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Abstract: The accuracy of diagnostic test is typically evaluated by sensitivity and specificity. Receiver Operating Characteristic (ROC) 

curve analysis is one of the most familiar techniques and it will provide accuracy for the extent of correct classification of a test and it is 

a graphical representation of the relationship between sensitivity and specificity. The conventional way of expressing the true accuracy 

of test is by using its summary measures Area Under the Curve (AUC) and Brier Score (𝑩 ). Hence the main issue in assessing the 

accuracy of a diagnostic test is to estimate the ROC curve and its AUC and Brier Score. The ROC curve generated based on assuming a 

Constant Shape Bi-Weibull distribution. This article assumes that the biomarker values from the two groups follow Weibull distributions 

with equal shape parameter and different scale parameters. The ROC model, AUC, MLE, asymptotic, bootstrap confidence intervals for 

the AUC, asymptotic confidence intervals for the ROC curve and Brier Score are derived. However, the accuracy of a test is to be 

explained by involving the scale and shape parameters. Theoretical results are validated by simulation studies. An illustrative example is 

also provided to explain the concepts. 
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1. Introduction 
 
In medical science, a diagnostic test result is called a 
biomarker [1, 7] is an indicator for disease status of patients. 
The accuracy of a medical diagnostic test is typically 
evaluated by sensitivity and specificity. ROC curve is a 
graphical representation of the relationship between 
sensitivity and specificity. The AUC is an overall 
performance measure for the biomarker. Brier Score (B ) is 
shown as another summary measure in the context of ROC 
Curve to make the probabilistic judgements as well as to 
identify the extent of classification. Hence the main issue in 
assessing the accuracy of a diagnostic test is to estimate the 
ROC curve and its AUC and Brier Score. The ROC curve 
can be plotted by three approaches viz. parametric, non-
parametric and semi-parametric. This article considers the 
parametric way of plotting the ROC curve. After the ROC 
curve is generated the intrinsic accuracy provided by the 
biomarker must be interpreted. To summarize the 
information contained in a ROC curve, many indices have 
been used. Among them, AUC curve is most commonly 
adopted index. In recent past work we developed Functional 
Relationship between Brier Score and Area Under the 
Constant Shape Bi-Weibull ROC Curve [10]. In this article, 
the inference about the AUC is of primary interest. The 
problem of assessing the accuracy of diagnosis/Biomarker 
has been studied by several authors by assuming various 
distributions to the biomarker values. They are Bi-Normal 
ROC model [17], Bi-Logistic ROC model [12], Bi-Lomax 
ROC model [3], Bi-Gamma ROC model [5],Bi-Exponential 
ROC model [2], Generalized Bi-Exponential ROC model 
[8], Bi-Rayleigh ROC model and its comparison with Bi-
Normal model [9], comparison of Bi-Rayleigh ROC model 
with Bi-Normal and Bi-Gamma ROC models [13] and are 
view of all parametric ROC models in case of continuous 
data [14], Normal-Exponential [15]. Two parameter Weibull 

distribution is a most widely used life distribution in various 
fields viz. Survival analysis, Reliability engineering and 
recently in ROC curve analysis. One major disadvantage of 
assuming two parameter Weibull distributions to the 
biomarker is that the accuracy cannot be expressed in closed 
form. By substituting the MLE‟s, the accuracy can be 
evaluated numerically using Monte Carlo integration or any 
other numerical procedure. In the absence of closed form 
expression, the statistical inference on the accuracy measure 
will not be possible. To overcome this problem and to obtain 
a closed form expression, equal shape parameter and 
different scale parameters are assumed. Moreover, the 
original accuracy of the diagnosis is not affected by taking 
equal shape parameter. The ROC model developed from this 
assumption is called the constant shape Bi-Weibull ROC 
model. Research interest may lie in comparing the 
effectiveness of two separate diagnostic tests or the 
efficiency of biomarkers in predicting the disease. The 
comparison can be accomplished either by AUC or 
sensitivity of the test. In order to compare the AUC and to 
construct the confidence interval, the Standard Error (SE) of 
AUC is needed. Also the asymptotic confidence intervals for 
the ROC curve and Brier Score are derived. Here, the 
standard error of accuracy is studied by different methods 
viz. asymptotic MLE, parametric bootstrap methods. For 
parametric, the delta method will yield variance and SE with 
the help of asymptotic expressions for the variance and co-
variances of the parameters. 
 
2. A Constant Shape Bi-Weibull ROC Model 

and its AUC and Brier Score 
 
Let x, y be the test scores observed from two populations 
with (abnormal individuals) and without (normal individuals) 
condition respectively which follow Constant Shape Bi-
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Weibull distributions. The density functions of Constant 
Shape Bi-Weibull distributions are as follows, 

𝑓 𝑥 𝑛 =
𝛽

𝜎𝑛

𝑥𝛽−1𝑒
− 

𝑥𝛽

𝜎𝑛
 
                       (1) 

𝑎𝑛𝑑                           𝑓 𝑦 𝑠 =
𝛽

𝜎𝑠

𝑦𝛽−1𝑒
− 

𝑦𝛽

𝜎𝑠
 
                        (2) 

 
Let S be a continuous biomarker. The probabilistic 
definitions of the measures of ROC Curve are as follows:  

Sensitivity sn = 𝑃 𝑆 𝑠 =  𝑓 𝑥 𝑠 𝑑𝑥

∞

𝑡

        , 

1 − Specificity(sp) = 𝑃 𝑆 𝑛 =  𝑓 𝑥 𝑛 𝑑𝑥       .

