ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Behaviour of Natural Fibres in Rigid Pavement

Shanagonda Akhila¹, Kolla Aswani Chandh²

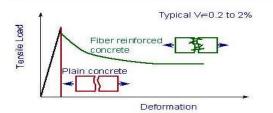
^{1, 2}Department of Civil Engineering, Vignan's Institute of Technology and Aeronautical Engineering Vignans hills Deshmukhi(V) Nalgonda (Dist)

Abstract: Concrete is weak in tension and has a brittle character. The concept of using fibres to improve the characteristics of construction materials is old. Early applications include addition of straws to mud bricks, horse hair to reinforce plaster and asbestos to reinforce property. The modern development of fibre reinforced concrete (FRC) started in the early sixties. Addition of fibres to concrete makes it a homogenous and isotropic material. When concrete cracks, the randomly oriented fibres start functioning, arrest crack formation and propagation, and thus improve strength and ductility. The objective of this study is to investigate the effects on stress development in pavements and on critical design factors substituting natural fibre reinforcement for conventional steel reinforcement in pavements to determine the performance characteristics of the natural fibre reinforced concrete pavements. the result of this study target the design of pavement with natural fibres. They propose feasible natural fibre design to be constructed. The natural fibres reinforce the concrete as much as steel reinforcing does in conventional concrete. This results in product with higher flexural and tensile strength than normal concrete, allowing its use in thin-wall casting applications. NFRC is a light weight, durable material that can be cast into nearly unlimited shapes, colours and textures. This project includes various tests on soils, aggregates and various concrete tests and mix design for each layer of the rigid pavement. NFRC is a specialized form of concrete with many applications. It can be effectively used to create façade wall panels, fireplace surroundings, vanity tops and concrete countertops due to its unique properties and tensile strength. One of the best ways to truly understand the benefits of NFRC is a unique compound.

Keywords: FRC, Coir fibre, FDD, FSI, Liquid limit, Plastic limit, MDD, OMC, CBR, Flakiness, Elongation, WMM

1. Introduction

Fibre reinforced concrete (FRC) is a concrete (uniform paste of cement, aggregate and water) containing fibrous material which increases its structural integrity. It contains short discrete fibre that are uniformly distributed and randomly oriented. Fibres are a class of hair like materials that are continuous filaments or are in discrete elongated pieces, similar to pieces of thread. They can be spun into filaments, thread or rope. They can be used as a component of composite materials. They can also be matted into sheets to make products such as paper or felt.


2. Aim of the Project

To determine the compressive strength of concrete by adding fibre as reinforcement. This project shows the difference in compressive strengths when fibres are used as reinforcement.

3. Fibre Reinforced Concrete

More recently micro fibres, such as those used in traditional composite materials have been introduced into the concrete mixture to increase its toughness, or ability to resist crack growth. FRC is Portland cement concrete reinforced with more or less randomly distributed fibres. In FRC, thousands of small fibres are dispersed and distributed randomly in the concrete during mixing, and thus improve concrete properties in all directions. Fibres help to improve the post peak ductility performance, pre-crack tensile strength, fatigue strength, impact strength and eliminate temperature and shrinkage cracks.

Fiber reinforcement of concrete

Figure 1: Tensile Load v/s Deformation for Plain and Fibre Reinforced Concrete

3.1 Applications of Fibre Reinforced Concrete Limitations of Fibre Reinforced Concrete

Fibre work with concrete utilizing two mechanisms the spacing mechanism and the crack bridging mechanism. The spacing mechanism requires a large number of fibres well distributed within the concrete matrix to arrest any existing micro crack that could potentially expand create a sound crack. For typical volume of fractions of fibres utilizing small diameter of fibres or micro fibres can ensure the required no of fibres for micro crack arrest. The second mechanism termed crack bridging requires larger straight fibres with adequate bond to concrete. Steel fibres are considered a prime example of this fibre type that is commonly referred as large diameter fibres or micro fibres

3.2 Coconut Fibre

Coconut fibre is extracted from the outer shell of a coconut. The common name, scientific name and plant family of coconut fibre is Coir, Cocos nucifera and Arecaceae (Palm), respectively. There are two types of coconut fibres, brown fibre extracted from matured coconuts and white fibres extracted from immature coconuts. Brown fibres are thick,

Volume 5 Issue 9, September 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

strong and have high abrasion resistance. White fibres are smoother and finer, but also weaker. Coconut fibres are commercial available in three forms, namely bristle (long fibres), mattress (relatively short) and decorticated (mixed fibres). These different types of fibres have different uses depending upon the requirement. In engineering, brown fibres are mostly used. they are moth-proof, resistant to fungi and rot, provide excellent insulation against temperature and sound, not easily combustible, flame-retardant, unaffected by moisture and dampness, tough and durable, resilient, springs back to shape even after constant use, totally static free and easy to clean.

