Correlation between Serum Homocysteine and Cerebral Ischemic Stroke in an Urban South Indian Population

T. B. Umadevi¹, S. Chandrasekar²

¹Associate Professor, Department of Internal Medicine, Government Thiruvarur Medical College, Thiruvarur, Tamil Nadu, India

²Associate Professor, Department of Internal Medicine, Government Thiruvarur Medical College, Thiruvarur, Tamil Nadu, India

Abstract: Ischemic stroke is one of the common diseases found in medical wards, and is one of the common causes of morbidity and mortality worldwide. There are many causes of ischemic stroke and hyperhomocysteinemia is one of the documented causes. Atherogenic nature of homocysteine plays an important role in the development of ischemic stroke. The aim of this study is to correlate homocysteine and cerebral ischemic stroke.

Keywords: Homocysteine, Ischemic stroke, Hyperhomocysteinemia

1. Introduction

Cerebrovascular accident has become a main health problem and is the most common cause of morbidity and mortality [1]. Stroke is mainly classified into ischemic and hemorrhagic [2]. The commonest etiology for ischemic stroke includes atherosclerosis cardiogenic and thromboembolism [2]. Other risk factors are hypertension, diabetes, cigarette smoking and obesity which are modifiable [2] and biochemical markers like dyslipidemia [3], hypercholesterolemia [4] and hyperhomocysteinemia [5]. Hyperhomocysteinemia has been recently recognized as an easily modifiable risk factor for cerebrovascular accident [6].

Homocysteine is synthesized in our body from methionine in a multistep process [7]. Hyperhomocysteinemia has been found to be an independent risk factor for ischemic stroke. Serum homocysteine (S. HOM) levels more than 15 µmol/L is considered to be associated with an increased risk of ischemic stroke. Hyperhomocysteinemia creates а proatherogenic and prothrombotic environment in the blood vessels [8]. The main mechanism for this is endothelial cell injury. This initiates the atherosclerotic cascade [8]. Other mechanisms include disruption of the normal clotting mechanisms by inhibition of protein C & antithrombin III and activation of factors 5, 10 and 12. It increases thromboxane A2 synthesis leading to platelet aggregation. It causes smooth muscle proliferation, decreases nitric oxide release and increases production of free radicals. All these factors occurring in the cerebral blood vessels lead to formation of a thrombus in these vessels, leading to ischemic stroke. Patients with hyperhomocysteinemia in ischemic stroke should undergo routine ischemic stroke treatment (tPA/ endoscopic revascularization/ aspirin). Along with that they should receive vitamin supplementation with adequate folic acid and vitamin B12 [9].

2. Aims and Objectives

- To correlate risk factors of ischemic stroke with Homocysteine level
- To correlate the clinical profile of ischemic stroke with Homocysteine level

3. Materials and Methods

3.1 Materials

A prospective observational study was undertaken in The Department of Internal medicine, Government Stanley Medical College and Hospital, Chennai from November 2013 to September 2014.

3.1.1 Patient Selection

Patients with ischemic stroke in medical outpatient department and medical wards.

3.1.2 Sample size

75 patients

3.2 Methodology

Blood samples of patients admitted with symptoms suggestive of ischemic stroke with CT brain evidence were taken for serum homocysteine measurements.

3.2.1 Exclusion Criteria

Hemorrhagic stroke, patients on folic acid supplements, patients on anti-epileptics/ oral contraceptive pills/ drugs causing hyperhomocysteinemia, chronic kidney disease, pre-existing coronary artery disease.

3.2.2 Statistical Analysis

Data was analyzed with spss (statistical package for the social sciences) software version 16.0 for windows. All continuous data were expressed as mean and SD and analyzed using student's t-test. Categorical data were

expressed as number (percentage) and analyzed by chi square or fisher's exact test. Pearson's correlation coefficient and linear regression analysis were undertaken to establish correlation and regression among variables. p-value of < 0.05 was considered as statistically significant.

3.2.3 Study Subjects

All the patients who fulfilled the inclusion criteria were included in this study. They were subjected to detailed history taking, complete physical examination and relevant laboratory investigations as per the proforma, exclusively designed for the study.