∞

𝑡

 

In this context, the (1-Specificity) or False Positive Rate 
(FPR) and Sensitivity or True Positive Rate (TPR) can be 
defined using equations (1) and (2) and are given in 
equations (3) and (4) respectively, 

𝑃 𝑆 𝑛 = 𝑥 𝑡 = 𝑒
− 

𝑡𝛽

𝜎𝑛
 
                    (3)  

                                                             

𝑎𝑛𝑑                            𝑃 𝑆 𝑠 = 𝑦 𝑡 = 𝑒
− 

𝑡𝛽

𝜎𝑠
 
                        4  

 
The ROC Curve is defined as a function of (1-Specificity) 
with scale parameters of distributions and is given as,   

𝑅𝑂𝐶 𝑡 = 𝑦 𝑡 = 𝑥 𝑡 
𝜎𝑛
𝜎𝑠                       (5) 

where  𝑡 = − 𝜎𝑛 𝑙𝑜𝑔𝑥(𝑡) 
1

𝛽   is the threshold.  
 
The accuracy of a diagnostic test can be explained using the 
Area Under the Curve (AUC) of an ROC Curve.AUC 
describes the ability of the test to discriminate between 
abnormal and normal populations. A natural measure of the 
performance of the classifier producing the curve is AUC. 
This will range from 0.5 for a random classifier to 1 for a 
perfect classifier. The AUC is defined as, 

𝐴𝑈𝐶 =  𝑥 𝑡 
𝜎𝑛
𝜎𝑠𝑑𝑥(𝑡)

1

0

                      (6) 

The closed form of AUC is as follows 
𝐴𝑈𝐶 =

𝜎𝑠

𝜎𝑠 + 𝜎𝑛

                             (7) 

 
It is a well known evaluation measure for probabilistic 
classifiers and is proposed by Brier in 1950. In literature, 
procedures for calibrating classifiers have been proposed in 
different contexts such as Weather Prediction Tasks [4], 
Game Theory [6].  
 
Further, Brier Score was considered in the context of signal 
Detection Theory by assuming that the calibration in the 
observers probability estimate is perfect and provided the 
theoretical relationship between Brier Score and Area Under 
the Binormal ROC Curve [11]. So Functional relationship 
between Brier Score and Area Under the ROC Curve was 
discussed in the Context of Skewed Distributions [16].  
 
Now consider a set of M signal detection tasks with αM 
signal events and (1-α)M non-signal events (0≤α≤1) and αM, 
(1-α)M and α denote a priori probability of signal events. 

Let   yi = 0 if the event is non-signal  
            yi = 1 if the event is signal.  
 
Let 𝑝𝑖  denote the observers (or subject‟s) probability 
estimate that the 𝑖𝑡𝑕  event will be the signal one, where the 
subscript i indicates the individual event [6] and the Brier 
Score (𝐵 ) can be defined as [7] using the expression   

𝐵 =
1

𝑀
  𝑦𝑖 − 𝑝𝑖 

2

𝑀

𝑖=1

          , 

where  𝑝𝑖  is a function of 𝑥𝑖  and is defined using Bayes 
theorem as follows,  

𝑝𝑖 = 𝑝 𝑥𝑖   =
𝛼𝑓(𝑥𝑖|𝑠)

𝛼𝑓 𝑥𝑖 𝑠 +  1 − 𝛼 𝑓(𝑥𝑖 |𝑛)
 .       

 
Now, we consider the expected value of  𝑦𝑖 − 𝑝𝑖 

2 in the 
expression 𝐵 , when the calibration in the observers 
probability estimate is perfect. In this case, 𝑝𝑖  in the 
expression 𝐵  is obtained by expression 𝑝𝑖  from the Bayes 
theorem. Therefore, expected value of  𝑦𝑖 − 𝑝𝑖 

2is given as 
 

𝐸  𝑦𝑖 − 𝑝𝑖 
2 =   1 − 𝑝 𝑥  

2
𝛼𝑓 𝑥 𝑠 𝑑𝑥 +  𝑝 𝑥 2 1 − 𝛼 𝑓 𝑥 𝑛 𝑑𝑥

∞

−∞

∞

−∞

 

 
On simplification, we get, 

𝐸  𝑦𝑖 − 𝑝𝑖 
2 =  

𝛼 1 − 𝛼 𝑓 𝑥 𝑛 𝑓(𝑥|𝑠)

 1 − 𝛼 𝑓 𝑥 𝑛 + 𝛼𝑓(𝑥|𝑠)
𝑑𝑥

∞

−∞

. 

Further, we assume that the convergence in probability of  𝐵  
given by the law of large numbers as M tends to infinity is 
the Brier score. Make the assumption that the calibration in 
the observer‟s probability estimate is perfect. That is, 
Expected Brier Score is equal to 𝐵 .   
 