Table 1: Chemical Composition of Coconut / Coir Fibre Grain Size Analysis

Grain Size i mary sis						
Lignin	45.84%					
Cellulose	43.44%					
Hemi-Cellulose	00.25%					
Pectin's and related Compound	03.00%					
Water soluble	05.25%					
Ash	02.22%					

Table 2: Physical Properties of Coconut / Coir Fibre

Length in inches	6-8
Density (g/cc)	1.40
Tenacity (N/tex)	10
Breaking elongation%	30%
Diameter in mm	0.1 to 1.5
Rigidity of Modulus	1.8924 dyne/cm ²
Swelling in water (diameter)	10%
Moisture at 65% RH	10.50%

4. Concrete Grades Tests Conducted

IS 456-2000 has designated the concrete mixes into a number of grades as M10, M15, M20, M25, M30, M35 and M40. In this designation the letter M refers to the mix and the number to the specified 28day cube strength of mix in N/mm2. The mixes of grades M10, M15, M20 and M25 correspond approximately to the mix proportions (1:3:6), (1:2:4), (1:1.5:3) and (1:1:2) respectively.

5. Lab Tests

The various tests conducted on the sample are as follows

5.1 Soil Tests

Soil tests are done to ensure that the soil is suitable for construction of the pavement or not. The soil tests are

5.1.1 Grain Size Analysis

Soil sample of 1 kg is weighed using balance and the sieve sizes used for test are 75mm, 20mm, 4.75mm, 2mm, 425 μ m, 75 μ m.

Analysis:

i. 4.75mm is for Gravel

ii. 2mm& 425µ for Sand

iii. 75µ for Silt & Clay

Table 3: Grain Size Analysis Calibration of Apparatus

	2 more ev eram size i marjere euroration er i pparatus						
IS SIEVE (mm)	Weight Retained (gm)	Cumulative Weight(gm)		Cumulative % Passing	Remarks		
75	-	-	-	-	Gravel		
20	-	-	-	-	Gravel		
4.75	95	95	9.5	90.5	Gravel		
2	156	251	25.1	74.9	Sand		
0.425	319	570	57	43	Sand		
0.075	147	717	71.7	28.3	Sand		
Pan					Silt & Clay		

5.1.2 Field Dry Density

The dry density of the compacted soil or pavement materials is a common measure of the amount of the compaction achieved during the construction of the pavement. Knowing the field density and the moisture content, the dry density is calculated.

The method used in finding field dry density is the sand replacement method

Sand passing through 1mm sieve and retained on 600μ sieve is taken. Cone which is of height 19.5cm and diameter of 15cm is taken

 Table 4: Calibration of Apparatus

	Table 4. Canbration of Apparatus						
S. No	Description	Determination					
1	Mean weight of sand in cone (of pouring	450					
	cylinder) (w ₂ g)						
2	Volume of calibrating container (v) ml	980					
3	Weight of sand +cylinder, before pouring	11040					
	(w_1) gm						
4	Weight of sand +cylinder, after pouring	9120					
	(w_3) gm						
5	Weight of sand to fill calibrating	1470					
	container(wa=w1-w ₃ -w ₂) in g						
6	Bulk density of sand=wa/v x1000kg/cu-m	1500					

Table 5: Measurement of Soil Density

Sl. No	Observations & Calculations	Trail 1	Trail 2	Trail 3
1	Weight of wet soil from the hole (Ww)	2310	2400	2280
2	Weight of sand +cylinder before pouring (W4) in gm	11040	11042	11037
3	Weight of sand +cylinder after pouring (W4) in gm	8840	8752	8882
4	Weight of sand in the hole (Wb=w1-w4-w2) in gm	1750	1840	1705
5	Bulk density =Ww/Wb (bulk density of sand)	1980	1956.5	2005
6	Water content(w)%	18.48	18.81	19.26
7	Dry density	1671.17	1646.75	1681.87

Average dry density value is 1667kg/m³

5.1.3 Free Swelling Index

Free Swell Index is the increase in volume of a soil, without any external constraints, on submergence in water.

