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1.Introduction and Definition 
 

The concept of subordination is introduces by Lindelöf [1], 
J.E.Littlewood [2] and W.Rogosinski [3]. Over the years a 
substantial theory has been developed and subordination 
now plays an important role in theory of analytic function. 
 
Encouraged by wide applications of subordination and 
differential subordination in the study of univalent 
functions, many complex analysts attempted to apply this 
technique to univalent function and brought to daylight 
many new facts of this field. Sanford S. Miller & Petru T. 
Mocanu [4], Maslina Darus [5], S. Owa et. al. [6] are the 
few who contributed significantly to the study of univalent 
function using subordination tools. The purpose of this 
paper is to take review of development in subordination of 
analytic & univalent functions.  
 

Let An denotes the class of univalent functions of the form 

k
k                     f (z) z a z , ( a  0  , n = 1, 2,3,.... )                                       (1.1)k

k n 1


  

 
 
 analytic in the unit disc U = {z : z  ℂ; |z| < 1}. 
 
A function f (z)  An is said be starlike function of order α 
(0 ≤ α < 1) if it satisfies, for z  U, the condition 

0 (1.2)
 

 
 

'z f (z)
                     Re 

f(z)

 
 
A function f (z)  An is said to be convex function of order 
α (0 ≤ α < 1) if it satisfies, for z  U, the condition 
 

1 0 (1.3)
 
  

 

' '

'

z f (z)
                   Re 

f  (z)

 

Definition 1: The functions f (z), g (z)  An where f (z) 

defined by (1.1) and g (z) is defined by 

                     ,



k = n+1

k
g (z) = z+ b zk

 

 the Hardmard product (or Convolution) f (z) * g (z) 

defined as,  
 

 
 

Definition 2: The function f (z) is said to be subordinate to 

g (z) if there exists Schwarz function w (z), analytic in U 

with 

 w (0) = 0 and | w (z) | < 1 (z U) 

such that  

 f (z) = g (w (z)) for zU.  

 
We denote this subordination as f ≺ g or f (z) ≺ g (z). 
 
In particular if f (z) is univalent in U, then f ≺ g is 
equivalent to f (0) = g (0) and f (U)  g (U). Some of the 
important consequences of subordination are as follows, 
 

(i) ' 'f (0) g (0) , 

 
 (ii) 

z r z r
max f (z) max g(z) , z r
 

   ,  

 
 (iii) 

z r
(f (z)) max (g(z))


    

 (iv) 
z r

(f (z)) min (g(z))


    

 
2.Differential Subordination 
 

In 1935 Goluzin [7] consider the first order differential 
subordination  

'z p (z) h(z). 
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He showed for any convex h  

1

z

-

0

p(z) q(z)= h(t)t dt, 

and this q is the best dominate. 
 

2Let (r,s, t;z): U . If pand (p(z),zp '(z);z)    
are univalent and if p satisfies the first order 
superordination  
 

h(z) (p(z), zp '(z);z),h(0) (p(0),0,0)    (1.5) 
 
then p is a solution of the differential superordination 
(1.5). 
 

3 2Let (r,s, t;z): U . If pand (p(z),zp '(z),z p ''(z);z)    
are univalent and if p satisfies the second order 
superordination  
 

2h(z) (p(z),zp '(z), z p ''(z);z),  (1.6) 
 
then p is a solution of the differential superordination 
(1.5). If f is superordination of F is called to be 
superordinate to f. An analytic function q is called a 
subordinate if q ≺ p for all p satisfying (1.5). 
 
Millar and Mocanu [8] considered the second order linear 
differential subordination  
 

2A(z)z p''(z)+B(z)zp'(z)+C(z)p(z)+D(z) h(z), 
(1.7) 

 
where A, B, C and D are complex-valued functions 
defined on U and and h(z) is any convex function.  
 
3.Subordination for Analytic functions 
 
Lemma 1: (cf. Jack [9]): let the non constant function w 
(z) be analytic in U with w (0) = 0. If |w(z)| attains its 
maximum value on the circle |z|= r < 1 at a point 0z U , 
then  
 0 0 0z w '(z ) c w(z )  
where c is a real number and c ≥ 1. 
 
Lemma 2: [8, p132, Theorem 3.4h] Let q (z) be univalent 
in the unit disk U and  and  be analytic in a domains D 
containing q ( U ) with  (w)  0 when wq (w). Set  
  
 Q(z) : z q '(z) (q(z)), h(z) : (q(z)) Q(z)      

 
Suppose that either h (z) is convex, or Q (z) is starlike 
univalent in U. In addition, assume that  
 

 
z h '(z) 0 (z U)
Q(z)

 
   
 

. 

If p (z) is analytic in U, with p (0) = q (0), p ( U )  D and  
  
 

(p (z)) z 'p '(z) (p(z)) (q(z)) zq '(z) (q (z)),     
 (1.8) 
 
Then p (z) ≺ q (z) and q (z) is best dominant. 
 
Theorem 1: [8, page 188, Theorem 4.1a] Let n be a 
positive integer and A ( z ) = A ≥ 0. Suppose that the 
function B ( z ), C ( z ), D ( z ) : U → ℂ satisfy ℜ B ( z ) 
≥ A and 
 

 
2C(z) n B(z) nA 2D(z) 0,       

 
If p  H [1,n] and if  
 

2[A(z)z p''(z)+B(z)zp'(z)+C(z)p(z)+D(z)] 0,   
then  
 p (z) 0  . 

where H [a,n] is the subclass of the form H [a,n] = a+an zn 

+ … .for positive integer a  ℂ which is analytic in U. 
 
Theorem 2: [8, page 195, Theorem 4.1e] Let h be convex 
univalent in U with h (0) = 0 and let A ≥ 0. Suppose that 
k 4 / h '(0)  and that B ( z ), C ( z ) and D ( z ) are 
analytic in U and satisfy  
 
 B(z) A C(z) 1 (C(z) 1) k D(z)       . 

 

If p  H [1, n] satisfies the differential subordination 
 

2A (z) z p''(z)+B(z) z p'(z)+C (z) p (z)+D(z)  h (z)
 
then  
 
p (z) ≺ h (z) 
 
4.Conclusion  
  

The aim of this paper is to study the importance of 
subordination in analytic and univalent functions. In this 
paper, we focus on subordination and various results of 
differential subordination.  
 
5.Future Scope 
 

In future we will introduce fractional differential operator 
to study subordination and Superordinate.  
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