Therefore, [11] considered the Brier Score in the context of 
Signal Detection Theory by assuming the calibration in the 
observers probability estimate is perfect and provided the 
theoretical relationship between Brier Score and AUC. 
Therefore, Brier Score can be defined in the context of ROC 
Curve analysis as, 

𝐵 =  
𝛼 1 − 𝛼 𝑓(𝑥|𝑠)

 1 − 𝛼 + 𝛼
𝑓(𝑥|𝑠)
𝑓(𝑥|𝑛)

𝑑𝑥

∞

−∞

 .   (with slope ROC Curve)  

or                      

𝐵 =  
𝛼 1 − 𝛼 𝑓(𝑥|𝑛)

𝛼 + (1 − 𝛼)
𝑓(𝑥|𝑛)
𝑓(𝑥|𝑠)

𝑑𝑥 

∞

−∞

 .  (with inverse slope) 

 
Now we can describe 𝐵  and AUC as the function of b=σn

σs
 

and α as 
 

𝐵 =  
𝛼 1 − 𝛼  

 1 − 𝛼 + 𝛼
𝑑𝑃 𝑥 𝑠 
𝑑𝑃 𝑥 𝑛 

𝑑𝑃 𝑆 𝑠 

∞

−∞

 . ( slope ) 

or                         

𝐵 =  
𝛼 1 − 𝛼 

𝛼 +  1 − 𝛼 
𝑑𝑃 𝑥 𝑛 
𝑑𝑃 𝑥 𝑠 

∞

−∞

𝑑𝑃 𝑆 𝑛 .   inverse slope  
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Therefore, the Brier Score can be defined as the function of 
likelihood ratio under a Bayesian set up. Now the expression 
for 𝐵  as a function of b and α in the context of ROC Curve is 
follows, 
 

𝐵 =   
𝛼 1 − 𝛼 

𝛼 +  1 − 𝛼  
1
𝑏
𝑒𝑥𝑝   

𝑡𝛽

𝜎𝑠
 −  

𝑡𝛽

𝜎𝑛
   

1

0

𝑑𝑡        .   

 
Now by substituting the threshold „t‟ value in the above 
equation and on further simplification, the Brier Score (𝐵 ) 
expression which is a function of b and α reduces to   
                     

𝐵 =  
𝛼 1 − 𝛼 

𝛼 +  1 − 𝛼  
1
𝑏
𝑒𝑥𝑝   1 − 𝑏   𝑙𝑜𝑔𝑥 𝑡  

1
𝛽  

𝛽

  

1

0

𝑑𝑥 𝑡    .     (8) 

 
The MLEs of 𝜎𝑛  and 𝜎𝑠 can be used again to estimate the 
AUC. The performance of the estimator  𝐴𝑈𝐶  can be 
accessed through variance estimate. 
 
2.1 Maximum Likelihood Estimator of AUC  
 
The MLE of two parameter Weibull distribution has been 
discussed [17] in the context of Reliability estimation. Let 
X1, X2, .. .… Xm be a random sample of size m from 𝑊(𝛽, 𝜎𝑛)  
and Y1, Y2, .. .… Yn be a random sample of size n from 
𝑊(𝛽, 𝜎𝑠) .The likelihood function of the selected sample is 
given by 

𝐿(𝑥𝑖 , 𝑦𝑗  | 𝜃) =  𝑓𝑋(

𝑚

𝑖=1

𝑥𝑖  | 𝛽, 𝜎𝑛)  𝑓𝑌(𝑦𝑗

𝑛

𝑗 =1

 | 𝛽, 𝜎𝑠) . 

where  𝜃 = (𝛽, 𝜎𝑛 , 𝜎𝑠)′ 

𝐿 =  
𝛽

𝜎𝑛

𝑚

𝑖=1

𝑥𝑖
𝛽−1𝑒

− 
𝑥𝑖

𝛽

𝜎𝑛
 
  

𝛽

𝜎𝑠

𝑦𝑗
𝛽−1

𝑛

𝑗 =1

 𝑒
− 

𝑦𝑗
𝛽

𝜎𝑠
 

 

 
The log-likelihood function is 
 

𝑙𝑛𝐿 =  𝑚 + 𝑛 𝑙𝑛𝛽 +  𝛽 − 1   𝑙𝑛𝑥𝑖

𝑚

𝑖=1

+  𝑙𝑛𝑦𝑗

𝑛

𝑗 =1

  

−𝑛𝑙𝑛𝜎𝑠 − 𝑚𝑙𝑛𝜎𝑛 −
1

𝜎𝑠

 𝑦𝑗
𝛽

𝑛

𝑗 =1

−
1

𝜎𝑛

 𝑥𝑖
𝛽

𝑚

𝑖=1

 .       (9) 

 
Differentiating (9) with respect to 𝛽, we get  
 

𝜕𝑙𝑛𝐿

𝜕𝛽
=

 𝑚 + 𝑛 

𝛽
+   𝑙𝑛𝑥𝑖

𝑚

𝑖=1

+  𝑙𝑛𝑦𝑗

𝑛

𝑗 =1

 −
1

𝜎𝑠

 𝑦𝑗
𝛽 𝑙𝑛𝑦𝑗

𝑛

𝑗=1

−
1

𝜎𝑛

 𝑥𝑖
𝛽

𝑚

𝑖=1

𝑙𝑛𝑥𝑖         .                          (10) 

 
By differentiating the equation (9) with respect to 𝜎𝑛  , 𝜎𝑠 and 
equating to zero, we get the estimates. The MLE‟s of 𝜎𝑛  and 
𝜎𝑠 are determined as, 
 