4. Results and Discussion

4.1 Risk factors - Non-modifiable

4.1.1 Age

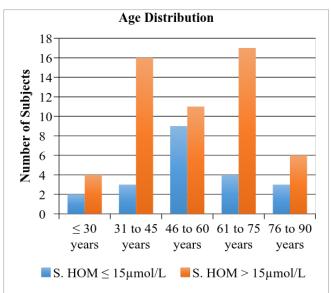


Figure 1: Correlation of serum homocysteine levels with age

 Table 1: Statistical correlation of serum homocysteine

 levels with age

levels with uge					
Age Distribution	S. HOM	S. HOM			
8	$\leq 15 \mu mol/L$	> 15µmol/L			
N	21	54			
Mean	55.66667	55.87037			
SD	14.51666	16.75128			
p-value					
Unpaired	0.9	9586			
t- test					

By conventional criteria, the association between the serum homocysteine groups and age is considered not to be statistically significant since p > 0.05.

4.1.2 Gender

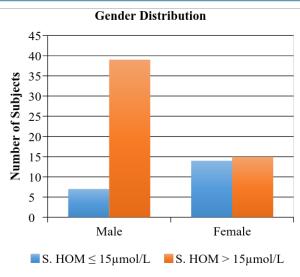


Figure 2: Correlation of serum homocysteine levels with gender

gender					
Gender	S. HOM \leq	%	S. HOM $>$	%	
Distribution	15µmol/L	70	15µmol/L	/0	
Male	7	33.33	39	72.22	
Female	14	66.67 15		27.78	
Total	21	100 54		100	
Chi-squar	e Statistic	9.64			
Degrees of freedom		1			
p-value		.200			
Chi-squ	are Test		.200		

 Table 2: Correlation of serum homocysteine levels with

By conventional criteria, the association between the serum homocysteine groups and gender is considered not to be statistically significant since p > 0.05.

Since age and gender is not statistically significant, it means that there is no difference between the groups.

4.2 Risk factors - Modifiable

4.2.1 Smoking

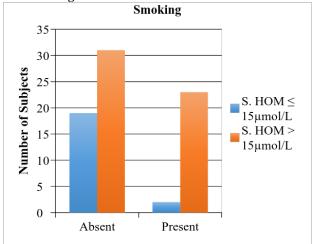


Figure 3: Correlation of serum homocysteine levels with smoking

smoking						
Smalring	S. H	IOM	S. HOM			
Smoking	$\leq 15\mu$	umol/L	> 15	µmol/L		
Absent	19	90.48%	31	57.41%		
Present	2 9.52%		23	42.59%		
Total	21 100%		54	100%		
Chi-square	Chi-square Statistic		9.41			
Degrees of	egrees of freedom		1			
p-value		0.002				
Chi-squa	re Test		0.002			

 Table 3: Correlation of serum homocysteine levels with

By conventional criteria, the association between the serum homocysteine groups and smoking is considered to be statistically significant since p < 0.05.

Statistical Significance

This indicates that there is a true difference among the study groups and that difference is significant. In simple terms, while studying hyperhomocysteinemia in ischemic stroke patients, the incidence of smoking is 2 in patients with serum homocysteine levels $\leq 15 \mu mol/L$ and 23 in patients with serum homocysteine levels $\geq 15 \mu mol/L$ with a p-value of 0.002 according to Chi-Square test.

4.2.2 Alcoholism

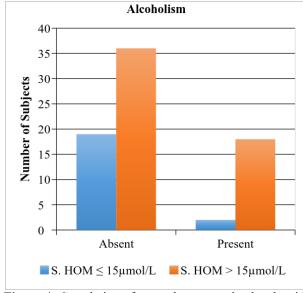


Figure 4: Correlation of serum homocysteine levels with alcoholism

 Table 4: Correlation of serum homocysteine levels with alcoholism

alcononsin					
Alcoholism	S. HOM		S. HOM		
Alcoholishi	≤ 1	5µmol/L	> 1	5µmol/L	
Absent	19	90.48%	36	66.67%	
Present	2 9.52%		18	33.33%	
Total	21 100%		54	100%	
Chi-square Sta	tistic	stic			
Degrees of freedom		1			
p-value		0.036			
Chi-square T	est		0.050		

By conventional criteria, the association between the serum homocysteine groups and alcoholism is considered to be statistically significant since p < 0.05.

Statistical Significance

This indicates that there is a true difference among the study groups and that difference is significant. In simple terms, while studying hyperhomocysteinemia in ischemic stroke patients, the incidence of alcoholism is 2 in patients with serum homocysteine levels $\leq 15 \mu mol/L$ and 18 in patients with serum homocysteine levels $> 15 \mu mol/L$ with a p-value of 0.036 according to Chi-Square test.