Free swell index = $[Vd - Vk] / Vk \times 100\%$

Vd = volume of soil specimen read from the graduated cylinder containing distilled water.

Volume 5 Issue 9, September 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Vk = volume of soil specimen read from the graduated cylinder containing kerosene.

Note: free swelling index test is to know which type of soil is used.

Conclusion

Volume in the water added jar has slightly increased as that of soil will not be absorbed by kerosene or diesel. The increased height of soil is 10mm. This proves that the soil is good for construction.

5.1.4 Liquid Limit And Plastic Limit Maximum Dry Density

Liquid Limit

The liquid limit (LL) is conceptually defined as the water content at which the behaviour of a clayey soil changes from plastic to liquid. However, the transition from plastic to liquid behaviour is gradual over a range of water contents, and the shear strength of the soil is not actually zero at the liquid limit.

Table 6: Liquid Limit

	Tuble of Bigus			
Sl. No	Description	Trial 1	Trail 2	Trail 3
1	No of blows	30	35	38
2	Container number	4	4	6
3	Wt of container + wet soil	23.30g	10.40g	21.49g
4	Wt of container + dry soil	20.86g	9.38g	20.50g
5	wt of water (3-4)	2.44g	1.02g	0.99g
6	Wt of container	9.65g	3.90g	13.76g
7	Wt of dry soil (4-6)	11.21g	5.48g	6.74g
8	Moisture content (5/7)	0.21g	0.18g	0.14g
9	Moisture content (%)	21	18	14

Plastic Limit

The plastic limit (PL) is determined by rolling out a thread of the fine portion of a soil on a flat, non-porous surface. The procedure is defined in ASTM Standard D 4318. If the soil is at moisture content where its behaviour is plastic, this thread will retain its shape down to a very narrow diameter.

The plastic limit is defined as the moisture content where the thread breaks apart at a diameter of 3.2 mm (about 1/8 inch). A soil is considered non-plastic if a thread cannot be rolled out down to 3.2 mm at any moisture.

Table 7: Plastic Limit

Sl. No	Description	Trial 1	Trail 2	Trail 3
1	Container number	5	5	1
2	Wt of container + wet soil	4.73	11.69	6.54
3	Wt of container + dry soil	4.42	11.64	5.58
4	wt of water (3-4)	0.31	0.05	0.96
5	Wt of container	3.76	10.17	3.93
6	Wt of dry soil (4-6)	0.66	1.47	1.65
7	Moisture content (5/7)	0.46	0.03	0.58
8	Moisture content (%)	46	30	58

5.1.5 Maximum Dry Density

To determine moisture content and dry density relationship using heavy compaction or modified compaction method as per IS-2720-Part-8.

i. 6Kgs of soil sieved by 19mm is collected

ii. According to ISA we add 2% of water to the soil and mix well (120ml of water).

Table 8: Determination of Modified Proctor Compaction

Test S. No Description Trail 1 Trail2 Wt of mould +compacted wet soil(W2) 5.309 5.309 in gm 2 wt of compact wet soil w=w2-w1 5 12.62 3 Wet density of soil(g/cu-m) 12.67 4 Bin no 6 1 Empty wt of bin 13.79g 13.79g 5 wt of bin +wet soil in gm 6 43.35g 40.08gWt. of bin + dry soil in gm 40.369g 7 35.239 2.99 8 Wt. of water (6) - (7) 4.75 11.25 0.2057 9 Wt. of dry soil (7) - (5) 10 Moisture content (8/9) 0.1125 0.2057 11 Moisture content (%) 11.25 20.57 12 Dry density 1.03 0.587

5.1.6 California Bearing Ratio

The California bearing ratio (CBR) is a penetration test for evaluation of the mechanical strength of road sub grades and base courses. The test is performed by measuring the pressure required to penetrate a soil sample with a plunger of standard area. The measured pressure is then divided by the pressure required to achieve an equal penetration on a standard crushed rock material.

