
outs on server resources. Thus, while genuine client will
experience only a small degradation in connection time
when a server comes under attack, an attacker must have
access to large computational resource to create breach in
service. Cryptographic puzzles have been used for several
task, such as fighting against junk e-mail, creating digital
time capsules, and metering Web site usage.

In [2] “Reconstructing Hash Reversal based Proof of Work
Schemes” this paper, elaborated an idea of Proof of Work
(PoW) mechanisms, in which a server request that clients
prove they have done work previously it commits resources
to their requests. Most PoW mechanisms are puzzle-based
techniques in which clients solve processing thorough
puzzles. For instance, Hash Cashes are puzzle-based

Paper ID: ART20161447 279

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

mechanisms that aim to prohibit an attacker from sending
too much spam. As attacks use more resources, and
therefore the puzzle difficulties increase, weaker legitimate
clients may experience unacceptable requirements to obtain
service. While computationally weaker clients would
experience longer latencies during an attack, it would be
extremely more functional than a protocol without the PoW
based defense. Using Graphical Processing Units (GPUs)
provides a powerful technique for launching resource
inflation attacks. The attackers can use cheap and widely
available GPUs to boost their ability to solve typical hash
reversal based puzzles by a factor of more than 600. This
paper is the calculation of Hash- Reversal PoW schemes in
the presence of resource-inflated attackers. In this show that
client-based adaptation is necessary for providing
satisfactory service to genuine clients in this situation.
Additionally, it show that an robust hash reversal PoW
scheme based only on server load will fail to provide
service, and can create a novel DoS attack against fair
clients. Given these results, hash reversal PoW strategy
proposed for DoS protection mechanisms should keep track
of client behavior given the developing threat of GPGPU
based attacks.

In [3] “Time-lock puzzles and timed-release crypto” this
paper narrate the notion of timed-release crypto where the
goal is to encrypt a message so that it can not be decrypted
by anyone, not even the sender, until a prearranged amount
of time has passed. The goal is to send information into the
future. We study the problem of creating computational
puzzles, called time-lock puzzles that require a precise
amount of time to solve. The solution to the puzzle reveals a
key that can be used to decrypt the encrypted information.
This approach has the obvious problem of trying to make
CPU time and real time agree as closely as possible but is
nonetheless interesting. The more computational resources
might be able to solve the time lock puzzle more quickly, by
using large parallel computers. Another approach is the
puzzle doesn’t automatically become solvable at a given
time; slightly, a computer needs work continuously on the
puzzle until it is solved.

In [4] “mod_kaPoW: Mitigating DoS with transparent
proofof-work” this paper described a approach of
mod_kaPoW system that has the efficiency and human
transparency of proof-of-work strategy and also having the
software backwards compatibility. There are several
disadvantages of using CAPTCHAs. One drawback is the
user-interface problem they create; users with visual
disabilities are unable to access content legitimately while
natural users find it increasingly difficult to solve
CAPTCHAs correctly as the images have become less
readable in order to thwart sophisticated attacker that have
developed automated solvers for simple CAPTCHAs.
Another drawback is the static nature of the problems being
given out. A proof-of-work scheme alters the operation of a
network protocol so that a client must rebound their
challenge along with a correct answer before being granted
service. The challenge acts as a refine for clients based on
their willingness to solve a computational task of varying
difficulty. This paper describes the design, performance, and
evaluation of a novel web based proof-ofwork system that
provides the benefit of configurable PoW protocols in a

portable manner. Unlike CAPTCHAs, the system is
transparent to its users and supports backwards compatibility
for traditional clients. The basic approach only requires
changes to web servers and is similar to the URL rewriting
approach employed by content-distribution networks such as
Akamai. In the approach, the web server dynamically
rewrites URL references by attaching a computational
puzzle to them.

In [5] “ Proofs of work and bread pudding protocols” this
paper introduces an idea of bread pudding protocol. Bread
pudding is a dish that originated with the purpose of reusing
bread that has gone stale. In the same manner, a bread
pudding protocol to be reused by the verifier to achieve a
separate, useful, and verifiable correct computation. In this
paper, we deviate from the standard cryptographic aim of
proving knowledge of a secret, or the truth of a
mathematical statement. POW is a protocol not defined or
treated formally, POWs have been defined as a mechanism
for a number of security goals, including server access
metering, construction of digital time capsules, uncheatable
benchmarks and denial of service. This paper contributes
bread pudding protocol to be a POW such that the
computing effort invested in the proof may be harvested to
achieve a separate, useful and verifiably correct
computation. These POWs can serve in their own right as
mechanisms for security protocols as well as harvested in
order to outsource the MicroMintminting operation to a
large group of untrusted computational devices.