4.2.3 Hypertension

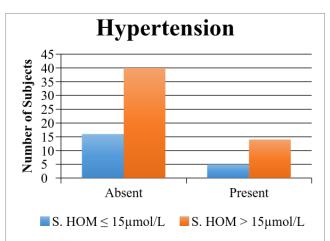


Figure 5: Correlation of serum homocysteine levels with hypertension

Table 5:	Correlation	of serum	homocysteine	levels with

hypertension						
Urmontonsion	S. HOM		S.	. HOM		
Hypertension	≤ 13	5µmol/L	> 1	5µmol/L		
Absent	16	76.19%	40	74.07%		
Present	5 23.81%		14	25.93%		
Total	21 100%		54	100%		
Chi-square Sta	tistic	stic				
Degrees of freedom		1				
p-value		0.850				
Chi-square 7	est		0.850			

By conventional criteria, the association between the serum homocysteine groups and hypertension is considered not to be statistically significant since p > 0.05.

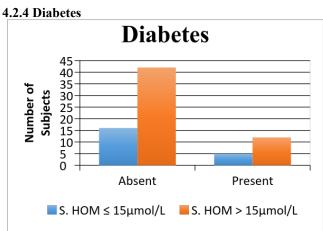


Figure 6: Correlation of serum homocysteine levels with diabetes

	diabetes						
Diabetes	S. 1	HOM	S. 1	НОМ			
Diabetes	≤15	µmol/L	> 15	μmol/L			
Absent	16	76.19%	42	77.78%			
Present	5 23.81%		12	22.22%			
Total	21 100%		54	100%			
Chi-square S	Chi-square Statistic		0.217				
Degrees of freedom		1					
p-value		0.883					
Chi-square	Test		0.005				

 Table 6: Correlation of serum homocysteine levels with

By conventional criteria, the association between the serum homocysteine groups and diabetes mellitus is considered not to be statistically significant since p > 0.05.

4.2.5 Dyslipidaemia

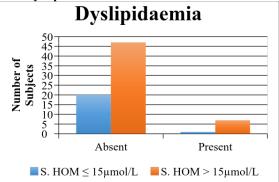


Figure 7: Correlation of serum homocysteine levels with dyslipidaemia

Table 7: Correlation of serum homocysteine levels with
dyslipidaemia

dyshpiddenna						
Dralinidaamia	S. HOM		S. HOM			
Dyslipidaemia	≤15	umol/L	> 15	µmol/L		
Absent	20	95.24%	47	87.04%		
Present	1	4.76%	7	12.96%		
Total	21	100%	54	100%		
Chi-square S	tatistic	tistic				
Degrees of fr	reedom	1				
p-value Chi-square Test		0.302				

By conventional criteria, the association between the serum homocysteine groups and hyperlipidaemia is considered not to be statistically significant since p > 0.05.

4.3. Clinical Profile

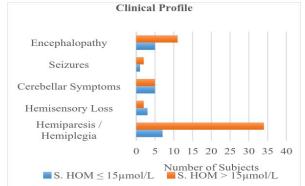
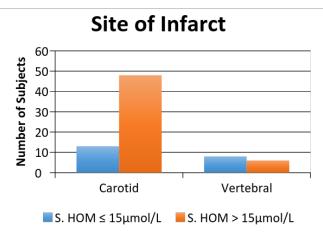


Figure 8: Correlation of serum homocysteine levels with clinical profile

 Table 8: Correlation of serum homocysteine levels with clinical profile

ennieur promie							
	S.HOM		S.HOM		P value		
Clinical Profile	≤15	%	>15	%	Chi Square		
	$\mu mol/L$		µmol/L		Test		
Hemiparesis /	7	33.33	34	62.96			
Hemiplegia	/	33.33	34	02.90	0.021		
Hemi sensory	3	14.29	2	3.70			
Loss	3	14.29	2	3.70	0.099		
Cerebellar	5	23.81	5	9.26			
Symptoms	5	23.01	5	9.20	0.096		
Seizures	1	4.76	2	3.70	0.834		
Encephalopathy	5	23.81	11	20.37	0.744		
Total	21	100	54	100			

By conventional criteria,


- a) The association between the serum homocysteine groups and clinical features like hemi sensory loss, cerebellar symptoms, seizures and encephalopathy are considered not to be statistically significant since p > 0.05.
- b) The association between the serum homocysteine groups and hemiparesis/hemiplegia is considered to be statistically significant since p < 0.05.