6Kg of soil and add 510ml is taken (O.M.P by 8.52) $8.5/100 \times 6000 = 510$

Fill the soil into the mould divide the soil into five layers, give 10 blows for each layer.

Collect some amount of soil compacted sample into the empty box and weigh.

Keep it in the oven for 24hours, later the total mould in the water for 4 days(96hours).

Later after the duration the mould in transferred to the C.B.R testing machine

Table 9: Dial Gauge Readings

	<u> </u>	
A	B	C
0	0	0
1.5	3.2	2.2
3	9.4	3.6
4	13.9	4.2
5.25	16.5	5.2
620	19	6
8	20.5	7.17
10.5	26.9	8.4
13.12	39.1	12.2
-	-	-
	A 0 1.5 3 4 5.25 620 8 10.5	0 0 1.5 3.2 3 9.4 4 13.9 5.25 16.5 620 19 8 20.5 10.5 26.9

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Table 10: CBR Value

			ic io. Ci		•	
Penetra	10blows		30 blows		65 blows	
tion	Proving		Proving		Proving	
(mm)	readings		Readings		Reading	
0.5	0	0	0	0	0	0
1.0	1.5	21.89	3.2	47.0	2.2	32.11
1.5	3.0	43.79	9.5	138.68	3.6	52.55
2.0	4.0	58.39	13.9	202.91	4.2	61.31
2.5	5.25	76.64	16.5	240.87	5.2	75.91
3.0	6.2	ı	19.0	-	6.0	-
4.0	8.0	ı	20.5	-	7.17	-
5.0	10.5	ı	26.9	-	8.4	-
7.5	13.12	ı	39.1	-	12.2	-

5.2 Aggregate Tests

Aggregates tests are done to ensure that the aggregates are suitable for the construction of the concrete pavements.

5.2.1 Aggregate Impact Test

This test is done to determine the aggregate impact value of coarse aggregates as per IS: 2386 (Part IV) – 1963. The apparatus used for determining aggregate impact value test is Impact testing machine conforming to IS: 2386 (Part IV)-1963, IS Sieves of sizes – 12.5mm, 10mm and 2.36mm, a cylindrical metal measure of 75mm dia. and 50mm depth, a tamping rod of 10mm circular cross section and 230mm length, rounded at one end and Oven.

Take 10mm size aggregate sieve it from 12.5&10mm sieves Fill in the mould in 3 layers, for each layer give 25tampings Weigh the mould and note the readings, shift the aggregates to other mould

Again give 25blows and place the mould in A.I.V machine Give 15blows by A.I.V and sieve the sample then the value of retained aggregate and weigh it.

 Table 11: Aggregate Impact Value

Description	Test1	Test2	Test3
Weight of surface dry sample passing	352	348	365
12.5mm&retained on 10mm15 sieve	gm	gm	gm
W1 (Gm)			
Weight of fraction passing through	25 gm	37	29
2.36mm sieve after the test W2 (Gm)		gm	gm
Weight of fraction retained on 2.36mm	326gm	337	346
sieve after test W3 (Gm)		gm	gm
Aggregate Impact Value=(W ₂ /W ₁) *	7.10	10.6	7.94
100 %			

5.2.2 Shape Tests (Flakiness And Elongation Index)

Flakiness Index

It is the percentage by weight of flaky particles in a sample. A flaky particle is the one whose least dimension (thickness) is than 0.6 times the mean size. These are the materials of

which the thickness is small as compared to the other two dimensions. Limit of flaky particles in the mixes is 30%. If the flaky particles are greater than 30% then the aggregate is considered undesirable for the intended, use.

Collect 20mm and 10mm aggregate stones Separate 10mm-200stones

20mm-200stones

Flakiness Gauge

From the flakiness gauge pass all the 10mm and 20mm stones

Collect the stones which are passed and weigh them

Elongation Index

It is the percentage by weight of elongated particles in a sample. The Elongated index is calculated by expressing the weight of Elongated particles as percentage of total weight of the sample. These are the particles having length considerably larger than the other two dimensions and it is the particle whose greater dimension is 1.8 times its mean size. Limit of elongated particles in the mixes is 45%. Thus, if the elongated particles are greater than 45%, then the aggregate is considered undesirable for the intended use.

Collect 20mm and 10mm aggregate stones Separate 10mm-200stones

20mm-200stones

Elongation Gauge

Take the same stones which are passed by flakiness.