In [6] “Avoiding Permanent disabling of Wireless Sensor
Network from the attack of malicious Vampire Nodes” this
paper explores resource depletion attacks, which
permanently disable networks by draining node’s battery
power. Here we propose a new mechanism to alleviate the
attack from our network. The open nature of the wireless
links attracts many security threats to the network. These
attackers compromise them with the link and deplete the
battery energy resource. One such attack is Vampire Attack.

3. Existing System

1) DoS and DDoS are effective if attackers spend much less
resources than the victim server or are much more
powerful than normal users. In the example above, the
attacker spends negligible effort in producing a request,
but the server has to spend much more computational
effort in HTTPS handshake (e.g., for RSA decryption).
In this case, conventional crypto-graphic tools do not
enhance the availability of the services; in fact, they may
degrade service quality due to expensive cryptographic
operations.

2) The seriousness of the DoS/DDoS problem and their
increased frequency has led to the advent of numerous
defense mechanisms.

3) As the present browsers such as Microsoft Internet
Explorer and Firefox do not explicitly support client
puzzle schemes, Kaiser and Feng developed a web-based
client puzzle scheme which focuses on transparency and
backwards compatibility for incremental deployment.
The scheme dynamically embeds client-specific
challenges in webpages, transparently delivers server
challenges and client responses.

Paper ID: ART20161447 280

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.1 Disadvantages of Existing System

1) Puzzle is designed based on client’s GPU capability, the
GPU-inflation DoS does not work at all. However, we do
not recommend to do so because it is troublesome for
massive deployment due to (1) not all the clients have
GPU-enabled devices; and (2) an extra real-time
environment shall be installed in order to run GPU
kernel.

2) However, this scheme is vulnerable to DoS attackers who
can implement the puzzle function in real-time.

3) Existing systems are not dynamic.

4. Proposed System

1) In this paper, software puzzle scheme is proposed for
defeating GPU-inflated DoS attack. It adopts software
protection technologies to ensure challenge data
confidentiality and code security for an appropriate time
period, e.g., 1-2 seconds. Hence, it has different security
requirement from the conventional cipher which
demands long-term confidentiality only, and code
protection which focuses on long-term robustness against
reverse-engineering only.

2) Since the software puzzle may be built upon a data
puzzle, it can be integrated with any existing server-side
data puzzle scheme, and easily deployed as the present
client puzzle schemes do. Although this paper focuses on
GPU-inflation attack, its idea can be extended to thwart
DoS attackers which exploit other inflation resources
such as Cloud Computing.

3) By exploiting the architectural difference between CPU
and GPU, this paper presents a new type of client puzzle,
called software puzzle, to defend against GPU-inflated
DoS and DDoS attacks.

4.1 Advantages of Proposed System

1) SSL/TLS protocol is the most popular on-line transaction
protocol, and an SSL/TLS server performs an expensive
RSA decryption operation for each client connection
request, thus it is vulnerable to DoS attack.

2) Our objective is to protect SSL/TLS server with software
puzzle against computational DoS attacks, particularly
GPU-inflated DoS attack. As a complete SSL/TLS
protocol includes many rounds, we use RSA decryption
step to evaluate the defense effectiveness in terms of the
server’s time cost for simplicity.

3) The software puzzle scheme dynamically generates the
puzzle function.

5. System Architecture

Denial-of-service (DoS) and distributed DoS (DDoS) are
among the major threats to cyber-security, and client puzzle,
which demands a client to perform computationally
expensive operations before being granted services from a
server, is a well-known countermeasure to them. However,
an attacker can inflate its capability of DoS/DDoS attacks
with fast puzzlesolving software and/or built-in graphics
processing unit (GPU) hardware to significantly weaken the
effectiveness of client puzzles. In this paper, we study how
to prevent DoS/DDoS attackers from inflating their puzzle-
solving capabilities. To this end, we introduce a new client
puzzle referred to as software puzzle. Unlike the existing
client puzzle schemes, which publish their puzzle algorithms
in advance, a puzzle algorithm in the present software puzzle
scheme is randomly generated only after a client request is
received at the server side and the algorithm is generated
such that: 1) an attacker is unable to prepare an
implementation to solve the puzzle in advance and 2) the
attacker needs considerable effort in translating a central
processing unit puzzle software to its functionally equivalent
GPU version such that the translation cannot be done in real
time. Moreover, we show how to implement software puzzle
in the generic server-browser model.

Block Diagram

A warehouse is constructed that contains CPU only code and
algorithm code block. These code blocks are stored in
compiled form so as to decrease server time and increase
server performance. A Puzzle Generator generates a puzzle
C0x using secret key and code protector will convert puzzle
C0x to puzzle C1x for high security.