Statistical Significance

This indicates that there is a true difference among the study groups and that difference is significant. In simple terms, while studying hyperhomocysteinemia in ischemic stroke patients, the incidence of hemiparesis/hemiplegia is 7 in patients with serum homocysteine levels $\leq 15\mu$ mol/L and 34 in patients with serum homocysteine levels $\geq 15\mu$ mol/L with a p-value of 0.021 according to Chi-Square test.

Clinical Significance

The incidence of hemiparesis/hemiplegia among ischemic stroke patients with serum homocysteine levels > 15µmol/L (82.93%) was significantly higher compared to that in patients with serum homocysteine levels \leq 15µmol/L (17.07%). This difference is true and significant and has not occurred by chance.

4.4. Site of Infarct

Volume 5 Issue 8, August 2016 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 9: Correlation of serum homocysteine levels with site of infarct

 Table 9: Correlation of serum homocysteine levels with site

of infarct					
Site of Infarct	S. H	OM	S. HOM		
Site of infarct	$\leq 15\mu$	mol/L	> 15	5µmol/L	
Carotid	13	61.90%	48	88.89%	
Vertebral	8 38.10%		6	11.11%	
Total	21 100%		54	100%	
Chi-square St	atistic	7.25			
Degrees of fre	eedom		1		
p-value		0.007			
Chi-square	Test		0.007		

By conventional criteria, the association between the serum homocysteine groups and site of infarct is considered to be statistically significant since p < 0.05.

Statistical Significance

This indicates that there is a true difference among the study groups and that difference is significant.

In simple terms, while studying hyperhomocysteinemia in ischemic stroke patients, the incidence of infarct in carotid artery is 13 in patients with serum homocysteine levels \leq 15µmol/L and 48 in patients with serum homocysteine levels > 15µmol/L with a p-value of 0.007 according to Chi-Square test.

Clinical Significance

The incidence of infarct in carotid artery territory among ischemic stroke patients with serum homocysteine levels > 15μ mol/L (89.99%) was significantly higher compared to that in patients with serum homocysteine levels $\leq 15\mu$ mol/L (61.90%). This difference is true and significant and has not occurred by chance.

4.5. Serum homocysteine:

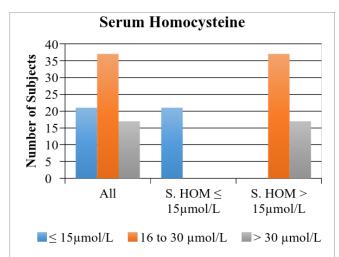


Figure 10: Distribution of serum homocysteine levels among study subjects

 Table 10: Distribution of serum homocysteine levels among

 study subjects

study subjects								
Serum	All	%	S.HOM	%	S. HOM	%		
Homocysteine	All	70	${\leq}15\mu mol/L$	70	$>15 \mu mol/L$	70		
\leq 15 μ mol/L	21	28.00	21	100	0	0.00		
16 to 30	37	49.33	0	0.00	37	68.52		
µmol/L	57	49.55	0	0.00	57	06.52		
> 30 µmol/L	17	22.67	0	0.00	17	31.48		
Total	75	100	21	100	54	100		

 Table 11: Statistical significance of serum homocysteine

 levels among study subjects

levels among study subjects			
Serum	All	S. HOM	S. HOM
Homocysteine		$\leq 15 \mu mol/L$	$> 15 \mu mol/L$
Ν	75	21	54
Mean	24.19	11.99	28.93
SD	12.25	1.71	11.25
p-value Unpaired t test		0.000	

By conventional criteria, the association between the serum homocysteine groups is considered to be statistically significant since p < 0.05.

Statistical Significance

This indicates that there is a true difference among the study groups and that difference is significant.

In simple terms, while studying hyperhomocysteinemia in ischemic stroke patients, the average serum homocysteine values in serum homocysteine levels $\leq 15 \mu mol/L$ group is 11.99±1.71 $\mu mol/L$ and in serum homocysteine levels > 15 $\mu mol/L$ group is 28.93±11.25 $\mu mol/L$ with a p-value of 0.000 according to Unpaired t test.