Pass the stones from the elongation gauge and take the weigh them and note the readings.

Table 12: Aggregate Shape Tests (Flakiness and Elongation)

Table	Table 12. Aggregate Shape Tests (Takiness and Elongation)						
Passing	Retained	Weight of	Aggregates	Weight of	Weight of		
		sample not	passing in	sample	aggregates		
			flaky gauge	retained	retained on		
		200pieces for		on flaky	elongation		
		testing		gauge	gauge		
63	50	-	-	-	-		
50	40	2442	2200	242	-		
40	31.5	2117	1224	837	-		
31.5	25	1995	942	1053	-		
25	20	1665	1462	203	-		
20	16	1540	1482	58	33		
16	12.5	1026	1013	13	59		
12.5	10	-	-	-	1180		
10	6.3	-	-	-	632		
	Total	A=10785	B=8343	C=2442	D=1904		

5.2.3 Fine Aggregates Of Sand

1-5kgs of sand and sieves 4.75mm, 2.36mm, 1.18mm, 0.6mm, 0.3mm, 0.15mm, 0.075mm are taken. Sieve the sand and collect the retained sand and weigh it and will know the type of zone the soil.

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Table 13: Sieve Analysis of Fine Aggregate for Sand

Sieve	Weight retained	Cumulative wt	% Retained	% Passing	Specification	Limits As per	MORT & H
size (mm)	in (gm)	retained (gm)			Zone-1	Zone-2	Zone-3
10	0	0	-	-	100	100	100
4.75	168	168	5.57	94.43	90-100	90-100	90-100
2.36	209	377	12.520	87.47	60-95	75-100	85-100
1.18	898	1275	42.344	57.65	30-70	55-90	75-100
+0.600	853	2128	70.67	29.32	15-35	35-59	60-79
0.300	600	2728	90.60	9.4	5-20	8-30	12-40
0150	120	2848	94.586	5.41	0-10	0-10	0-10
0.075	5	2853	94.75	5.24	<3%	<3%	<3%
Pan	0	0	0	0			

6. Compressive Strength of Concrete

The compressive strengths of normal concrete cubes and fibre reinforced concrete cubes after 7 days of curing are as follows

NORMAL CONCRETE MIX

Table 14: Normal Concrete Mix

S.	Weight of	Density	Max.	Ultimate	Mean Ultimate
No.	Cube	Density	Load	Strength	Strength (N/mm²)
1	8288	2.456	690	30.67	
2	8145	2.413	700	31.11	31.11
3	8200	2.430	710	31.56	31.11
4	8231	2.439	700	31.11	

Fibre Reinforced Concrete Mix

In this fibre reinforced concrete mix the amount of coir fibre used is 24 grams ie;0.3% of total mix.

 Table 15: Fibre Reinforced Concrete Mix

S.	Weight of	Density	Max.	Ultimate	Mean Ultimate
No.	Cube	Density	Load	Strength	Strength (N/mm²)
1	8198	2.468	730	33.33	
2	8194	2.433	740	33.78	33.41
3	8217	2.443	740	32.89	33.41
4	8233	2.449	750	33.67	

7. Granular Sub-Base in Construction of Concrete Roads

Take the aggregate of 20mm, 10mm, 6mm, stone dust according to the specifications of grade-2 sieve the aggregates and take the weigh collected in each sieve.

On a well compacted sub-grade, spread 10 to 20 cm size boulders or broken stones, or over burnt bricks in layers of 15 cm thickness and total width of the sub-base to be kept 60 cm wider than pavement width, projecting 30 cm on each side. The sub-base should be compacted by a roller to provide an even surface.

The mixing of the gravel should be done according to the MORT & H specifications of Pavement Design.