𝜕𝑙𝑛𝐿

𝜕𝜎𝑛

= −
𝑚

𝜎𝑛

+
 𝑥𝑖

𝛽𝑚
𝑖=1

𝜎𝑛
2

 

 

𝜎𝑛 =
 𝑥𝑖

𝛽𝑚
𝑖=1

𝑚
     .                              (11) 

 
𝜕𝑙𝑛𝐿

𝜕𝜎𝑠

= −
𝑛

𝜎𝑠

+
 𝑦𝑗

𝛽𝑛
𝑗 =1

𝜎𝑠
2

 

 

𝜎𝑠 =
 𝑦𝑗

𝛽𝑛
𝑗 =1

𝑛
     .                             (12) 

 
Substituting equation (11) and (12) in equation (10) and 
equating it to zero, we get a non-linear equation: 
 

𝑕 𝛽  =
𝑚 + 𝑛 +  𝑦𝑗

𝛽𝑛
𝑗=1 +  𝑥𝑖

𝛽𝑚
𝑖=1

𝑛 𝑦𝑗
𝛽 𝑙𝑛𝑦𝑗

𝑛
𝑗 =1

 𝑦𝑗
𝛽𝑛

𝑗 =1

+
𝑚 𝑥𝑖

𝛽𝑚
𝑖=1 𝑙𝑛𝑥𝑖

 𝑥𝑖
𝛽𝑚

𝑖=1

  .            (13) 

 
Hence, 𝛽  can be determined as a solution of Non-linear 
equation (13). By substituting equations (11), (12) and (13) 
in equation (7), will get an MLE estimate of AUC. 
 
2.2 Asymptotic Property of Area Under the Constant 
Shape Bi-Weibull ROC Model 
 
To evaluate the significance of the statistic AUC, its variance 
and standard error must be computed. Let 𝐿(𝜃 | 𝑥, 𝑦); 
𝜃 = (𝛽, 𝜎𝑛 , 𝜎𝑠)′ be the likelihood function of the sample 
observations from X and Y which is given by 
 

𝑙𝑛𝐿 𝜃  𝑥, 𝑦 =  𝑚 + 𝑛 𝑙𝑛𝛽 − 𝑛𝑙𝑛𝜎𝑠 − 𝑚𝑙𝑛𝜎𝑛  

                          + 𝛽 − 1   𝑙𝑛𝑥𝑖

𝑚

𝑖=1

+  𝑙𝑛𝑦𝑗

𝑛

𝑗=1

  

                −
1

𝜎𝑠

 𝑦𝑗
𝛽

𝑛

𝑗=1

−
1

𝜎𝑛

 𝑥𝑖
𝛽

𝑚

𝑖=1

  .             (14) 

 
Asymptotic normality of MLE states that a consistent 
solution of the likelihood equation is asymptotically 
normally distributed about the true value  𝜃, that is 
𝜃 ~𝑁 𝜃, 𝐼−1(𝜃) . 
 

=>   N θ − θ ~ N 0, I−1 θ          .                   (15) 
 

where I(θ) is the Fisher Information matrix which is given by 
 

I θ = −

 
 
 
 
 
 
 E  

∂2lnL

∂β2
 E  

∂2lnL

∂β ∂σn

 E  
∂2lnL

∂β ∂σs

 

E  
∂2lnL

∂σn ∂β
 E  

∂2lnL

∂σn
2
 E  

∂2lnL

∂σn ∂σs

 

E  
∂2lnL

∂σs ∂β
 E  

∂2lnL

∂σs ∂σn

 E  
∂2lnL

∂σs
2
 

 
 
 
 
 
 
 

 

 

=  

a11 a12 a13

a21 a22 a23

a31 a32 a33

                    .                         (16) 
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where a11 =
1

β2
  m + n  1 + Г2

′′  + 2 nlnσs  + mlnσn Г2
′

+ n lnσs 
2 + m lnσn 

2  
a22 =

m

σn
2

, a33 =
n

σs
2

, a23 = a32 = 0, 

a12 = a21 = −
m

βσn

 Г2
′ + lnσn , 

𝑎13 = 𝑎31 = −
𝑛

𝛽𝜎𝑠

 Г2
′ + 𝑙𝑛𝜎𝑠 . 

 
The 𝐼−1 𝜃  is calculated as 
 

I−1 θ =  
1

a11a22a33 − a12
2a33 − a22a13

2
× 

 

 

a22a33 −a21a33 −a22a31

−a12a33 a11a33 − a13
2 a12a31

−a22a13 a21a13 a11a22 − a12
2
 .    (17) 

 

=  

V β  Cov β , σ n Cov β , σ s 

Cov σ n , β  V σ n Cov σ n , σ s 

Cov σ s , β  Cov σ s , σ n V σ s 

       (18) 

where 

V σ n =  
σn

2

mn m + n  1 − Г2
′′ −  Г2

′  2 
 n m + n  1 + Г2

′′  

+ 2mnlog σn Г2
′ + mn logσn 

2 − n2 Г2
′  2 , 

V σ s =
σs

2

mn(m + n) 1 − Г2
′′ −  Г2

′  2 
 n m + n  1 + Г2

′′  

+ 2mnlog σs Г2
′ + mn logσs 

2 − m2 Г2
′  2 , 

V β  =
β2

(m + n) 1 − Г2
′′ −  Г2

′  2 
   , 

 

Cov β , σ n =
βσn Г2

′ + lnσn 

(m + n) 1 − Г2
′′ −  Г2

′  2 
  , 

 