Clinical Significance

The average serum homocysteine values among ischemic stroke patients with serum homocysteine levels > 15μ mol/L was 2.41 times more significant than that in patients with serum homocysteine levels $\leq 15\mu$ mol/L with a difference of 16.94 μ mol/L. This difference is true and significant and has not occurred by chance.

5. Conclusion

Hyperhomocystenemia is closely related to ischemic stroke. It has been recognized as a prothrombotic and proatherosclerotic state and is attributed as one of the causes of ischemic stroke. In our study, the prevalence of hyperhomocysteinemia in patients with ischemic stroke was 54 out of 75 patients, i.e. 72 %. This correlates with various Indian studies done elsewhere. It was also found that serum homocysteine level correlated with alcoholism and smoking as p values were significant (p < 0.05). The correlation of homocysteine to age, gender, diabetes, hypertension, dyslipidemia at the time of presentation was not statistically significant (p > 0.05). The clinical profile of ischemic stroke patients admitted in Government Stanley Hospital, Chennai revealed that the most common presentation during admission is hemiplegia/hemiparesis (41 patients out of 75).

Other presentations in decreasing order of frequency include acute encephalopathy followed by cerebellar symptoms. The site of infarct in anterior circulation strokes involving the carotid artery was found to have a significant statistical correlation with elevated homocysteine levels.

We conclude that hemiparesis/hemiplegia in our study is associated with higher serum homocysteine levels $> 15 \mu mol/L$ in ischemic stroke patients. More studies with similar indices have to be done to confirm the results.

6. Financial Support and Sponsorship

Nil

7. Conflicts of Interest

There are no conflicts of interest.

8. Future Scope

More studies with similar indices have to be done to confirm the results. Previous studies have revealed that hyperhomocysteinemia appears to be an important risk factor for cerebrovascular accidents [10].

References

- Murray CJL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. *Lancet.* 1997; 349: 1498– 1504.
- [2] Itrat A, Ahmed B, Khan M, Muhammad M, Risk factor profiles of South Asians with cerebrovascular disease Int J Stroke. 2011 Aug; 6(4):346-8.10.1111/j.1747-4949.2011.00622.x
- [3] Qian Jia, MD, Liping Liu, MD, PhD, Yongjun Wang, Risk Factors and Prevention of Stroke in the Chinese Population: Journal of Stroke and Cerebrovascular Diseases Volume 20, Issue 5, September–October 2011, Pages 395–400
- [4] Baidarbhi Chakraborty, Gaurav Vishnoi, Binita Goswami, Lipoprotein (a), Ferritin, and Albumin in Acute Phase Reaction Predicts Severity and Mortality of Acute Ischemic Stroke in North Indian Patients: Journal of Stroke and Cerebrovascular Diseases 2012.10.013, 10.1016
- [5] Bertsch T, Mielke O, Höly S, Zimmer W, Casarin W, Homocysteine in cerebrovascular disease: an independent risk factor for subcortical vascular encephalopathy:Clin Chem Lab Med. 2001 Aug;39(8):721-4
- [6] Abraham R, John MJ, Calton R, Dhanoa J. Raised serum homocysteine levels in patients of coronary artery disease and the effect of vitamin b12 and folate on its concentration. *Indian Journal of Clinical Biochemistry* 2006; 21(1):95-100.
- [7] Mudd, S. H. et al. Homocysteine and its disulfide derivatives: A suggested consensus terminology. Arterioscler Thromb Vasc Biol. 20, 1704–1706 (2002).

- [8] Hanke, Graeme J.; Eikelboom, John W: Homocysteine and stroke: Current Opinion in Neurology: February 2001 - Volume 14 - Issue 1 - pg 95-102
- [9] Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. *Lancet.* 1999; 354:407–413.
- [10] Shoukath Abdul Raheem: Serum homocysteine levels in cerebrovascular accidents: Journal of evolution of medical and dental sciences: January 2014 – Volume 3 – Issue 1- pg 192-199

Author Profile

T. B. Umadevi is working as Associate Professor, Department of Internal Medicine at Government Thiruvarur Medical College, Thiruvarur, TamilNadu. She has been working in the Department of Internal Medicine for the past 9 years.

S. Chandrasekar is working as Associate Professor, Department of Internal Medicine, Government Thiruvarur Medical College, Thiruvarur, TamilNadu. He has been working in the Department of Internal Medicine for the past 14 years.