Table 16: MORT&H specification

Sieve	Grade	Grade	Grade	Grade	Grade	Grade
Size	-1	-2	-3	-4	-5	-6
75mm	80-100	-	-	-	100	-
53	80-100	100	100	100	80-100	100
26.5	55-90	70-100	55-75	50-80	55-90	75-100
9.5	35-65	50-80	ı	ı	35-65	55-75
4.75	22-55	40-65	10-30	15-35	25-50	30-55
2.36	20-40	30-50	ı	ı	10-20	10-25
425μ	10-15	10-15	ı	-	0-5	0-8
75µ	<15	<5	<5	<5	-	0-3

Table 17: Gradation for Granular Sub Base Grade-1 for 20mm

Sieve	Wt.	Percentage	Cumu	Percentage	Specifica
(mm)	retained	retained (%)	lative	of passing	tions
	(gm)		perce		limits (%/)
			ntage (%)		
75	1	ı	1	100	100
53	-	-	-	100	80-100
26.5	305	305	61	93.9	55-90
9.5	4631	4936	98.72	1.28	25-65
4.75	33	4969	99.38	0.62	25-55
2.36	-	-	-	-	20-40
425μ	-	-	-	-	10-25
75µ	-	-	1	-	3-10
Pan	-	-	-	-	-

Table 18: Gradation for Granular Sub Base for 10mm

Sieve	Wt.	Percentage	Сити	Percentage	Specifica
(mm)	retained	retained (%)	lative	of passing	tions
	(gm)		perce		limits (%/)
			ntage (%)		
75	ı	ı	ı	100	100
53	1	-		100	80-100
26.5	-	-	-	-	55-90
9.5	1880	1800	37.6	62.4	25-65
4.75	3105	4985	99.7	0.3	25-55
2.36	-	-	-	-	20-40
425μ	-	-	-	-	10-25
75µ	-	-	-	-	3-10
Pan	-	-	-	-	-

Volume 5 Issue 9, September 2016 www.ijsr.net

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Table 19: Gradation for Granular Sub Base for 6mm

Sieve	Wt.	Percentage	Сити	Percentage	Specifica
(mm)	retained	retained (%)	lative	of passing	tions
	(gm)		perce		limits (%/)
			ntage (%)		
75	-	ı	-	100	100
53	1	1	1	100	80-100
26.5	1	-	-	-	55-90
9.5	-	-	-	-	25-65
4.75	4320	4320	86.4	13.6	25-55
2.36	590	4910	98.2	1.8	20-40
425μ	64	4974	99.48	0.52	10-25
75µ	-	-	-	-	3-10
Pan	-	-	-	-	-

Table 20: Gradation for Granular Sub Base for Dust

Sieve	Wt.	Percentage	Cumu	Percentage	Specifica
(mm)	retained	retained (%)	lative	of passing	tions
	(gm)		perce		limits (%/)
			ntage (%)		
75	-	1	-	ı	100
53	1	-	-	-	80-100
26.5	1	-	-	1	55-90
9.5	1	ı	ı	ı	25-65
4.75	1	ı	ı	ı	25-55
2.36	178	178	17.8	82.2	20-40
425μ	530	708	70.8	29.2	10-25
75µ	282	990	99	1	3-10
Pan	-	-	-	-	-

Table 21: Blending Sheet

Sieve	20	10	6	Dust	20	24	16	40	Total
Size	mm	mm	mm		%	%	%	%	
75	-	-	-	-	-	-	-	-	-
53	-	-	-	-	-	-	-	-	-
26.5	93.9	-	-	-	18.78	24	16	40	98.78
9.5	1.28	62.4	-	ı	0.256	14.97	16	40	71.22
4.75	0.62	0.3	13.6	ı	0.124	0.07	2.17	40	42.36
2.36	-	•	1.8	82.8	-	1	0.28	32.88	33.16
0.425	-	-	0.52	29.2	-	-	0.08	11.68	11.76
0.075	-	-	-	1.0	-	-	-	0.4	0.4

This layer is laid for 200mm.

8. Wet Mix Macadam

Macadam is a type of road construction pioneered by Scottish engineer John Loudon McAdam around 1820. The method simplified what had been considered state of the art at that point. Single-sized aggregate layers of small angular stones are placed in shallow lifts and compacted thoroughly. A binding layer of stone dust, crushed stone from the original material may form; it may also, after rolling, be covered with a binder of fines and small crushed rock.

McAdam's road building technology was applied to roads by other engineers. One of these engineers was Richard Edgeworth, who filled the gaps between the surface stones with a mixture of stone dust and water, providing a smoother surface for the increased traffic using the roads.

Aggregates used are of the smaller sizes, varies between the 4.75 mm to 20 mm sizes and the binders (stone dust or quarry dust having PI (Plasticity Index) not less than 6%) are premixed in a batching plant or in a mixing machine. Then they are brought to the site for overlaying and compaction.