Cov β , σ s =
βσs Г2

′ + lnσs 

 m + n  1 − Г2
′′ −  Г2

′  2 
   , 

 

Cov σ n , σ s =
σnσs Г2

′ + lnσn  Г2
′ + lnσs 

(m + n) 1 − Г2
′′ −  Г2

′  2 
  , 

 
Because the area under the ROC curve is a function of 
parameters  θ = (β, σn , σs )′  , the Delta method will be 
adopted for finding the approximate variance V AUC  , Can 
be defined as: 

𝑉 AUC =  
∂AUC

∂σs

 
2

V σ s +  
∂AUC

∂σn

 
2

V σ n + 

2  
∂AUC

∂σn

  
∂AUC

∂σs

 Cov σ n , σ s     .                 (19) 

τ = V AUC  

=
σn

2σs
2

 σn + σs 
4
 
m + n

mn
+

 ln  
σn

σs
  

2

(m + n) 1 − Г2
′′ −  Г2

′  2 
 .   (20) 

 
Where V σ s , V σ n , and Cov σ n , σ s  are taken from the 
matrix I−1 θ . The estimate of variance is obtained by 
substituting the estimates of the parameters σn , σs . Hence, 
the estimate of accuracy follows that 

 N(AUC − AUC)

 τ
→ N 0,1       .                   (21) 

where τ is obtained in equation (19) and it is proven that  

 AUC ~N 0, τ , Гn
′ = − n − 1 !  

1

n
+ γ −  

1

k

n

k=1

 , 

where γ is Euler-Mascheroni constant approximately equal to 
0.5772. We note that  AUC  is an Unbiased Estimator of AUC.  
 
2.3 Confidence Interval for AUC 
 
a) Asymptotic Confidence Interval   
 
The asymptotic 100(1−α)% confidence interval for accuracy 
is given by   

 AUC − Zα
2 

SE AUC  , AUC + Zα
2 

SE AUC       .       (22)  
 

where SE(AUC ) can be obtained from equation (20), α is the 
level of significance and Zα

2 
is the critical value. For 

example, Zα
2 
 for a 5% level of significance is 1.96. 

 
b) Bootstrap Confidence Interval 
 
The parametric bootstrap is a resampling technique which 
can be used to find the variance of any estimator. The idea of 
bootstrap is to create or resample an artificial dataset from an 
empirical distribution with same sample size and structure as 
the original for large number of times. Once the dataset is 
created, the parameters of interest are to be estimated for 
each data set. The bootstrap variance of parameter is nothing 
but the variance of all estimated parameters. Parametric 
bootstrap is very similar to the non-parametric bootstrap 
method. In non-parametric bootstrap the sample is simulated 
from empirical distribution but in parametric bootstrap it is 
simulated from specified parametric distribution. 
The following are the steps involved in finding the 
parametric bootstrap estimate: 
 
Step 1: Let X1, X2, .. .… Xm be a random sample of size m from 
W(β, σn)  and Y1, Y2, .. .… Yn be a random sample of size n 
from W(β, σs ). By using equations (11), (12) and (13), the 
ML estimates of the parameters β,  σn  and σs  are estimated. 
 
Step 2: By using the estimated parameters β ,σ n , σ s, the 
random observations Xb of size m and Yb of size n 
(Bootstrap samples) are generated. From Xb and Yb, the 
bootstrap estimates viz.β b , σ bn  and σ bs  are obtained. Using 
these bootstrap estimates the accuracy (AUCb

 ) is obtained. 
 
Step 3: Step 2 is repeated 500 times. The mean of all 500 
estimates of β ‟s, σ n

′ s and σ s ′s are called the bootstrap 
estimates of parameters β, σn  and σs  respectively and mean 
of all AUCb

 ‟s is called the estimated bootstrap accuracy. The 
standard deviation of all estimates AUCb

  is called the 
standard error of AUCb

 . 
 
Step 4: The 100(1−α)% confidence interval for AUCb  is 
obtained as follows: 
 

 AUCb
 − Zα

2 
SE AUCb

  , AUCb
 + Zα

2 
SE AUCb

       . 
 
where α is the level of significance and Zα

2 
 is the critical 

value. 
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2.4 Confidence Intervals for ROC Curve 
 
The 100(1−𝛼)% confidence intervals for the ROC curve are 
estimated using delta method. This confidence interval for 
the ROC Curve represents the range at each point of False 
Positive Rate (FPR) and its corresponding True Positive Rate 
(TPR). Therefore, the 100(1 − 𝛼)% confidence intervals for 
FPR and TPR are as follows: 
 

 FPR − Zα
2 

SE FPR  , FPR + Zα
2 

SE FPR         . 
 

 TPR − Zα
2 

SE TPR  , TPR + Zα
2 

SE TPR         .   
 
where FPR  and T̂PR  are the estimated FPR and TPR, 
respectively, and their variances are  
 

V(FPR) =  
∂FPR

∂σn

 
2

V(σ n) +  
∂FPR

∂β
 

2

V β       . 

V(TPR) =  
∂TPR

∂σs

 
2

V(σ s) +  
∂TPR

∂β
 

2

V β      . 

 

where    
∂FPR

∂σn
 

2

=  
tβ

σn
2

e
− 

tβ

σn
 
 

2

,   
∂TPR

∂σs
 

2

=  
tβ

σs
2

e
− 

tβ

σs
 
 

2

  , 

 

 
∂TPR

∂β
 

2

=  −
tβ logt

σs
e
− 

tβ

σs
 
 

2

, 

 

 
∂FPR

∂β
 

2

=  −
tβ logt

σn
e
− 

tβ

σn
 
 

2

, 

 

V σ n =
σn

2

mn(m + n) 1 − Г2
′′ −  Г2

′  2 
 n m + n  1 + Г2

′′  

+ 2mnlog σn Г2
′ + mn logσn 

2 − n2 Г2
′  2 , 

 

V σ s =
σs

2

mn(m + n) 1 − Г2
′′ −  Г2

′  2 
 n m + n  1 + Г2

′′  

+ 2mnlog σs Г2
′ + mn logσs 

2 − m2 Г2
′  2 , 

 

V β  =
β2

(m + n) 1 − Г2
′′ −  Г2

′  2 
   . 

 
Further, the confidence intervals for FPR and TPR can be 
obtained using the following expressions.  

 FPR − Zα
2 
  

tβ

σn
2 e

− 
tβ

σn
 
 

2

V(σ n ) +  −
tβlogt

σn
e
− 

tβ

σn
 
 

2

V β    ,

 FPR + Zα
2 
  

tβ

σn
2 e

− 
tβ

σn
 
 

2

V(σ n) +  −
tβlogt

σn
e
− 

tβ

σn
 
 

2

V β           . 

 
 

 TPR − Zα
2 
  

tβ

σs
2 e

− 
tβ

σs
 
 

2

V(σ s) +  −
tβlogt

σs
e
− 

tβ

σs
 
 

2

V β    ,

 TPR + Zα
2 
  

tβ

σs
2 e

− 
tβ

σs
 
 

2

V(σ s) +  −
tβlogt

σs
e
− 

tβ

σs
 
 

2

V β          . 

 
These confidence interval lines show the variability of the 
proposed ROC curve at each and every point on the ROC 

curve. In the next section, the results are carried out using 
simulation study to explain the proposed methodology. 
Further, the confidence intervals are evaluated for the 
summary measure AUC and the intrinsic measures FPR and 
TPR. 
 
2.5 Confidence Intervals for Brier Score 
 
The Confidence Intervals for Brier Score are as follows: 
 

[𝐵  ± Zα
2 

 SE B  ] 
 

Where 𝐵  is the estimated B, and their variance is 
 

V B  = E B  
2
−  E B   

2
. 

Where  
 

E B  
2

= (1 − α)  0.333 +
σ s

σ n

  

 

E B  = (1 − α)  0.5 +
σ s

σ n

  

 
3. Simulation Study 
 
The accuracy, confidence intervals for AUC, ROC curve and 
Brier Score has been computed through different techniques 
via asymptotic MLE method, parametric bootstrap. 
  
3.1 Asymptotic MLE Method 
 
Simulation studies are conducted with different combinations 
of scale and shape parameters of both normal and abnormal 
populations. At every parameter combination and sample 
size, the AUC and its confidence intervals are obtained. The 
main purpose of conducting simulations is to show how the 
AUC of ROC curve possesses different values as the scale 
and shape parameters of the normal and abnormal 
distributions change. The variations in the parameter values 
of both populations are used to explain the overlapping area 
in terms of AUC; this mean that the higher the AUC, the 
lesser the overlapping area and vice versa. Further, to 
demonstrate the behavior of AUC, the entire simulation work 
is carried out with three different experiments. In the first 
experiment, the results are reported in Table 3.1. Numerical 
experiments were carried out to inspect how the MLE‟s of 
AUC and their asymptotic results work for simulated data 
sets. Four different samples of size (m, n) = (30, 30) with 
different parametric values were considered as mentioned in 
columns 1, 2 and 3 Table 3.1. The corresponding accuracy, 
95% confidence interval are shown in 4, 5 columns of Table 
3.1.  
 
Table 3.1: Accuracy, standard error and Confidence interval 

of AUC based on Constant Shape Bi-Weibull ROC model 
through Asymptotic MLE method 

β  σ n  σ s  AUC  95% Confidence Interval 

3.0 0.6333 2.8000 0.8155 [0.5391,1.0919] 
2.5 1.8418 6.2552 0.7723 [0.5365,1.0084] 

1.52 1.3849 3.8046 0.7331 [0.5271,0.9391] 
1.0 1.1256 2.5665 0.7125 [0.5145,0.9154] 
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From table 3.1, it is observed that, the accuracy increases, 
simultaneously, the confidence interval increases. Because 
the asymptotic distribution is independent of β, β may be 
kept constant or it may vary.  
 
The sample β is estimated using iterative procedure from 
equation (13) and using β, the other two parameters using 
were found using equations (11) and (12). Hence, the ML 
estimate of AUC is obtained. The 95% asymptotic 
confidence interval is also calculated. 
 
If β takes higher values as 3 and 2.5, the AUC is observed to 
have a better value indicating high level of accuracy, thus, 
reflecting the scenario that as the discrepancy between shape 
parameters of both normal and abnormal population‟s 
increases, AUC attains a larger value indicating a better 
extent of correct classification with minimum percentage of 
overlapping area. 
 
In second experiment, the scale parameter of normal 
population is varied by fixing the other parameters as 
constant and, Table 3.2 shows simulated independent 
samples of m controls and n cases (m= n = 5, 10, 40, 50, 80, 
100) to assess the behavior of asymptotic MLE‟s and 
confidence interval over different sample sizes by fixing 
σ n=5 and for different values of σ s  viz. 8, 12, 20, 100.  
 
Table 3.2: Accuracy and Confidence interval of AUC when 

σ n=5 for different sample size 
Sample 

size 
(m, n) 
(5, 5) 

(m, n) 
(10,10) 

(m, n) 
(40,40) 

(m, n) 
(50,50) 

(m, n) 
(80,80) 

(m, n) 
100,100 

σ s=8 0.6154 
0.2570 
0.9738 

0.6154 
0.3620 
0.8688 

0.6154 
0.4887 
0.7421 

0.6154 
0.5021 
0.7287 

0.6154 
0.5258 
0.7050 

0.6154 
0.5352 
0.6955 

σ s=12 0.7059 
0.2442 
1.1676 

0.7059 
0.3794 
1.0324 

0.7059 
0.5426 
0.8691 

0.7059 
0.5598 
0.8519 

0.7059 
0.5905 
0.8213 

0.7059 
0.6257 
0.7860 

σ s=20 0.8000 
0.1614 
1.4386 

0.8000 
0.3484 
1.2516 

0.8000 
0.5742 
1.0258 

0.8000 
0.5981 
1.0019 

0.8000 
0.6404 
0.9596 

0.8000 
0.6572 
0.9428 

σ s=30 0.8571 
0.0580 
1.6562 

0.8571 
0.2921 
1.4222 

0.8571 
0.5746 
1.1396 

0.8571 
0.6044 
1.1098 

0.8571 
0.6574 
1.0569 

0.8571 
0.6785 
1.0358 

 
From Table 3.2, it is observed that the scale parameter of 
normal population (σ s) is varied by keeping all the other 
parameters as constant. Moderate levels of discrepancy in the 
shape values and scale parameters influence the accuracy of 
the classification. As σ s  attains a larger value, the AUC of 
ROC curve tends to have better values of accuracy.  
 
So this reveals that along with discrepancy in shape 
parameters of both populations, scale parameter also tends to 
explain better variability in the data giving rise to talk about 
the exact performance of the test considered. In Tables 3.2, 
first row represents the AUC , second and third rows gives the 
confidence limits. It is observed that, as the sample size 
increases the confidence interval is increases. 
 
To demonstrate the proposed methodology with the help of 
graphical visualization, Figures 3.1(a) and 3.1 (b) are drawn 
for the experiment 2. That is the scale parameter of normal 
population (σ s) is varied by keeping all the other parameters 
as constant. 

 
Figure 3.1(a): Effect on Lower Control limits for AUC 

values by varied different scale parameter in normal 
populations 

From Figure 3.1(a), it is visualized that the experiment 2 and 
it is observed that, as the sample size increases the Lower 
Control limits are increases. 
 

 
Figure 3.1(b): Effect on Upper Control limits for AUC 

values by varied different scale parameter in normal 
populations 

 
From Figure 3.1(b), it is visualized that the experiment 2 and 
it is observed that, Upper Control limits increases over 
different sample sizes by fixing σ n=5 and for different values 
of σ s  viz. 8, 12, 20, 100. In the third experiment, the scale 
parameter of abnormal population is varied by fixing the 
other parameters as constant and, Table 3.3 shows simulated 
independent samples of m controls and n cases (m= n = 5, 
10, 40, 50, 80, 100) to inspect the behavior of asymptotic 
MLE and confidence interval over different sample sizes by 
fixing σ s= 45 and for different values of  σ nviz. 3, 8, 10, 20. 
 
Table 3.3: Accuracy and Confidence interval of AUC when 

σ s=45 for different sample size 
Sample 

size 
(m, n) 
(5, 5) 

(m, n) 
(10,10) 

(m, n) 
(40,40) 

(m, n) 
(50,50) 

(m, n) 
(80,80) 

(m, n) 
(100,100) 

σ n=5 0.9000 
0.0685 
1.8685 

0.9000 
0.2151 
1.5849 

0.9000 
0.5576 
1.2424 

0.9000 
0.6125 
1.0565 

0.9000 
0.6579 
1.1421 

0.9000 
0.6834 
1.1166 

σ n=8 0.8491 
0.0763 
1.6019 

0.8491 
0.3026 
1.3955 

0.8491 
0.5758 
1.222 

0.8491 
0.6047 
1.0934 

0.8491 
0.6559 
1.0423 

0.8491 
0.6763 
1.0219 

σ n=10 0.8182 
0.1343 
1.5021 

0.8182 
0.3346 
1.3018 

0.8182 
0.5764 
1.0599 

0.8182 
0.6019 
1.0344 

0.8182 
0.6472 
0.9892 

0.8182 
0.6653 
0.9711 

σ n=20 0.6923 
0.2498 
1.1348 

0.6923 
0.3794 
1.0052 

0.6923 
0.5359 
0.8488 

0.6923 
0.5524 
0.8322 

0.6923 
0.5817 
0.8029 

0.6923 
0.5934 
0.7913 
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From Table 3.3, it is observed that the scale parameter of 
abnormal population (σ n) is varied by keeping all the other 
parameters as constant. Moderate levels of discrepancy in the 
shape values and scale parameters influence the accuracy of 
the classification. As σ n  attains a larger value, the AUC of 
ROC curve tends to have better values of accuracy. 
 
So this reveals that along with discrepancy in shape 
parameters of both populations, scale parameter also tends to 
explain better variability in the data giving rise to talk about 
the exact performance of the test considered. In Tables 3.3, 
first row represents the AUC , second and third rows gives the 
confidence limits. It is observed that, as the sample size 
increases the confidence interval is increases. 
 
To demonstrate the proposed methodology with the help of 
graphical visualization, Figures 3.1(c) and 3.1 (c) are drawn 
for the experiment 3. That is the scale parameter of abnormal 
population (σ n) is varied by keeping all the other parameters 
as constant. 
 

 
Figure 3.1(c): Effect on lower control limits for AUC values 
by varied different scale parameter in abnormal populations  

 
From Figure 3.1(c), it is visualized that the experiment 3 and 
it is observed that, as the sample size increases the Lower 
control limits are increases. 
 

 
Figure 3.1 (d): Effect on Upper Control limits for AUC 
values by varied different scale parameter in abnormal 

populations 
 
From Figure 3.1(d), it is visualized that the experiment 3 and 
it is observed that, the Upper Control limits increases over 
different sample sizes by fixing σ s=5 and for different values 
of σ n  viz. 5, 8, 10, 20. 

3.2 Estimation of Bootstrap Variance 
 
For parametric bootstrapping, the data was generated from a 
uniform distribution using (m, n) as specified in Table 3.4. 
Then by inverse transformation method, it is converted into 
Weibull variate with the values of β, σn  and σs . Using Step 1 
results in the estimates as β , σ n  and σ s . By using Step 2, the 
estimate of bootstrap sample is obtained as β b , σ bn  and σ bs . 
From these 500 estimates of parameters, one can find an 
estimate of AUC by using the equation (8). By averaging 
these 500 numbers of estimates of AUC, one can estimate 
the bootstrap estimate AUC. Standard error of AUCb

 is 
nothing but the standard deviation of the b number AUCb

 's. 
By Step 4, the 95% confidence interval for bootstrap AUC is 
obtained as usual. Table 3.4 shows the bootstrap AUC, SE 
and confidence interval for AUCb

 . 
 

Table 3.4: Accuracy, SE, and Confidence interval of AUC 
through Bootstrap Simulation 

Sample 
size 

β  σ n  σ s  AUC  95% 
Confidence 

Interval 
(10,10) 2.6709 7.5414 201.8100 0.9249 [0.8328,1.0000] 
(40,40) 2.5274 6.3739 103.9060 0.9240 [0.8581,0.9899] 
(50,50) 2.4662 5.8770 84.2817 0.9220 [0.8695,0.9745] 
(80,80) 2.4340 5.6493 74.3820 0.9222 [0.8581,0.9636] 

(100,100) 2.3948 5.4283 66.5260 0.9211 [0.8926,0.9496] 
 
Comparing asymptotic and bootstrap variance, both perform 
at the same level. The asymptotic variance does not perform 
well for small samples such as (5, 5) and (10, 10) where the 
bound for accuracy has reached below 0.5 which is not 
regarded as a good estimate. Hence, the asymptotic variance 
holds for large samples only. 
 
4. Illustration 
 
The real data set is about the ICU scoring system was 
extracted from [18]; SAPS III is a system for predicting 
mortality (dead or alive) status of a patient in ICU. SAPS III 
has been designed to provide a real-life predicted mortality 
for a patient by following a well defined procedure, based on 
a mathematical model that needs calibration. This data 
consists of a total of 200 respondents of which 40 are alive 
and 160 are dead. From this data set it is observed that the 
SAPS III scores for dead patients follow abnormal 
population where as the scores for patients who are alive 
follow normal population.  
 

Table 4.1: Results for SAPS III using GHROC curve 
methodology 

β  σ n σ s AUC  95%  Confidence 
Interval 

2.5234 31635.43 42155.17 0.5712 [0.4819, 0.6607] 
 
The results for the prognosis of disease are reported in Table 
4.1. It is observed that the accuracy of the test is 57.12% 
indicating that the SAPS III score is able to identify the 
status of mortality about 57.12% and the variance is 
0.002080202. Further, the confidence interval of AUC is 
[0.4819, 0.6607] and the proposed ROC curve for SAPS III 
uniformly lies above the chance line to explain the mortality 
rate.  
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Figure 4.1: ROC curve for SAPS III with its confidence 

intervals. 
 

5. Conclusion 
 
The present work is carried out to establish a ROC model 
developed from two parameter Weibull distributions for 
evaluating the accuracy of biomarkers in predicting disease 
status. In advance it did not yield a closed form expression 
for Area Under the ROC curve. For this reason, equal shape 
parameter and different scale parameter were considered. 
Moreover, the original accuracy of the diagnosis is not 
affected by taking equal shape parameter. Hence, estimation 
of Area Under the Constant Shape Bi-Weibull ROC curve is 
a main objective for this study. The Maximum Likelihood 
technique is adopted for estimating the parameters. The 
technique yielded an asymptotically unbiased estimate of the 
accuracy. The asymptotic distribution of AÛC and 95% 
confidence interval were found. The behavior of asymptotic 
confidence interval is studied through simulation. The 
bootstrap AUC is higher than the AUC obtained by other 
methods.  
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