6. Conclusion

As this complete paper narrate different methodology on
software puzzle, but none of the methodology are seems to
be perfect. So, this paper as bit introduce an idea of software
puzzle which is generated by using fuzzy logic and decision
tree, server send query to those client reaching above the
threshold value in the warehouse. In this paper also classify
the type of request as well as types of attacks that is
DoS/DDoS.

References

[1] A. Juels and J. Brainard, “Client puzzles: A
cryptographic countermeasure against connection
depletion attacks,” in Proc. Netw. Distrib. Syst. Secur.
Symp., 1999, pp. 151–165.

[2] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and
C. A. Gunter “Reconstructing Hash Reversal based
Proof of Work Schemes,” in Proc. 4th USENIX

Paper ID: ART20161447 281

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 9, September 2016
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Workshop Large-Scale Exploits Emergent Threats,
2011.

[3] R. L. Rivest, A. Shamir, and D. A. Wagner “Time-lock
puzzles and timed-release crypto,”, Dept. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA,USA,
Tech. Rep. MIT/LCS/TR-684, Feb. 1996.

[4] E. Kaiser and W.-C. Feng “mod_kaPoW: Mitigating
DoS with transparent proof-of-work,”, in Proc. ACM
CoNEXT Conf., 2007.

[5] M. Jakobsson and A. Juels “Proofs of work and bread
pudding protocols,” in Proc. IFIP TC6/TC11 Joint
Working Conf. Secure Inf. N.

[6] Rashmi Nayakawadi, Md Abdul Waheed, Rekha Patil
“Avoiding Permanent disabling of Wireless Sensor
Network from the attack of malicious Vampire Nodes”,
in International Journal of Advanced Scientific and
Technical Research Issue 4 volume 3, May-June 2014
on http://www.rspublication.com/ijst/index.html.

[7] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock
puzzles and timed-release crypto,” Dept. Comput. Sci.,
Massachusetts Inst. Technol., Cambridge, MA, USA,
Tech. Rep. MIT/LCS/TR-684, Feb. 1996. [Online].
Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.110.5709

[8] W.-C. Feng and E. Kaiser, “The case for public work,”
in Proc. IEEE Global Internet Symp., May 2007, pp.
43–48.

[9] D. Keppel, S. J. Eggers, and R. R. Henry, “A case for
runtime code generation,” Dept. Comput. Sci. Eng.,
Univ. Washington, Seattle, WA, USA, Tech. Rep. CSE-
91-11-04, 1991.

[10] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating
DoS with transparent proof-of-work,” in Proc. ACM
CoNEXT Conf., 2007, p. 74.

[11] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C
Programming Guide, Version 4.2. [Online]. Available:
http://developer.download.nvidia.com/

[12] X. Wang and M. K. Reiter, “Mitigating bandwidth-
exhaustion attacks using congestion puzzles,” in Proc.
11th ACM Conf. Comput. Commun. Secur., 2004, pp.
257–267.

[13] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols,” in Proc. IFIP TC6/TC11 Joint
Working Conf. Secure Inf. Netw., Commun.
Multimedia Secur., 1999, pp. 258–272.

[14] D. Kahn, “The Codebreakers: The Story of Secret
Writing”, 2nd ed. New York, NY, USA: Scribners,
1996, p. 235.

[15] K. Iwai, N. Nishikawa, and T. Kurokawa, “Acceleration
of AES encryption on CUDA GPU,” Int. J. Netw.
Comput., vol. 2, no. 1, pp. 131–145, 2012.

[16] B. Barak et al., “On the (Im)possibility of obfuscating
programs,” in Advances in Cryptology (Lecture Notes
in Computer Science), vol. 2139. Berlin, Germany:
Springer-Verlag, 2001, pp. 1–18.

[17] H.-Y. Tsai, Y.-L. Huang, and D. Wagner, “A graph
approach to quantitative analysis of control-flow
obfuscating transformations,” IEEE Trans. Inf.
Forensics Security, vol. 4, no. 2, pp. 257–267, Jun.
2009.

[18] S. Wang. (Sep. 18, 2011). How to Create an Applet &
C++. [Online].Available:

http://www.ehow.com/how_12074039_create-Applet-
c.html#ixzz24Lsk0OJQ

[19] J. Bailey. (Oct. 28, 2014). How to Install Java on an
iPhone, eHowContributor.
http://www.ehow.com/how_5659673_install-java-
iphone.html#ixzz24jIAyKiM

[20] J. Ansel et al., “Language-independent sandboxing of
just-in-time compilation and self-modifying code,” in
Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implement., 2011, pp. 355–366.

Paper ID: ART20161447 282