Table 22: Gradation of Wet Mix Macadam for 20mm

Sieve size	Weight retained(gm)	Percentage retained (%)	Cumulative percentage (%)	Percentage of passing	
					Limits (%)
53.0	-	-	-	-	-
45.0	-	-	-	-	•
22.4	2.142	2142	42.84	57.16	-
11.2	2804	4964	98.92	1.08	•
4.75	-	-	-	-	-
2.36	-	-	-	-	•
0.60	-	-	-	-	-
0.075	-	-	-	-	•
Pan	-	-	-	-	-
Wash loss	-	-	-	-	-

Table 23: Gradation of Wet Mix Macadam for 10mm

	Table 23. Gradation of wet with Wacadam for Tollini							
Sieve size	Weight retained(gm)	Percentage retained (%)	Cumulative percentage (%)	Percentage of passing	Specifications			
					Limits (%)			
53.0	-	-	-	-	-			
45.0	-	-	-	-	-			
22.4	-	-	-	-	-			
11.2	340	340	0.068	99.932	-			
4.75	4660	5000	100	0	-			
2.36	-	-	-	-	-			
0.60	-	-	-	-	-			
0.075	-	-	-	-	-			
Pan	-	-	-	-	-			
Wash loss	-	-	-	-	-			

Volume 5 Issue 9, September 2016

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Table 24: Gradation of Wet Mix Macadam for 6mm

Sieve size	Weight retained(gm)	Percentage retained (%)	Cumulative percentage (%)	Percentage of passing	Specifications Limits (%)
53.0	_	-	-	-	-
45.0	-	-	-	-	-
22.4	-	-	-	-	-
11.2	-	-	-	-	-
4.75	3935	3935	78.7	21.3	-
2.36	766	4701	94.02	5.98	-
0.60	240	4941	98.82	1.18	-
0.075	58	4999	99.98	0.02	-
Pan	-	-	-	-	-
Wash loss	-	-	-	-	-

Table 25: Gradation of Wet Mix Macadam for Dust

Sieve size	Weight retained(gm)	Percentage retained (%)	Cumulative percentage (%)	Percentage of passing	Specifications
					Limits (%)
53.0	-	-	-	-	-
45.0	-	-	-	-	-
22.4	-	-	-	-	-
11.2	-	-	-	-	-
4.75	-	-	-	-	-
2.36	160	160	16	84	-
0.60	421	581	58.1	41.9	-
0.075	200	781	78.1	21.9	-
Pan	-	-	-	•	•

9. Results

- 1) The average dry density of the soil is 1667 kg/m3 or 1.67 g/cm³.
- 2) The CBR value of the soil is 60.34.
- 3) The aggregates impact value is 23.33%.
- 4) The slump of the concrete is 25mm that is true slump.
- 5) The result of Vee-Bee consistometer is 27 seconds.
- 6)The Compressive strength of normal concrete cube is 31.11N/mm²
- 7)The Compressive strength of natural fibre reinforced concrete cube is 33.41 N/mm²

10. Conclusions

The inclusion of the natural fibres in the concrete mix results in increase of the compressive strength of the concrete. Therefore increase of compressive strength may increase the life span of the pavement.

The above values are within the Indian Standard Limits.

References

- [1] Pavement design by R Srinivas Kumar, University Press 2013.
- [2] Design of Functional Pavements, Nai C. Yang, McGraw Hill Publications.
- [3] Concrete Pavements, AF Stock, Elsevier, Applied Science Publications.
- [4] Concrete Technology by M.S. Shetty, S. Chand Publications, 2004.
- [5] Properties of Concrete by A.M. Neville, Low Price Edition, 4th Edition.

- [6] Reinforced Concrete Design by N. Krishna Raju and R.N. Pranesh, New Age international Publications.
- [7] Basic and Applied Soil Mechanics by Gopal Ranjan and A. S. R. Rao, New age International Publications.

Author Profile

Shanagonda Akhila received B.Tech and M.tech degree in CIVIL Engineering and Structures under JNTU HYDERABAD in 2012 and 2014 respectively.

Kolla Aswani Chandh received B.Tech degree in CIVIL Engineering under JNTU KAKINADA in 2012.

Volume 5 Issue 9, September 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY